forked from jan/fdfd_tools
Move eigensolver code out to separate module
This commit is contained in:
parent
001bf1e2ef
commit
bacc6fea3f
95
fdfd_tools/eigensolvers.py
Normal file
95
fdfd_tools/eigensolvers.py
Normal file
@ -0,0 +1,95 @@
|
|||||||
|
"""
|
||||||
|
Solvers for eigenvalue / eigenvector problems
|
||||||
|
"""
|
||||||
|
from typing import Tuple, List
|
||||||
|
import numpy
|
||||||
|
from numpy.linalg import norm
|
||||||
|
from scipy import sparse
|
||||||
|
import scipy.sparse.linalg as spalg
|
||||||
|
|
||||||
|
|
||||||
|
def power_iteration(operator: sparse.spmatrix,
|
||||||
|
guess_vector: numpy.ndarray = None,
|
||||||
|
iterations: int = 20,
|
||||||
|
) -> Tuple[complex, numpy.ndarray]:
|
||||||
|
"""
|
||||||
|
Use power iteration to estimate the dominant eigenvector of a matrix.
|
||||||
|
|
||||||
|
:param operator: Matrix to analyze.
|
||||||
|
:param guess_vector: Starting point for the eigenvector. Default is a randomly chosen vector.
|
||||||
|
:param iterations: Number of iterations to perform. Default 20.
|
||||||
|
:return: (Largest-magnitude eigenvalue, Corresponding eigenvector estimate)
|
||||||
|
"""
|
||||||
|
if numpy.any(numpy.equal(guess_vector, None)):
|
||||||
|
v = numpy.random.rand(operator.shape[0])
|
||||||
|
else:
|
||||||
|
v = guess_vector
|
||||||
|
|
||||||
|
for _ in range(iterations):
|
||||||
|
v = operator @ v
|
||||||
|
v /= norm(v)
|
||||||
|
|
||||||
|
lm_eigval = v.conj() @ operator @ v
|
||||||
|
return lm_eigval, v
|
||||||
|
|
||||||
|
|
||||||
|
def rayleigh_quotient_iteration(operator: sparse.spmatrix,
|
||||||
|
guess_vector: numpy.ndarray,
|
||||||
|
iterations: int = 40,
|
||||||
|
tolerance: float = 1e-13,
|
||||||
|
) -> Tuple[complex, numpy.ndarray]:
|
||||||
|
"""
|
||||||
|
Use Rayleigh quotient iteration to refine an eigenvector guess.
|
||||||
|
|
||||||
|
:param operator: Matrix to analyze.
|
||||||
|
:param guess_vector: Eigenvector to refine.
|
||||||
|
:param iterations: Maximum number of iterations to perform. Default 40.
|
||||||
|
:param tolerance: Stop iteration if (A - I*eigenvalue) @ v < tolerance.
|
||||||
|
Default 1e-13.
|
||||||
|
:return: (eigenvalue, eigenvector)
|
||||||
|
"""
|
||||||
|
v = guess_vector
|
||||||
|
for _ in range(iterations):
|
||||||
|
eigval = v.conj() @ operator @ v
|
||||||
|
if norm(operator @ v - eigval * v) < tolerance:
|
||||||
|
break
|
||||||
|
v = spalg.spsolve(operator - eigval * sparse.eye(operator.shape[0]), v)
|
||||||
|
v /= norm(v)
|
||||||
|
|
||||||
|
return eigval, v
|
||||||
|
|
||||||
|
|
||||||
|
def signed_eigensolve(operator: sparse.spmatrix,
|
||||||
|
how_many: int,
|
||||||
|
negative: bool = False,
|
||||||
|
) -> Tuple[numpy.ndarray, numpy.ndarray]:
|
||||||
|
"""
|
||||||
|
Find the largest-magnitude positive-only (or negative-only) eigenvalues and
|
||||||
|
eigenvectors of the provided matrix.
|
||||||
|
|
||||||
|
:param operator: Matrix to analyze.
|
||||||
|
:param how_many: How many eigenvalues to find.
|
||||||
|
:param negative: Whether to find negative-only eigenvalues.
|
||||||
|
Default False (positive only).
|
||||||
|
:return: (sorted list of eigenvalues, 2D ndarray of corresponding eigenvectors)
|
||||||
|
eigenvectors[:, k] corresponds to the k-th eigenvalue
|
||||||
|
"""
|
||||||
|
# Use power iteration to estimate the dominant eigenvector
|
||||||
|
lm_eigval, _ = power_iteration(operator)
|
||||||
|
|
||||||
|
'''
|
||||||
|
Shift by the absolute value of the largest eigenvalue, then find a few of the
|
||||||
|
largest-magnitude (shifted) eigenvalues. A positive shift ensures that we find the
|
||||||
|
largest _positive_ eigenvalues, since any negative eigenvalues will be shifted to the
|
||||||
|
range 0 >= neg_eigval + abs(lm_eigval) > abs(lm_eigval)
|
||||||
|
'''
|
||||||
|
if negative:
|
||||||
|
shifted_operator = operator - abs(lm_eigval) * sparse.eye(operator.shape[0])
|
||||||
|
else:
|
||||||
|
shifted_operator = operator + abs(lm_eigval) * sparse.eye(operator.shape[0])
|
||||||
|
|
||||||
|
eigenvalues, eigenvectors = spalg.eigs(shifted_operator, which='LM', k=how_many, ncv=50)
|
||||||
|
|
||||||
|
k = eigenvalues.argsort()
|
||||||
|
return eigenvalues[k], eigenvectors[:, k]
|
||||||
|
|
@ -23,7 +23,7 @@ import numpy
|
|||||||
from numpy.linalg import norm
|
from numpy.linalg import norm
|
||||||
import scipy.sparse as sparse
|
import scipy.sparse as sparse
|
||||||
|
|
||||||
from . import unvec, dx_lists_t, field_t, vfield_t
|
from . import vec, unvec, dx_lists_t, field_t, vfield_t
|
||||||
from . import operators
|
from . import operators
|
||||||
|
|
||||||
|
|
||||||
|
@ -1,10 +1,10 @@
|
|||||||
from typing import Dict, List
|
from typing import Dict, List
|
||||||
import numpy
|
import numpy
|
||||||
import scipy.sparse as sparse
|
import scipy.sparse as sparse
|
||||||
import scipy.sparse.linalg as spalg
|
|
||||||
|
|
||||||
from . import vec, unvec, dx_lists_t, vfield_t, field_t
|
from . import vec, unvec, dx_lists_t, vfield_t, field_t
|
||||||
from . import operators, waveguide, functional
|
from . import operators, waveguide, functional
|
||||||
|
from .eigensolvers import signed_eigensolve, rayleigh_quotient_iteration
|
||||||
|
|
||||||
|
|
||||||
def solve_waveguide_mode_2d(mode_number: int,
|
def solve_waveguide_mode_2d(mode_number: int,
|
||||||
@ -12,12 +12,12 @@ def solve_waveguide_mode_2d(mode_number: int,
|
|||||||
dxes: dx_lists_t,
|
dxes: dx_lists_t,
|
||||||
epsilon: vfield_t,
|
epsilon: vfield_t,
|
||||||
mu: vfield_t = None,
|
mu: vfield_t = None,
|
||||||
wavenumber_correction: bool = True
|
wavenumber_correction: bool = True,
|
||||||
) -> Dict[str, complex or field_t]:
|
) -> Dict[str, complex or field_t]:
|
||||||
"""
|
"""
|
||||||
Given a 2d region, attempts to solve for the eigenmode with the specified mode number.
|
Given a 2d region, attempts to solve for the eigenmode with the specified mode number.
|
||||||
|
|
||||||
:param mode_number: Number of the mode, 0-indexed
|
:param mode_number: Number of the mode, 0-indexed.
|
||||||
:param omega: Angular frequency of the simulation
|
:param omega: Angular frequency of the simulation
|
||||||
:param dxes: Grid parameters [dx_e, dx_h] as described in fdfd_tools.operators header
|
:param dxes: Grid parameters [dx_e, dx_h] as described in fdfd_tools.operators header
|
||||||
:param epsilon: Dielectric constant
|
:param epsilon: Dielectric constant
|
||||||
@ -29,46 +29,19 @@ def solve_waveguide_mode_2d(mode_number: int,
|
|||||||
|
|
||||||
'''
|
'''
|
||||||
Solve for the largest-magnitude eigenvalue of the real operator
|
Solve for the largest-magnitude eigenvalue of the real operator
|
||||||
by using power iteration.
|
|
||||||
'''
|
'''
|
||||||
dxes_real = [[numpy.real(dx) for dx in dxi] for dxi in dxes]
|
dxes_real = [[numpy.real(dx) for dx in dxi] for dxi in dxes]
|
||||||
|
|
||||||
A_r = waveguide.operator(numpy.real(omega), dxes_real, numpy.real(epsilon), numpy.real(mu))
|
A_r = waveguide.operator(numpy.real(omega), dxes_real, numpy.real(epsilon), numpy.real(mu))
|
||||||
|
|
||||||
# Use power iteration for 20 steps to estimate the dominant eigenvector
|
eigvals, eigvecs = signed_eigensolve(A_r, mode_number+3)
|
||||||
v = numpy.random.rand(A_r.shape[0])
|
v = eigvecs[:, -(mode_number + 1)]
|
||||||
for _ in range(20):
|
|
||||||
v = A_r @ v
|
|
||||||
v /= numpy.linalg.norm(v)
|
|
||||||
|
|
||||||
lm_eigval = v @ A_r @ v
|
|
||||||
|
|
||||||
'''
|
|
||||||
Shift by the absolute value of the largest eigenvalue, then find a few of the
|
|
||||||
largest-magnitude (shifted) eigenvalues. The shift ensures that we find the largest
|
|
||||||
_positive_ eigenvalues, since any negative eigenvalues will be shifted to the range
|
|
||||||
0 >= neg_eigval + abs(lm_eigval) > abs(lm_eigval)
|
|
||||||
'''
|
|
||||||
shifted_A_r = A_r + abs(lm_eigval) * sparse.eye(A_r.shape[0])
|
|
||||||
eigvals, eigvecs = spalg.eigs(shifted_A_r, which='LM', k=mode_number + 3, ncv=50)
|
|
||||||
|
|
||||||
# Pick the eigenvalue we want from the few we found
|
|
||||||
k = eigvals.argsort()[-(mode_number+1)]
|
|
||||||
v = eigvecs[:, k]
|
|
||||||
|
|
||||||
'''
|
'''
|
||||||
Now solve for the eigenvector of the full operator, using the real operator's
|
Now solve for the eigenvector of the full operator, using the real operator's
|
||||||
eigenvector as an initial guess for Rayleigh quotient iteration.
|
eigenvector as an initial guess for Rayleigh quotient iteration.
|
||||||
'''
|
'''
|
||||||
A = waveguide.operator(omega, dxes, epsilon, mu)
|
A = waveguide.operator(omega, dxes, epsilon, mu)
|
||||||
|
v, eigval = rayleigh_quotient_iteration(A, v)
|
||||||
eigval = None
|
|
||||||
for _ in range(40):
|
|
||||||
eigval = v.conj() @ A @ v
|
|
||||||
if numpy.linalg.norm(A @ v - eigval * v) < 1e-13:
|
|
||||||
break
|
|
||||||
v = spalg.spsolve(A - eigval * sparse.eye(A.shape[0]), v)
|
|
||||||
v /= numpy.linalg.norm(v)
|
|
||||||
|
|
||||||
# Calculate the wave-vector (force the real part to be positive)
|
# Calculate the wave-vector (force the real part to be positive)
|
||||||
wavenumber = numpy.sqrt(eigval)
|
wavenumber = numpy.sqrt(eigval)
|
||||||
|
Loading…
Reference in New Issue
Block a user