forked from jan/fdfd_tools
		
	add fdtd and test
This commit is contained in:
		
							parent
							
								
									bb53ba44e0
								
							
						
					
					
						commit
						1e80a66b50
					
				
							
								
								
									
										175
									
								
								examples/test_fdtd.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										175
									
								
								examples/test_fdtd.py
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,175 @@ | |||||||
|  | """ | ||||||
|  | Example code for running an OpenCL FDTD simulation | ||||||
|  | 
 | ||||||
|  | See main() for simulation setup. | ||||||
|  | """ | ||||||
|  | 
 | ||||||
|  | import sys | ||||||
|  | import time | ||||||
|  | 
 | ||||||
|  | import numpy | ||||||
|  | import h5py | ||||||
|  | 
 | ||||||
|  | from fdfd_tools import fdtd | ||||||
|  | from masque import Pattern, shapes | ||||||
|  | import gridlock | ||||||
|  | import pcgen | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def perturbed_l3(a: float, radius: float, **kwargs) -> Pattern: | ||||||
|  |     """ | ||||||
|  |     Generate a masque.Pattern object containing a perturbed L3 cavity. | ||||||
|  | 
 | ||||||
|  |     :param a: Lattice constant. | ||||||
|  |     :param radius: Hole radius, in units of a (lattice constant). | ||||||
|  |     :param kwargs: Keyword arguments: | ||||||
|  |         hole_dose, trench_dose, hole_layer, trench_layer: Shape properties for Pattern. | ||||||
|  |                 Defaults *_dose=1, hole_layer=0, trench_layer=1. | ||||||
|  |         shifts_a, shifts_r: passed to pcgen.l3_shift; specifies lattice constant (1 - | ||||||
|  |                 multiplicative factor) and radius (multiplicative factor) for shifting | ||||||
|  |                 holes adjacent to the defect (same row). Defaults are 0.15 shift for | ||||||
|  |                 first hole, 0.075 shift for third hole, and no radius change. | ||||||
|  |         xy_size: [x, y] number of mirror periods in each direction; total size is | ||||||
|  |                 2 * n + 1 holes in each direction. Default [10, 10]. | ||||||
|  |         perturbed_radius: radius of holes perturbed to form an upwards-driected beam | ||||||
|  |                 (multiplicative factor). Default 1.1. | ||||||
|  |         trench width: Width of the undercut trenches. Default 1.2e3. | ||||||
|  |     :return: masque.Pattern object containing the L3 design | ||||||
|  |     """ | ||||||
|  | 
 | ||||||
|  |     default_args = {'hole_dose':    1, | ||||||
|  |                     'trench_dose':  1, | ||||||
|  |                     'hole_layer':   0, | ||||||
|  |                     'trench_layer': 1, | ||||||
|  |                     'shifts_a':     (0.15, 0, 0.075), | ||||||
|  |                     'shifts_r':     (1.0, 1.0, 1.0), | ||||||
|  |                     'xy_size':      (10, 10), | ||||||
|  |                     'perturbed_radius': 1.1, | ||||||
|  |                     'trench_width': 1.2e3, | ||||||
|  |                     } | ||||||
|  |     kwargs = {**default_args, **kwargs} | ||||||
|  | 
 | ||||||
|  |     xyr = pcgen.l3_shift_perturbed_defect(mirror_dims=kwargs['xy_size'], | ||||||
|  |                                           perturbed_radius=kwargs['perturbed_radius'], | ||||||
|  |                                           shifts_a=kwargs['shifts_a'], | ||||||
|  |                                           shifts_r=kwargs['shifts_r']) | ||||||
|  |     xyr *= a | ||||||
|  |     xyr[:, 2] *= radius | ||||||
|  | 
 | ||||||
|  |     pat = Pattern() | ||||||
|  |     pat.name = 'L3p-a{:g}r{:g}rp{:g}'.format(a, radius, kwargs['perturbed_radius']) | ||||||
|  |     pat.shapes += [shapes.Circle(radius=r, offset=(x, y), | ||||||
|  |                                  dose=kwargs['hole_dose'], | ||||||
|  |                                  layer=kwargs['hole_layer']) | ||||||
|  |                    for x, y, r in xyr] | ||||||
|  | 
 | ||||||
|  |     maxes = numpy.max(numpy.fabs(xyr), axis=0) | ||||||
|  |     pat.shapes += [shapes.Polygon.rectangle( | ||||||
|  |         lx=(2 * maxes[0]), ly=kwargs['trench_width'], | ||||||
|  |         offset=(0, s * (maxes[1] + a + kwargs['trench_width'] / 2)), | ||||||
|  |         dose=kwargs['trench_dose'], layer=kwargs['trench_layer']) | ||||||
|  |                    for s in (-1, 1)] | ||||||
|  |     return pat | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def main(): | ||||||
|  |     dtype = numpy.float32 | ||||||
|  |     max_t = 8000            # number of timesteps | ||||||
|  | 
 | ||||||
|  |     dx = 40                 # discretization (nm/cell) | ||||||
|  |     pml_thickness = 8       # (number of cells) | ||||||
|  | 
 | ||||||
|  |     wl = 1550               # Excitation wavelength and fwhm | ||||||
|  |     dwl = 200 | ||||||
|  | 
 | ||||||
|  |     # Device design parameters | ||||||
|  |     xy_size = numpy.array([10, 10]) | ||||||
|  |     a = 430 | ||||||
|  |     r = 0.285 | ||||||
|  |     th = 170 | ||||||
|  | 
 | ||||||
|  |     # refractive indices | ||||||
|  |     n_slab = 3.408  # InGaAsP(80, 50) @ 1550nm | ||||||
|  |     n_air = 1.0   # air | ||||||
|  | 
 | ||||||
|  |     # Half-dimensions of the simulation grid | ||||||
|  |     xy_max = (xy_size + 1) * a * [1, numpy.sqrt(3)/2] | ||||||
|  |     z_max = 1.6 * a | ||||||
|  |     xyz_max = numpy.hstack((xy_max, z_max)) + pml_thickness * dx | ||||||
|  | 
 | ||||||
|  |     # Coordinates of the edges of the cells. The fdtd package can only do square grids at the moment. | ||||||
|  |     half_edge_coords = [numpy.arange(dx/2, m + dx, step=dx) for m in xyz_max] | ||||||
|  |     edge_coords = [numpy.hstack((-h[::-1], h)) for h in half_edge_coords] | ||||||
|  | 
 | ||||||
|  |     # #### Create the grid, mask, and draw the device #### | ||||||
|  |     grid = gridlock.Grid(edge_coords, initial=n_air**2, num_grids=3) | ||||||
|  |     grid.draw_slab(surface_normal=gridlock.Direction.z, | ||||||
|  |                    center=[0, 0, 0], | ||||||
|  |                    thickness=th, | ||||||
|  |                    eps=n_slab**2) | ||||||
|  |     mask = perturbed_l3(a, r) | ||||||
|  | 
 | ||||||
|  |     grid.draw_polygons(surface_normal=gridlock.Direction.z, | ||||||
|  |                        center=[0, 0, 0], | ||||||
|  |                        thickness=2 * th, | ||||||
|  |                        eps=n_air**2, | ||||||
|  |                        polygons=mask.as_polygons()) | ||||||
|  | 
 | ||||||
|  |     print(grid.shape) | ||||||
|  |     # #### Create the simulation grid #### | ||||||
|  |     epsilon = [eps.astype(dtype) for eps in grid.grids] | ||||||
|  | 
 | ||||||
|  |     dt = .99/numpy.sqrt(3) | ||||||
|  |     e = [numpy.zeros_like(epsilon[0], dtype=dtype) for _ in range(3)] | ||||||
|  |     h = [numpy.zeros_like(epsilon[0], dtype=dtype) for _ in range(3)] | ||||||
|  | 
 | ||||||
|  |     update_e = fdtd.maxwell_e(dt) | ||||||
|  |     update_h = fdtd.maxwell_h(dt) | ||||||
|  | 
 | ||||||
|  |     # PMLs in every direction | ||||||
|  |     pml_e_funcs = [] | ||||||
|  |     pml_h_funcs = [] | ||||||
|  |     pml_fields = {} | ||||||
|  |     for d in (0, 1, 2): | ||||||
|  |         for p in (-1, 1): | ||||||
|  |             ef, hf, psis = fdtd.cpml(direction=d, polarity=p, dt=dt, epsilon=epsilon, epsilon_eff=n_slab**2, dtype=dtype) | ||||||
|  |             pml_e_funcs.append(ef) | ||||||
|  |             pml_h_funcs.append(hf) | ||||||
|  |             pml_fields.update(psis) | ||||||
|  | 
 | ||||||
|  |     # Source parameters and function | ||||||
|  |     w = 2 * numpy.pi * dx / wl | ||||||
|  |     fwhm = dwl * w * w / (2 * numpy.pi * dx) | ||||||
|  |     alpha = (fwhm ** 2) / 8 * numpy.log(2) | ||||||
|  |     delay = 7/numpy.sqrt(2 * alpha) | ||||||
|  | 
 | ||||||
|  |     def field_source(i): | ||||||
|  |         t0 = i * dt - delay | ||||||
|  |         return numpy.sin(w * t0) * numpy.exp(-alpha * t0**2) | ||||||
|  | 
 | ||||||
|  |     # #### Run a bunch of iterations #### | ||||||
|  |     output_file = h5py.File('simulation_output.h5', 'w') | ||||||
|  |     start = time.perf_counter() | ||||||
|  |     for t in range(max_t): | ||||||
|  |         [f(e, h, epsilon) for f in pml_e_funcs] | ||||||
|  |         update_e(e, h, epsilon) | ||||||
|  | 
 | ||||||
|  |         e[1][tuple(grid.shape//2)] += field_source(t) | ||||||
|  |         [f(e, h) for f in pml_h_funcs] | ||||||
|  |         update_h(e, h) | ||||||
|  | 
 | ||||||
|  |         print('iteration {}: average {} iterations per sec'.format(t, (t+1)/(time.perf_counter()-start))) | ||||||
|  |         sys.stdout.flush() | ||||||
|  | 
 | ||||||
|  |         if t % 20 == 0: | ||||||
|  |             r = sum([(f * f * e).sum() for f, e in zip(e, epsilon)]) | ||||||
|  |             print('E sum', r) | ||||||
|  | 
 | ||||||
|  |         # Save field slices | ||||||
|  |         if (t % 20 == 0 and (max_t - t <= 1000 or t <= 2000)) or t == max_t-1: | ||||||
|  |             print('saving E-field') | ||||||
|  |             for j, f in enumerate(e): | ||||||
|  |                 output_file['/E{}_t{}'.format('xyz'[j], t)] = f[:, :, round(f.shape[2]/2)] | ||||||
|  | 
 | ||||||
|  | if __name__ == '__main__': | ||||||
|  |     main() | ||||||
							
								
								
									
										239
									
								
								fdfd_tools/fdtd.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										239
									
								
								fdfd_tools/fdtd.py
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,239 @@ | |||||||
|  | from typing import List, Callable, Tuple, Dict | ||||||
|  | import numpy | ||||||
|  | 
 | ||||||
|  | from . import dx_lists_t, field_t | ||||||
|  | 
 | ||||||
|  | __author__ = 'Jan Petykiewicz' | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | functional_matrix = Callable[[field_t], field_t] | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def curl_h(dxes: dx_lists_t = None) -> functional_matrix: | ||||||
|  |     """ | ||||||
|  |     Curl operator for use with the H field. | ||||||
|  | 
 | ||||||
|  |     :param dxes: Grid parameters [dx_e, dx_h] as described in fdfd_tools.operators header | ||||||
|  |     :return: Function for taking the discretized curl of the H-field, F(H) -> curlH | ||||||
|  |     """ | ||||||
|  |     if dxes: | ||||||
|  |         dxyz_b = numpy.meshgrid(*dxes[1], indexing='ij') | ||||||
|  | 
 | ||||||
|  |         def dh(f, ax): | ||||||
|  |             return (f - numpy.roll(f, 1, axis=ax)) / dxyz_b[ax] | ||||||
|  |     else: | ||||||
|  |         def dh(f, ax): | ||||||
|  |             return f - numpy.roll(f, 1, axis=ax) | ||||||
|  | 
 | ||||||
|  |     def ch_fun(h: field_t) -> field_t: | ||||||
|  |         e = [dh(h[2], 1) - dh(h[1], 2), | ||||||
|  |              dh(h[0], 2) - dh(h[2], 0), | ||||||
|  |              dh(h[1], 0) - dh(h[0], 1)] | ||||||
|  |         return e | ||||||
|  | 
 | ||||||
|  |     return ch_fun | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def curl_e(dxes: dx_lists_t = None) -> functional_matrix: | ||||||
|  |     """ | ||||||
|  |     Curl operator for use with the E field. | ||||||
|  | 
 | ||||||
|  |     :param dxes: Grid parameters [dx_e, dx_h] as described in fdfd_tools.operators header | ||||||
|  |     :return: Function for taking the discretized curl of the E-field, F(E) -> curlE | ||||||
|  |     """ | ||||||
|  |     if dxes is not None: | ||||||
|  |         dxyz_a = numpy.meshgrid(*dxes[0], indexing='ij') | ||||||
|  | 
 | ||||||
|  |         def de(f, ax): | ||||||
|  |             return (numpy.roll(f, -1, axis=ax) - f) / dxyz_a[ax] | ||||||
|  |     else: | ||||||
|  |         def de(f, ax): | ||||||
|  |             return numpy.roll(f, -1, axis=ax) - f | ||||||
|  | 
 | ||||||
|  |     def ce_fun(e: field_t) -> field_t: | ||||||
|  |         h = [de(e[2], 1) - de(e[1], 2), | ||||||
|  |              de(e[0], 2) - de(e[2], 0), | ||||||
|  |              de(e[1], 0) - de(e[0], 1)] | ||||||
|  |         return h | ||||||
|  | 
 | ||||||
|  |     return ce_fun | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def maxwell_e(dt: float, dxes: dx_lists_t = None) -> functional_matrix: | ||||||
|  |     curl_h_fun = curl_h(dxes) | ||||||
|  | 
 | ||||||
|  |     def me_fun(e: field_t, h: field_t, epsilon: field_t): | ||||||
|  |         ch = curl_h_fun(h) | ||||||
|  |         for ei, ci, epsi in zip(e, ch, epsilon): | ||||||
|  |             ei += dt * ci / epsi | ||||||
|  |         return e | ||||||
|  | 
 | ||||||
|  |     return me_fun | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def maxwell_h(dt: float, dxes: dx_lists_t = None) -> functional_matrix: | ||||||
|  |     curl_e_fun = curl_e(dxes) | ||||||
|  | 
 | ||||||
|  |     def mh_fun(e: field_t, h: field_t): | ||||||
|  |         ce = curl_e_fun(e) | ||||||
|  |         for hi, ci in zip(h, ce): | ||||||
|  |             hi -= dt * ci | ||||||
|  |         return h | ||||||
|  | 
 | ||||||
|  |     return mh_fun | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def conducting_boundary(direction: int, | ||||||
|  |                         polarity: int | ||||||
|  |                         ) -> Tuple[functional_matrix, functional_matrix]: | ||||||
|  |     dirs = [0, 1, 2] | ||||||
|  |     if direction not in dirs: | ||||||
|  |         raise Exception('Invalid direction: {}'.format(direction)) | ||||||
|  |     dirs.remove(direction) | ||||||
|  |     u, v = dirs | ||||||
|  | 
 | ||||||
|  |     if polarity < 0: | ||||||
|  |         boundary_slice = [slice(None)] * 3 | ||||||
|  |         shifted1_slice = [slice(None)] * 3 | ||||||
|  |         boundary_slice[direction] = 0 | ||||||
|  |         shifted1_slice[direction] = 1 | ||||||
|  | 
 | ||||||
|  |         def en(e: field_t): | ||||||
|  |             e[direction][boundary_slice] = 0 | ||||||
|  |             e[u][boundary_slice] = e[u][shifted1_slice] | ||||||
|  |             e[v][boundary_slice] = e[v][shifted1_slice] | ||||||
|  |             return e | ||||||
|  | 
 | ||||||
|  |         def hn(h: field_t): | ||||||
|  |             h[direction][boundary_slice] = h[direction][shifted1_slice] | ||||||
|  |             h[u][boundary_slice] = 0 | ||||||
|  |             h[v][boundary_slice] = 0 | ||||||
|  |             return h | ||||||
|  | 
 | ||||||
|  |         return en, hn | ||||||
|  | 
 | ||||||
|  |     elif polarity > 0: | ||||||
|  |         boundary_slice = [slice(None)] * 3 | ||||||
|  |         shifted1_slice = [slice(None)] * 3 | ||||||
|  |         shifted2_slice = [slice(None)] * 3 | ||||||
|  |         boundary_slice[direction] = -1 | ||||||
|  |         shifted1_slice[direction] = -2 | ||||||
|  |         shifted2_slice[direction] = -3 | ||||||
|  | 
 | ||||||
|  |         def ep(e: field_t): | ||||||
|  |             e[direction][boundary_slice] = -e[direction][shifted2_slice] | ||||||
|  |             e[direction][shifted1_slice] = 0 | ||||||
|  |             e[u][boundary_slice] = e[u][shifted1_slice] | ||||||
|  |             e[v][boundary_slice] = e[v][shifted1_slice] | ||||||
|  |             return e | ||||||
|  | 
 | ||||||
|  |         def hp(h: field_t): | ||||||
|  |             h[direction][boundary_slice] = h[direction][shifted1_slice] | ||||||
|  |             h[u][boundary_slice] = -h[u][shifted2_slice] | ||||||
|  |             h[u][shifted1_slice] = 0 | ||||||
|  |             h[v][boundary_slice] = -h[v][shifted2_slice] | ||||||
|  |             h[v][shifted1_slice] = 0 | ||||||
|  |             return h | ||||||
|  | 
 | ||||||
|  |         return ep, hp | ||||||
|  | 
 | ||||||
|  |     else: | ||||||
|  |         raise Exception('Bad polarity: {}'.format(polarity)) | ||||||
|  | 
 | ||||||
|  | 
 | ||||||
|  | def cpml(direction:int, | ||||||
|  |          polarity: int, | ||||||
|  |          dt: float, | ||||||
|  |          epsilon: field_t, | ||||||
|  |          thickness: int = 8, | ||||||
|  |          epsilon_eff: float = 1, | ||||||
|  |          dtype: numpy.dtype = numpy.float32, | ||||||
|  |          ) -> Tuple[Callable, Callable, Dict[str, field_t]]: | ||||||
|  | 
 | ||||||
|  |     if direction not in range(3): | ||||||
|  |         raise Exception('Invalid direction: {}'.format(direction)) | ||||||
|  | 
 | ||||||
|  |     if polarity not in (-1, 1): | ||||||
|  |         raise Exception('Invalid polarity: {}'.format(polarity)) | ||||||
|  | 
 | ||||||
|  |     if thickness <= 2: | ||||||
|  |         raise Exception('It would be wise to have a pml with 4+ cells of thickness') | ||||||
|  | 
 | ||||||
|  |     if epsilon_eff <= 0: | ||||||
|  |         raise Exception('epsilon_eff must be positive') | ||||||
|  | 
 | ||||||
|  |     m = (3.5, 1) | ||||||
|  |     sigma_max = 0.8 * (m[0] + 1) / numpy.sqrt(epsilon_eff) | ||||||
|  |     alpha_max = 0  # TODO: Decide what to do about non-zero alpha | ||||||
|  |     transverse = numpy.delete(range(3), direction) | ||||||
|  |     u, v = transverse | ||||||
|  | 
 | ||||||
|  |     xe = numpy.arange(1, thickness+1, dtype=float) | ||||||
|  |     xh = numpy.arange(1, thickness+1, dtype=float) | ||||||
|  |     if polarity > 0: | ||||||
|  |         xe -= 0.5 | ||||||
|  |     elif polarity < 0: | ||||||
|  |         xh -= 0.5 | ||||||
|  |         xe = xe[::-1] | ||||||
|  |         xh = xh[::-1] | ||||||
|  |     else: | ||||||
|  |         raise Exception('Bad polarity!') | ||||||
|  | 
 | ||||||
|  |     expand_slice = [None] * 3 | ||||||
|  |     expand_slice[direction] = slice(None) | ||||||
|  | 
 | ||||||
|  |     def par(x): | ||||||
|  |         sigma = ((x / thickness) ** m[0]) * sigma_max | ||||||
|  |         alpha = ((1 - x / thickness) ** m[1]) * alpha_max | ||||||
|  |         p0 = numpy.exp(-(sigma + alpha) * dt) | ||||||
|  |         p1 = sigma / (sigma + alpha) * (p0 - 1) | ||||||
|  |         return p0[expand_slice], p1[expand_slice] | ||||||
|  | 
 | ||||||
|  |     p0e, p1e = par(xe) | ||||||
|  |     p0h, p1h = par(xh) | ||||||
|  | 
 | ||||||
|  |     region = [slice(None)] * 3 | ||||||
|  |     if polarity < 0: | ||||||
|  |         region[direction] = slice(None, thickness) | ||||||
|  |     elif polarity > 0: | ||||||
|  |         region[direction] = slice(-thickness, None) | ||||||
|  |     else: | ||||||
|  |         raise Exception('Bad polarity!') | ||||||
|  | 
 | ||||||
|  |     if direction == 1: | ||||||
|  |         se = 1 | ||||||
|  |     else: | ||||||
|  |         se = -1 | ||||||
|  | 
 | ||||||
|  |     # TODO check if epsilon is uniform? | ||||||
|  |     shape = list(epsilon[0].shape) | ||||||
|  |     shape[direction] = thickness | ||||||
|  |     psi_e = [numpy.zeros(shape, dtype=dtype), numpy.zeros(shape, dtype=dtype)] | ||||||
|  |     psi_h = [numpy.zeros(shape, dtype=dtype), numpy.zeros(shape, dtype=dtype)] | ||||||
|  | 
 | ||||||
|  |     fields = { | ||||||
|  |         'psi_e_u': psi_e[0], | ||||||
|  |         'psi_e_v': psi_e[1], | ||||||
|  |         'psi_h_u': psi_h[0], | ||||||
|  |         'psi_h_v': psi_h[1], | ||||||
|  |     } | ||||||
|  | 
 | ||||||
|  |     def pml_e(e: field_t, h: field_t, epsilon: field_t) -> Tuple[field_t, field_t]: | ||||||
|  |         psi_e[0] *= p0e | ||||||
|  |         psi_e[0] += p1e * (h[v][region] - numpy.roll(h[v], 1, axis=direction)[region]) | ||||||
|  |         psi_e[1] *= p0e | ||||||
|  |         psi_e[1] += p1e * (h[u][region] - numpy.roll(h[u], 1, axis=direction)[region]) | ||||||
|  |         e[u][region] += se * dt * psi_e[0] / epsilon[u][region] | ||||||
|  |         e[v][region] -= se * dt * psi_e[1] / epsilon[v][region] | ||||||
|  |         return e, h | ||||||
|  | 
 | ||||||
|  |     def pml_h(e: field_t, h: field_t) -> Tuple[field_t, field_t]: | ||||||
|  |         psi_h[0] *= p0h | ||||||
|  |         psi_h[0] += p1h * (numpy.roll(e[v], -1, axis=direction)[region] - e[v][region]) | ||||||
|  |         psi_h[1] *= p0h | ||||||
|  |         psi_h[1] += p1h * (numpy.roll(e[u], -1, axis=direction)[region] - e[u][region]) | ||||||
|  |         h[u][region] -= se * dt * psi_h[0] | ||||||
|  |         h[v][region] += se * dt * psi_h[1] | ||||||
|  |         return e, h | ||||||
|  | 
 | ||||||
|  |     return pml_e, pml_h, fields | ||||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user