snarled/snarl/poly.py
2022-03-27 23:43:52 -07:00

65 lines
2.5 KiB
Python

import numpy
from numpy.typing import NDArray, ArrayLike
def poly_contains_points(
vertices: ArrayLike,
points: ArrayLike,
include_boundary: bool = True,
) -> NDArray[numpy.int_]:
"""
Tests whether the provided points are inside the implicitly closed polygon
described by the provided list of vertices.
Args:
vertices: Nx2 Arraylike of form [[x0, y0], [x1, y1], ...], describing an implicitly-
closed polygon. Note that this should include any offsets.
points: Nx2 ArrayLike of form [[x0, y0], [x1, y1], ...] containing the points to test.
include_boundary: True if points on the boundary should be count as inside the shape.
Default True.
Returns:
ndarray of booleans, [point0_is_in_shape, point1_is_in_shape, ...]
"""
points = numpy.array(points, copy=False)
vertices = numpy.array(vertices, copy=False)
if points.size == 0:
return numpy.zeros(0)
min_bounds = numpy.min(vertices, axis=0)[None, :]
max_bounds = numpy.max(vertices, axis=0)[None, :]
trivially_outside = ((points < min_bounds).any(axis=1)
| (points > max_bounds).any(axis=1))
nontrivial = ~trivially_outside
if trivially_outside.all():
inside = numpy.zeros_like(trivially_outside, dtype=bool)
return inside
ntpts = points[None, nontrivial, :] # nontrivial points, along axis 1 of ndarray
verts = vertices[:, None, :] # vertices, along axis 0
xydiff = ntpts - verts # Expands into (n_vertices, n_ntpts, 2)
y0_le = xydiff[:, :, 1] >= 0 # y_point >= y_vertex (axes 0, 1 for all points & vertices)
y1_le = numpy.roll(y0_le, -1, axis=0) # same thing for next vertex
upward = y0_le & ~y1_le # edge passes point y coord going upwards
downward = ~y0_le & y1_le # edge passes point y coord going downwards
dv = numpy.roll(verts, -1, axis=0) - verts
is_left = (dv[..., 0] * xydiff[..., 1] # >0 if left of dv, <0 if right, 0 if on the line
- dv[..., 1] * xydiff[..., 0])
winding_number = ((upward & (is_left > 0)).sum(axis=0)
- (downward & (is_left < 0)).sum(axis=0))
nontrivial_inside = winding_number != 0 # filter nontrivial points based on winding number
if include_boundary:
nontrivial_inside[(is_left == 0).any(axis=0)] = True # check if point lies on any edge
inside = nontrivial.copy()
inside[nontrivial] = nontrivial_inside
return inside