forked from jan/fdfd_tools
use own CG implementation
This commit is contained in:
parent
47dd0df8bc
commit
4067766478
@ -30,11 +30,11 @@ g2.shifts = numpy.zeros((6,3))
|
||||
g2.grids = [numpy.zeros(g.shape) for _ in range(6)]
|
||||
|
||||
epsilon = [g.grids[0],] * 3
|
||||
reciprocal_lattice = numpy.diag(1e6/numpy.array([x_period, y_period, z_period])) #cols are vectors
|
||||
reciprocal_lattice = numpy.diag(1000/numpy.array([x_period, y_period, z_period])) #cols are vectors
|
||||
|
||||
#print('Finding k at 1550nm')
|
||||
#k, f = bloch.find_k(frequency=1/1550,
|
||||
# tolerance=(1/1550 - 1/1551),
|
||||
#k, f = bloch.find_k(frequency=1000/1550,
|
||||
# tolerance=(1000 * (1/1550 - 1/1551)),
|
||||
# direction=[1, 0, 0],
|
||||
# G_matrix=reciprocal_lattice,
|
||||
# epsilon=epsilon,
|
||||
@ -47,10 +47,10 @@ for k0x in [.25]:
|
||||
k0 = numpy.array([k0x, 0, 0])
|
||||
|
||||
kmag = norm(reciprocal_lattice @ k0)
|
||||
tolerance = (1e6/1550) * 1e-4/1.5 # df = f * dn_eff / n
|
||||
tolerance = (1000/1550) * 1e-4/1.5 # df = f * dn_eff / n
|
||||
logger.info('tolerance {}'.format(tolerance))
|
||||
|
||||
n, v = bloch.eigsolve(4, k0, G_matrix=reciprocal_lattice, epsilon=epsilon, tolerance=tolerance)
|
||||
n, v = bloch.eigsolve(4, k0, G_matrix=reciprocal_lattice, epsilon=epsilon, tolerance=tolerance**2)
|
||||
v2e = bloch.hmn_2_exyz(k0, G_matrix=reciprocal_lattice, epsilon=epsilon)
|
||||
v2h = bloch.hmn_2_hxyz(k0, G_matrix=reciprocal_lattice, epsilon=epsilon)
|
||||
ki = bloch.generate_kmn(k0, reciprocal_lattice, g.shape)
|
||||
|
@ -76,6 +76,7 @@ This module contains functions for generating and solving the
|
||||
from typing import List, Tuple, Callable, Dict
|
||||
import logging
|
||||
import numpy
|
||||
from numpy import pi, real, trace
|
||||
from numpy.fft import fftn, ifftn, fftfreq
|
||||
import scipy
|
||||
import scipy.optimize
|
||||
@ -337,139 +338,6 @@ def inverse_maxwell_operator_approx(k0: numpy.ndarray,
|
||||
return operator
|
||||
|
||||
|
||||
def eigsolve(num_modes: int,
|
||||
k0: numpy.ndarray,
|
||||
G_matrix: numpy.ndarray,
|
||||
epsilon: field_t,
|
||||
mu: field_t = None,
|
||||
tolerance = 1e-8,
|
||||
) -> Tuple[numpy.ndarray, numpy.ndarray]:
|
||||
"""
|
||||
Find the first (lowest-frequency) num_modes eigenmodes with Bloch wavevector
|
||||
k0 of the specified structure.
|
||||
|
||||
:param k0: Bloch wavevector, [k0x, k0y, k0z].
|
||||
:param G_matrix: 3x3 matrix, with reciprocal lattice vectors as columns.
|
||||
:param epsilon: Dielectric constant distribution for the simulation.
|
||||
All fields are sampled at cell centers (i.e., NOT Yee-gridded)
|
||||
:param mu: Magnetic permability distribution for the simulation.
|
||||
Default None (1 everywhere).
|
||||
:return: (eigenvalues, eigenvectors) where eigenvalues[i] corresponds to the
|
||||
vector eigenvectors[i, :]
|
||||
"""
|
||||
h_size = 2 * epsilon[0].size
|
||||
|
||||
kmag = norm(G_matrix @ k0)
|
||||
|
||||
'''
|
||||
Generate the operators
|
||||
'''
|
||||
mop = maxwell_operator(k0=k0, G_matrix=G_matrix, epsilon=epsilon, mu=mu)
|
||||
imop = inverse_maxwell_operator_approx(k0=k0, G_matrix=G_matrix, epsilon=epsilon, mu=mu)
|
||||
|
||||
scipy_op = spalg.LinearOperator(dtype=complex, shape=(h_size, h_size), matvec=mop)
|
||||
scipy_iop = spalg.LinearOperator(dtype=complex, shape=(h_size, h_size), matvec=imop)
|
||||
|
||||
y_shape = (h_size, num_modes)
|
||||
|
||||
def rayleigh_quotient(Z: numpy.ndarray, approx_grad: bool = True):
|
||||
"""
|
||||
Absolute value of the block Rayleigh quotient, and the associated gradient.
|
||||
|
||||
See Johnson and Joannopoulos, Opt. Expr. 8, 3 (2001) for details (full
|
||||
citation in module docstring).
|
||||
|
||||
===
|
||||
|
||||
Notes on my understanding of the procedure:
|
||||
|
||||
Minimize f(Y) = |trace((Y.H @ A @ Y)|, making use of Y = Z @ inv(Z.H @ Z)^(1/2)
|
||||
(a polar orthogonalization of Y). This gives f(Z) = |trace(Z.H @ A @ Z @ U)|,
|
||||
where U = inv(Z.H @ Z). We minimize the absolute value to find the eigenvalues
|
||||
with smallest magnitude.
|
||||
|
||||
The gradient is P @ (A @ Z @ U), where P = (1 - Z @ U @ Z.H) is a projection
|
||||
onto the space orthonormal to Z. If approx_grad is True, the approximate
|
||||
inverse of the maxwell operator is used to precondition the gradient.
|
||||
"""
|
||||
z = Z.view(dtype=complex).reshape(y_shape)
|
||||
U = numpy.linalg.inv(z.conj().T @ z)
|
||||
zU = z @ U
|
||||
AzU = scipy_op @ zU
|
||||
zTAzU = z.conj().T @ AzU
|
||||
f = numpy.real(numpy.trace(zTAzU))
|
||||
if approx_grad:
|
||||
df_dy = scipy_iop @ (AzU - zU @ zTAzU)
|
||||
else:
|
||||
df_dy = (AzU - zU @ zTAzU)
|
||||
|
||||
df_dy_flat = df_dy.view(dtype=float).ravel()
|
||||
return numpy.abs(f), numpy.sign(f) * df_dy_flat
|
||||
|
||||
'''
|
||||
Use the conjugate gradient method and the approximate gradient calculation to
|
||||
quickly find approximate eigenvectors.
|
||||
'''
|
||||
result = scipy.optimize.minimize(rayleigh_quotient,
|
||||
numpy.random.rand(*y_shape, 2),
|
||||
jac=True,
|
||||
method='L-BFGS-B',
|
||||
tol=1e-20,
|
||||
options={'maxiter': 2000, 'gtol':0, 'ftol':1e-20 , 'disp':True})#, 'maxls':80, 'm':30})
|
||||
|
||||
|
||||
result = scipy.optimize.minimize(lambda y: rayleigh_quotient(y, True),
|
||||
result.x,
|
||||
jac=True,
|
||||
method='L-BFGS-B',
|
||||
tol=1e-20,
|
||||
options={'maxiter': 2000, 'gtol':0, 'disp':True})
|
||||
|
||||
result = scipy.optimize.minimize(lambda y: rayleigh_quotient(y, False),
|
||||
result.x,
|
||||
jac=True,
|
||||
method='L-BFGS-B',
|
||||
tol=1e-20,
|
||||
options={'maxiter': 2000, 'gtol':0, 'disp':True})
|
||||
|
||||
for i in range(20):
|
||||
result = scipy.optimize.minimize(lambda y: rayleigh_quotient(y, False),
|
||||
result.x,
|
||||
jac=True,
|
||||
method='L-BFGS-B',
|
||||
tol=1e-20,
|
||||
options={'maxiter': 70, 'gtol':0, 'disp':True})
|
||||
if result.nit == 0:
|
||||
# We took 0 steps, so re-running won't help
|
||||
break
|
||||
|
||||
|
||||
z = result.x.view(dtype=complex).reshape(y_shape)
|
||||
|
||||
'''
|
||||
Recover eigenvectors from Z
|
||||
'''
|
||||
U = numpy.linalg.inv(z.conj().T @ z)
|
||||
y = z @ scipy.linalg.sqrtm(U)
|
||||
w = y.conj().T @ (scipy_op @ y)
|
||||
|
||||
eigvals, w_eigvecs = numpy.linalg.eig(w)
|
||||
eigvecs = y @ w_eigvecs
|
||||
|
||||
for i in range(len(eigvals)):
|
||||
v = eigvecs[:, i]
|
||||
n = eigvals[i]
|
||||
v /= norm(v)
|
||||
eigness = norm(scipy_op @ v - (v.conj() @ (scipy_op @ v)) * v )
|
||||
f = numpy.sqrt(-numpy.real(n))
|
||||
df = numpy.sqrt(-numpy.real(n + eigness))
|
||||
neff_err = kmag * (1/df - 1/f)
|
||||
logger.info('eigness {}: {}\n neff_err: {}'.format(i, eigness, neff_err))
|
||||
|
||||
order = numpy.argsort(numpy.abs(eigvals))
|
||||
return eigvals[order], eigvecs.T[order]
|
||||
|
||||
|
||||
def find_k(frequency: float,
|
||||
tolerance: float,
|
||||
direction: numpy.ndarray,
|
||||
@ -511,3 +379,247 @@ def find_k(frequency: float,
|
||||
return res.x * direction, res.fun + frequency
|
||||
|
||||
|
||||
|
||||
def eigsolve(num_modes: int,
|
||||
k0: numpy.ndarray,
|
||||
G_matrix: numpy.ndarray,
|
||||
epsilon: field_t,
|
||||
mu: field_t = None,
|
||||
tolerance = 1e-20,
|
||||
) -> Tuple[numpy.ndarray, numpy.ndarray]:
|
||||
"""
|
||||
Find the first (lowest-frequency) num_modes eigenmodes with Bloch wavevector
|
||||
k0 of the specified structure.
|
||||
|
||||
:param k0: Bloch wavevector, [k0x, k0y, k0z].
|
||||
:param G_matrix: 3x3 matrix, with reciprocal lattice vectors as columns.
|
||||
:param epsilon: Dielectric constant distribution for the simulation.
|
||||
All fields are sampled at cell centers (i.e., NOT Yee-gridded)
|
||||
:param mu: Magnetic permability distribution for the simulation.
|
||||
Default None (1 everywhere).
|
||||
:param tolerance: Solver stops when fractional change in the objective
|
||||
trace(Z.H @ A @ Z @ inv(Z Z.H)) is smaller than the tolerance
|
||||
:return: (eigenvalues, eigenvectors) where eigenvalues[i] corresponds to the
|
||||
vector eigenvectors[i, :]
|
||||
"""
|
||||
h_size = 2 * epsilon[0].size
|
||||
|
||||
kmag = norm(G_matrix @ k0)
|
||||
|
||||
'''
|
||||
Generate the operators
|
||||
'''
|
||||
mop = maxwell_operator(k0=k0, G_matrix=G_matrix, epsilon=epsilon, mu=mu)
|
||||
imop = inverse_maxwell_operator_approx(k0=k0, G_matrix=G_matrix, epsilon=epsilon, mu=mu)
|
||||
|
||||
scipy_op = spalg.LinearOperator(dtype=complex, shape=(h_size, h_size), matvec=mop)
|
||||
scipy_iop = spalg.LinearOperator(dtype=complex, shape=(h_size, h_size), matvec=imop)
|
||||
|
||||
y_shape = (h_size, num_modes)
|
||||
|
||||
prev_E = 0
|
||||
d_scale = 1
|
||||
prev_traceGtKG = 0
|
||||
prev_theta = 0.5
|
||||
D = numpy.zeros(shape=y_shape, dtype=complex)
|
||||
|
||||
y0 = None
|
||||
if y0 is None:
|
||||
Z = numpy.random.rand(*y_shape).astype(complex)
|
||||
else:
|
||||
Z = y0
|
||||
|
||||
while True:
|
||||
Z2 = Z.conj().T @ Z
|
||||
Z_norm = numpy.sqrt(real(trace(Z2))) / num_modes
|
||||
Z /= Z_norm
|
||||
Z2 /= Z_norm * Z_norm
|
||||
try:
|
||||
U = numpy.linalg.inv(Z2)
|
||||
except numpy.linalg.LinAlgError:
|
||||
Z = numpy.random.rand(*y_shape).astype(complex)
|
||||
continue
|
||||
|
||||
trace_U = real(trace(U))
|
||||
if trace_U > 1e8 * num_modes:
|
||||
Z = Z @ scipy.linalg.sqrtm(U).conj().T
|
||||
prev_traceGtKG = 0
|
||||
continue
|
||||
break
|
||||
|
||||
def rtrace_AtB(A, B):
|
||||
return real(numpy.sum(A.conj() * B))
|
||||
|
||||
def symmetrize(A):
|
||||
return (A + A.conj().T) * 0.5
|
||||
|
||||
max_iters = 10000
|
||||
for iter in range(max_iters):
|
||||
U = numpy.linalg.inv(Z.conj().T @ Z)
|
||||
AZ = scipy_op @ Z
|
||||
AZU = AZ @ U
|
||||
ZtAZU = Z.conj().T @ AZU
|
||||
E = real(trace(ZtAZU))
|
||||
sgn = numpy.sign(E)
|
||||
E = numpy.abs(E)
|
||||
G = (AZU - Z @ U @ ZtAZU) * sgn
|
||||
|
||||
if iter > 0 and abs(E - prev_E) < tolerance * 0.5 * (E + prev_E + 1e-7):
|
||||
logging.info('Optimization succeded: {} - 5e-8 < {} * {} / 2'.format(abs(E - prev_E), tolerance, E + prev_E))
|
||||
break
|
||||
|
||||
KG = scipy_iop @ G
|
||||
traceGtKG = rtrace_AtB(G, KG)
|
||||
gamma_numerator = traceGtKG
|
||||
|
||||
reset_iters = 100
|
||||
if prev_traceGtKG == 0 or iter % reset_iters == 0:
|
||||
print('RESET!')
|
||||
gamma = 0
|
||||
else:
|
||||
gamma = gamma_numerator / prev_traceGtKG
|
||||
|
||||
D = gamma * d_scale * D + KG
|
||||
d_scale = numpy.sqrt(rtrace_AtB(D, D)) / num_modes
|
||||
D /= d_scale
|
||||
|
||||
AD = scipy_op @ D
|
||||
DtD = D.conj().T @ D
|
||||
DtAD = D.conj().T @ AD
|
||||
|
||||
ZtD = Z.conj().T @ D
|
||||
ZtAD = Z.conj().T @ AD
|
||||
symZtD = symmetrize(ZtD)
|
||||
symZtAD = symmetrize(ZtAD)
|
||||
|
||||
U_sZtD = U @ symZtD
|
||||
|
||||
dE = 2.0 * (rtrace_AtB(U, symZtAD) - rtrace_AtB(ZtAZU, U_sZtD))
|
||||
|
||||
S2 = DtD - 4 * symZtD @ U_sZtD
|
||||
d2E = 2 * (rtrace_AtB(U, DtAD) -
|
||||
rtrace_AtB(ZtAZU, U @ S2) -
|
||||
4 * rtrace_AtB(U, symZtAD @ U_sZtD))
|
||||
|
||||
# Newton-Raphson to find a root of the first derivative:
|
||||
theta = -dE/d2E
|
||||
|
||||
if d2E < 0 or abs(theta) >= pi:
|
||||
theta = -abs(prev_theta) * numpy.sign(dE)
|
||||
|
||||
# ZtAZU * ZtZ = ZtAZ for use in line search
|
||||
ZtZ = Z.conj().T @ Z
|
||||
ZtAZ = ZtAZU @ ZtZ.conj().T
|
||||
|
||||
def Qi_func(theta, memo=[None, None]):
|
||||
if memo[0] == theta:
|
||||
return memo[1]
|
||||
|
||||
c = numpy.cos(theta)
|
||||
s = numpy.sin(theta)
|
||||
Q = c*c * ZtZ + s*s * DtD + 2*s*c * symZtD
|
||||
try:
|
||||
Qi = numpy.linalg.inv(Q)
|
||||
except numpy.linalg.LinAlgError:
|
||||
logger.info('taylor Qi')
|
||||
# if c or s small, taylor expand
|
||||
if c < 1e-4 * s and c != 0:
|
||||
Qi = numpy.linalg.inv(DtD)
|
||||
Qi = Qi / (s*s) - 2*c/(s*s*s) * (Qi @ symZtD.conj().T @ Qi.conj().T)
|
||||
elif s < 1e-4 * c and s != 0:
|
||||
Qi = numpy.linalg.inv(ZtZ)
|
||||
Qi = Qi / (c*c) - 2*s/(c*c*c) * (Qi @ symZtD.conj().T @ Qi.conj().T)
|
||||
else:
|
||||
raise Exception('Inexplicable singularity in trace_func')
|
||||
memo[0] = theta
|
||||
memo[1] = Qi
|
||||
return Qi
|
||||
|
||||
def trace_func(theta):
|
||||
c = numpy.cos(theta)
|
||||
s = numpy.sin(theta)
|
||||
Qi = Qi_func(theta)
|
||||
R = c*c * ZtAZ + s*s * DtAD + 2*s*c * symZtAD
|
||||
trace = rtrace_AtB(R, Qi)
|
||||
return numpy.abs(trace)
|
||||
|
||||
#def trace_deriv(theta):
|
||||
# Qi = Qi_func(theta)
|
||||
# c2 = numpy.cos(2 * theta)
|
||||
# s2 = numpy.sin(2 * theta)
|
||||
# F = -0.5*s2 * (ZtAZ - DtAD) + c2 * symZtAD
|
||||
# trace_deriv = rtrace_AtB(Qi, F)
|
||||
|
||||
# G = Qi @ F.conj().T @ Qi.conj().T
|
||||
# H = -0.5*s2 * (ZtZ - DtD) + c2 * symZtD
|
||||
# trace_deriv -= rtrace_AtB(G, H)
|
||||
|
||||
# trace_deriv *= 2
|
||||
# return trace_deriv * sgn
|
||||
|
||||
'''
|
||||
theta, new_E, new_dE = linmin(theta, E, dE, 0.1, min(tolerance, 1e-6), 1e-14, 0, -numpy.sign(dE) * K_PI, trace_func)
|
||||
'''
|
||||
#theta, n, _, new_E, _, _new_dE = scipy.optimize.line_search(trace_func, trace_deriv, xk=theta, pk=numpy.ones((1,1)), gfk=dE, old_fval=E, c1=min(tolerance, 1e-6), c2=0.1, amax=pi)
|
||||
result = scipy.optimize.minimize_scalar(trace_func, bounds=(0, pi), tol=tolerance)
|
||||
new_E = result.fun
|
||||
theta = result.x
|
||||
|
||||
improvement = numpy.abs(E - new_E) * 2 / numpy.abs(E + new_E)
|
||||
logger.info('linmin improvement {}'.format(improvement))
|
||||
Z *= numpy.cos(theta)
|
||||
Z += D * numpy.sin(theta)
|
||||
|
||||
prev_traceGtKG = traceGtKG
|
||||
prev_theta = theta
|
||||
prev_E = E
|
||||
|
||||
'''
|
||||
Recover eigenvectors from Z
|
||||
'''
|
||||
U = numpy.linalg.inv(Z.conj().T @ Z)
|
||||
Y = Z @ scipy.linalg.sqrtm(U)
|
||||
W = Y.conj().T @ (scipy_op @ Y)
|
||||
|
||||
eigvals, W_eigvecs = numpy.linalg.eig(W)
|
||||
eigvecs = Y @ W_eigvecs
|
||||
|
||||
for i in range(len(eigvals)):
|
||||
v = eigvecs[:, i]
|
||||
n = eigvals[i]
|
||||
v /= norm(v)
|
||||
eigness = norm(scipy_op @ v - (v.conj() @ (scipy_op @ v)) * v )
|
||||
f = numpy.sqrt(-numpy.real(n))
|
||||
df = numpy.sqrt(-numpy.real(n + eigness))
|
||||
neff_err = kmag * (1/df - 1/f)
|
||||
logger.info('eigness {}: {}\n neff_err: {}'.format(i, eigness, neff_err))
|
||||
|
||||
order = numpy.argsort(numpy.abs(eigvals))
|
||||
return eigvals[order], eigvecs.T[order]
|
||||
|
||||
#def linmin(x_guess, f0, df0, x_max, f_tol=0.1, df_tol=min(tolerance, 1e-6), x_tol=1e-14, x_min=0, linmin_func):
|
||||
# if df0 > 0:
|
||||
# x0, f0, df0 = linmin(-x_guess, f0, -df0, -x_max, f_tol, df_tol, x_tol, -x_min, lambda q, dq: -linmin_func(q, dq))
|
||||
# return -x0, f0, -df0
|
||||
# elif df0 == 0:
|
||||
# return 0, f0, df0
|
||||
# else:
|
||||
# x = x_guess
|
||||
# fx = f0
|
||||
# dfx = df0
|
||||
|
||||
# isave = numpy.zeros((2,), numpy.intc)
|
||||
# dsave = numpy.zeros((13,), float)
|
||||
|
||||
# x, fx, dfx, task = minpack2.dsrch(x, fx, dfx, f_tol, df_tol, x_tol, task,
|
||||
# x_min, x_max, isave, dsave)
|
||||
# for i in range(int(1e6)):
|
||||
# if task != 'F':
|
||||
# logging.info('search converged in {} iterations'.format(i))
|
||||
# break
|
||||
# fx = f(x, dfx)
|
||||
# x, fx, dfx, task = minpack2.dsrch(x, fx, dfx, f_tol, df_tol, x_tol, task,
|
||||
# x_min, x_max, isave, dsave)
|
||||
|
||||
# return x, fx, dfx
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user