forked from jan/fdfd_tools
Add cylindrical coordinate 2D modesolver code
This commit is contained in:
parent
bacc6fea3f
commit
a4616982ca
@ -307,3 +307,62 @@ def e_err(e: vfield_t,
|
|||||||
op = ch @ mu_inv @ ce @ e - omega ** 2 * (epsilon * e)
|
op = ch @ mu_inv @ ce @ e - omega ** 2 * (epsilon * e)
|
||||||
|
|
||||||
return norm(op) / norm(e)
|
return norm(op) / norm(e)
|
||||||
|
|
||||||
|
|
||||||
|
def cylindrical_operator(omega: complex,
|
||||||
|
dxes: dx_lists_t,
|
||||||
|
epsilon: vfield_t,
|
||||||
|
r0: float,
|
||||||
|
) -> sparse.spmatrix:
|
||||||
|
"""
|
||||||
|
Cylindrical coordinate waveguide operator of the form
|
||||||
|
|
||||||
|
TODO
|
||||||
|
|
||||||
|
for use with a field vector of the form [E_r, E_y].
|
||||||
|
|
||||||
|
This operator can be used to form an eigenvalue problem of the form
|
||||||
|
A @ [E_r, E_y] = wavenumber**2 * [E_r, E_y]
|
||||||
|
|
||||||
|
which can then be solved for the eigenmodes of the system (an exp(-i * wavenumber * theta)
|
||||||
|
theta-dependence is assumed for the fields).
|
||||||
|
|
||||||
|
:param omega: The angular frequency of the system
|
||||||
|
:param dxes: Grid parameters [dx_e, dx_h] as described in fdfd_tools.operators header (2D)
|
||||||
|
:param epsilon: Vectorized dielectric constant grid
|
||||||
|
:param r0: Radius of curvature for the simulation. This should be the minimum value of
|
||||||
|
r within the simulation domain.
|
||||||
|
:return: Sparse matrix representation of the operator
|
||||||
|
"""
|
||||||
|
|
||||||
|
Dfx, Dfy = operators.deriv_forward(dxes[0])
|
||||||
|
Dbx, Dby = operators.deriv_back(dxes[1])
|
||||||
|
|
||||||
|
rx = r0 + numpy.cumsum(dxes[0][0])
|
||||||
|
ry = r0 + dxes[0][0]/2.0 + numpy.cumsum(dxes[1][0])
|
||||||
|
tx = 1 + rx/r0
|
||||||
|
ty = 1 + ry/r0
|
||||||
|
|
||||||
|
Tx = sparse.diags(vec(tx[:, None].repeat(dxes[0][1].size, axis=1)))
|
||||||
|
Ty = sparse.diags(vec(ty[:, None].repeat(dxes[1][1].size, axis=1)))
|
||||||
|
|
||||||
|
eps_parts = numpy.split(epsilon, 3)
|
||||||
|
eps_x = sparse.diags(eps_parts[0])
|
||||||
|
eps_y = sparse.diags(eps_parts[1])
|
||||||
|
eps_z_inv = sparse.diags(1 / eps_parts[2])
|
||||||
|
|
||||||
|
pa = sparse.vstack((Dfx, Dfy)) @ Tx @ eps_z_inv @ sparse.hstack((Dbx, Dby))
|
||||||
|
pb = sparse.vstack((Dfx, Dfy)) @ Tx @ eps_z_inv @ sparse.hstack((Dby, Dbx))
|
||||||
|
a0 = Ty @ eps_x + omega**-2 * Dby @ Ty @ Dfy
|
||||||
|
a1 = Tx @ eps_y + omega**-2 * Dbx @ Ty @ Dfx
|
||||||
|
b0 = Dbx @ Ty @ Dfy
|
||||||
|
b1 = Dby @ Ty @ Dfx
|
||||||
|
|
||||||
|
diag = sparse.block_diag
|
||||||
|
op = (omega**2 * diag((Tx, Ty)) + pa) @ diag((a0, a1)) + \
|
||||||
|
- (sparse.bmat(((None, Ty), (Tx, None))) + omega**-2 * pb) @ diag((b0, b1))
|
||||||
|
|
||||||
|
return op
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
@ -272,3 +272,69 @@ def compute_overlap_e(E: field_t,
|
|||||||
overlap_e /= norm_factor * dx_forward
|
overlap_e /= norm_factor * dx_forward
|
||||||
|
|
||||||
return unvec(overlap_e, E[0].shape)
|
return unvec(overlap_e, E[0].shape)
|
||||||
|
|
||||||
|
|
||||||
|
def solve_waveguide_mode_cylindrical(mode_number: int,
|
||||||
|
omega: complex,
|
||||||
|
dxes: dx_lists_t,
|
||||||
|
epsilon: vfield_t,
|
||||||
|
r0: float,
|
||||||
|
wavenumber_correction: bool = True,
|
||||||
|
) -> Dict[str, complex or field_t]:
|
||||||
|
"""
|
||||||
|
Given a 2d (r, y) slice of epsilon, attempts to solve for the eigenmode
|
||||||
|
of the bent waveguide with the specified mode number.
|
||||||
|
|
||||||
|
:param mode_number: Number of the mode, 0-indexed
|
||||||
|
:param omega: Angular frequency of the simulation
|
||||||
|
:param dxes: Grid parameters [dx_e, dx_h] as described in fdfd_tools.operators header.
|
||||||
|
The first coordinate is assumed to be r, the second is y.
|
||||||
|
:param epsilon: Dielectric constant
|
||||||
|
:param r0: Radius of curvature for the simulation. This should be the minimum value of
|
||||||
|
r within the simulation domain.
|
||||||
|
:param wavenumber_correction: Whether to correct the wavenumber to
|
||||||
|
account for numerical dispersion (default True)
|
||||||
|
:return: {'E': List[numpy.ndarray], 'H': List[numpy.ndarray], 'wavenumber': complex}
|
||||||
|
"""
|
||||||
|
|
||||||
|
'''
|
||||||
|
Solve for the largest-magnitude eigenvalue of the real operator
|
||||||
|
'''
|
||||||
|
dxes_real = [[numpy.real(dx) for dx in dxi] for dxi in dxes]
|
||||||
|
|
||||||
|
A_r = waveguide.cylindrical_operator(numpy.real(omega), dxes_real, numpy.real(epsilon), r0)
|
||||||
|
eigvals, eigvecs = signed_eigensolve(A_r, mode_number + 3)
|
||||||
|
v = eigvecs[:, -(mode_number+1)]
|
||||||
|
|
||||||
|
'''
|
||||||
|
Now solve for the eigenvector of the full operator, using the real operator's
|
||||||
|
eigenvector as an initial guess for Rayleigh quotient iteration.
|
||||||
|
'''
|
||||||
|
A = waveguide.cylindrical_operator(omega, dxes, epsilon, r0)
|
||||||
|
eigval, v = rayleigh_quotient_iteration(A, v)
|
||||||
|
|
||||||
|
# Calculate the wave-vector (force the real part to be positive)
|
||||||
|
wavenumber = numpy.sqrt(eigval)
|
||||||
|
wavenumber *= numpy.sign(numpy.real(wavenumber))
|
||||||
|
|
||||||
|
'''
|
||||||
|
Perform correction on wavenumber to account for numerical dispersion.
|
||||||
|
|
||||||
|
See Numerical Dispersion in Taflove's FDTD book.
|
||||||
|
This correction term reduces the error in emitted power, but additional
|
||||||
|
error is introduced into the E_err and H_err terms. This effect becomes
|
||||||
|
more pronounced as beta increases.
|
||||||
|
'''
|
||||||
|
if wavenumber_correction:
|
||||||
|
wavenumber -= 2 * numpy.sin(numpy.real(wavenumber / 2)) - numpy.real(wavenumber)
|
||||||
|
|
||||||
|
shape = [d.size for d in dxes[0]]
|
||||||
|
v = numpy.hstack((v, numpy.zeros(shape[0] * shape[1])))
|
||||||
|
fields = {
|
||||||
|
'wavenumber': wavenumber,
|
||||||
|
'E': unvec(v, shape),
|
||||||
|
# 'E': unvec(e, shape),
|
||||||
|
# 'H': unvec(h, shape),
|
||||||
|
}
|
||||||
|
|
||||||
|
return fields
|
||||||
|
Loading…
Reference in New Issue
Block a user