Compare commits

..

1 Commits

Author SHA1 Message Date
jan
235e0b6365 fixup package info 2017-09-07 22:01:38 -07:00
12 changed files with 305 additions and 501 deletions

3
.gitignore vendored
View File

@ -60,6 +60,3 @@ target/
# PyCharm # PyCharm
.idea/ .idea/
.mypy_cache/
.pytest_cache/

View File

@ -6,10 +6,10 @@ electromagnetic solver implemented in Python and OpenCL.
**Capabilities:** **Capabilities:**
* Arbitrary distributions of the following: * Arbitrary distributions of the following:
* Dielectric constant (`epsilon`) * Dielectric constant (```epsilon```)
* Magnetic permeabilty (`mu`) * Magnetic permeabilty (```mu```)
* Perfect electric conductor (`PEC`) * Perfect electric conductor (```PEC```)
* Perfect magnetic conductor (`PMC`) * Perfect magnetic conductor (```PMC```)
* Variable-sized rectangular grids * Variable-sized rectangular grids
* Stretched-coordinate PMLs (complex cell sizes allowed) * Stretched-coordinate PMLs (complex cell sizes allowed)
@ -17,10 +17,10 @@ Currently, only periodic boundary conditions are included.
PEC/PMC boundaries can be implemented by drawing PEC/PMC cells near the edges. PEC/PMC boundaries can be implemented by drawing PEC/PMC cells near the edges.
Bloch boundary conditions are not included but wouldn't be very hard to add. Bloch boundary conditions are not included but wouldn't be very hard to add.
The default solver `opencl_fdfd.cg_solver(...)` located in main.py The default solver ```opencl_fdfd.cg_solver(...)``` located in main.py
implements the E-field wave operator directly (ie, as a list of OpenCL implements the E-field wave operator directly (ie, as a list of OpenCL
instructions rather than a matrix). Additionally, there is a slower instructions rather than a matrix). Additionally, there is a slower
(and slightly more versatile) solver in `csr.py` which attempts to solve (and slightly more versatile) solver in ```csr.py``` which attempts to solve
an arbitrary sparse matrix in compressed sparse row (CSR) format using an arbitrary sparse matrix in compressed sparse row (CSR) format using
the same conjugate gradient method as the default solver. The CSR solver the same conjugate gradient method as the default solver. The CSR solver
is significantly slower, but can be very useful for testing alternative is significantly slower, but can be very useful for testing alternative
@ -34,29 +34,29 @@ generalization to multiple GPUs should be pretty straightforward
## Installation ## Installation
**Dependencies:** **Dependencies:**
* python 3 (written and tested with 3.7) * python 3 (written and tested with 3.5)
* numpy * numpy
* pyopencl * pyopencl
* jinja2 * jinja2
* [meanas](https://mpxd.net/code/jan/meanas) (>=0.5) * [fdfd_tools](https://mpxd.net/gogs/jan/fdfd_tools) (>=0.2)
Install with pip, via git: Install with pip, via git:
```bash ```bash
pip install git+https://mpxd.net/code/jan/opencl_fdfd.git@release pip install git+https://mpxd.net/gogs/jan/opencl_fdfd.git@release
``` ```
## Use ## Use
See the documentation for `opencl_fdfd.cg_solver(...)` See the documentation for ```opencl_fdfd.cg_solver(...)```
(located in ```main.py```) for details about how to call the solver. (located in ```main.py```) for details about how to call the solver.
The FDFD arguments are identical to those in The FDFD arguments are identical to those in
`meanas.solvers.generic(...)`, and a few solver-specific ```fdfd_tools.solvers.generic(...)```, and a few solver-specific
arguments are available. arguments are available.
An alternate (slower) FDFD solver and a general gpu-based sparse matrix An alternate (slower) FDFD solver and a general gpu-based sparse matrix
solver is available in `csr.py`. These aren't particularly solver is available in ```csr.py```. These aren't particularly
well-optimized, and something like well-optimized, and something like
[MAGMA](http://icl.cs.utk.edu/magma/index.html) would probably be a [MAGMA](http://icl.cs.utk.edu/magma/index.html) would probably be a
better choice if you absolutely need to solve arbitrary sparse matrices better choice if you absolutely need to solve arbitrary sparse matrices

View File

@ -1 +0,0 @@
../LICENSE.md

View File

@ -1 +0,0 @@
../README.md

View File

@ -31,14 +31,13 @@
Dependencies: Dependencies:
- meanas ( https://mpxd.net/code/jan/meanas ) - fdfd_tools ( https://mpxd.net/gogs/jan/fdfd_tools )
- numpy - numpy
- pyopencl - pyopencl
- jinja2 - jinja2
""" """
from .main import cg_solver as cg_solver from .main import cg_solver
__author__ = 'Jan Petykiewicz' __author__ = 'Jan Petykiewicz'
__version__ = '0.4'
version = __version__

View File

@ -6,7 +6,7 @@ CSRMatrix sparse matrix representation.
The FDFD solver (fdfd_cg_solver()) solves an FDFD problem by The FDFD solver (fdfd_cg_solver()) solves an FDFD problem by
creating a sparse matrix representing the problem (using creating a sparse matrix representing the problem (using
meanas) and then passing it to cg(), which performs a fdfd_tools) and then passing it to cg(), which performs a
conjugate gradient solve. conjugate gradient solve.
cg() is capable of solving arbitrary sparse matrices which cg() is capable of solving arbitrary sparse matrices which
@ -14,66 +14,54 @@ satisfy the constraints for the 'conjugate gradient' algorithm
(positive definite, symmetric) and some that don't. (positive definite, symmetric) and some that don't.
""" """
from typing import Any, TYPE_CHECKING from typing import Dict, Any
import time import time
import logging
import numpy import numpy
from numpy.typing import NDArray, ArrayLike
from numpy.linalg import norm from numpy.linalg import norm
from numpy import complexfloating
import pyopencl import pyopencl
import pyopencl.array import pyopencl.array
import meanas.fdfd.solvers
import fdfd_tools.solvers
from . import ops from . import ops
if TYPE_CHECKING:
import scipy
class CSRMatrix(object):
logger = logging.getLogger(__name__)
class CSRMatrix:
""" """
Matrix stored in Compressed Sparse Row format, in GPU RAM. Matrix stored in Compressed Sparse Row format, in GPU RAM.
""" """
row_ptr: pyopencl.array.Array row_ptr = None # type: pyopencl.array.Array
col_ind: pyopencl.array.Array col_ind = None # type: pyopencl.array.Array
data: pyopencl.array.Array data = None # type: pyopencl.array.Array
def __init__( def __init__(self,
self, queue: pyopencl.CommandQueue,
queue: pyopencl.CommandQueue, m: 'scipy.sparse.csr_matrix'):
m: 'scipy.sparse.csr_matrix',
) -> None:
self.row_ptr = pyopencl.array.to_device(queue, m.indptr) self.row_ptr = pyopencl.array.to_device(queue, m.indptr)
self.col_ind = pyopencl.array.to_device(queue, m.indices) self.col_ind = pyopencl.array.to_device(queue, m.indices)
self.data = pyopencl.array.to_device(queue, m.data.astype(numpy.complex128)) self.data = pyopencl.array.to_device(queue, m.data.astype(numpy.complex128))
def cg( def cg(A: 'scipy.sparse.csr_matrix',
A: 'scipy.sparse.csr_matrix', b: numpy.ndarray,
b: ArrayLike, max_iters: int = 10000,
max_iters: int = 10000, err_threshold: float = 1e-6,
err_threshold: float = 1e-6, context: pyopencl.Context = None,
context: pyopencl.Context | None = None, queue: pyopencl.CommandQueue = None,
queue: pyopencl.CommandQueue | None = None, verbose: bool = False,
) -> NDArray[complexfloating]: ) -> numpy.ndarray:
""" """
General conjugate-gradient solver for sparse matrices, where A @ x = b. General conjugate-gradient solver for sparse matrices, where A @ x = b.
Args: :param A: Matrix to solve (CSR format)
A: Matrix to solve (CSR format) :param b: Right-hand side vector (dense ndarray)
b: Right-hand side vector (dense ndarray) :param max_iters: Maximum number of iterations
max_iters: Maximum number of iterations :param err_threshold: Error threshold for successful solve, relative to norm(b)
err_threshold: Error threshold for successful solve, relative to norm(b) :param context: PyOpenCL context. Will be created if not given.
context: PyOpenCL context. Will be created if not given. :param queue: PyOpenCL command queue. Will be created if not given.
queue: PyOpenCL command queue. Will be created if not given. :param verbose: Whether to print statistics to screen.
:return: Solution vector x; returned even if solve doesn't converge.
Returns:
Solution vector x; returned even if solve doesn't converge.
""" """
start_time = time.perf_counter() start_time = time.perf_counter()
@ -84,10 +72,10 @@ def cg(
if queue is None: if queue is None:
queue = pyopencl.CommandQueue(context) queue = pyopencl.CommandQueue(context)
def load_field(v: NDArray[numpy.complexfloating], dtype: type = numpy.complex128) -> pyopencl.array.Array: def load_field(v, dtype=numpy.complex128):
return pyopencl.array.to_device(queue, v.astype(dtype)) return pyopencl.array.to_device(queue, v.astype(dtype))
r = load_field(numpy.asarray(b)) r = load_field(b)
x = pyopencl.array.zeros_like(r) x = pyopencl.array.zeros_like(r)
v = pyopencl.array.zeros_like(r) v = pyopencl.array.zeros_like(r)
p = pyopencl.array.zeros_like(r) p = pyopencl.array.zeros_like(r)
@ -98,27 +86,29 @@ def cg(
m = CSRMatrix(queue, A) m = CSRMatrix(queue, A)
# '''
# Generate OpenCL kernels Generate OpenCL kernels
# '''
a_step = ops.create_a_csr(context) a_step = ops.create_a_csr(context)
xr_step = ops.create_xr_step(context) xr_step = ops.create_xr_step(context)
rhoerr_step = ops.create_rhoerr_step(context) rhoerr_step = ops.create_rhoerr_step(context)
p_step = ops.create_p_step(context) p_step = ops.create_p_step(context)
dot = ops.create_dot(context) dot = ops.create_dot(context)
# '''
# Start the solve Start the solve
# '''
start_time2 = time.perf_counter() start_time2 = time.perf_counter()
_, err2 = rhoerr_step(r, []) _, err2 = rhoerr_step(r, [])
b_norm = numpy.sqrt(err2) b_norm = numpy.sqrt(err2)
logging.debug(f'b_norm check: {b_norm}') if verbose:
print('b_norm check: ', b_norm)
success = False success = False
for k in range(max_iters): for k in range(max_iters):
logging.debug(f'[{k:06d}] rho {rho:.4} alpha {alpha:4.4}') if verbose:
print('[{:06d}] rho {:.4} alpha {:4.4}'.format(k, rho, alpha), end=' ')
rho_prev = rho rho_prev = rho
e = xr_step(x, p, r, v, alpha, []) e = xr_step(x, p, r, v, alpha, [])
@ -126,7 +116,8 @@ def cg(
errs += [numpy.sqrt(err2) / b_norm] errs += [numpy.sqrt(err2) / b_norm]
logging.debug(f'err {errs[-1]}') if verbose:
print('err', errs[-1])
if errs[-1] < err_threshold: if errs[-1] < err_threshold:
success = True success = True
@ -136,60 +127,53 @@ def cg(
e = a_step(v, m, p, e) e = a_step(v, m, p, e)
alpha = rho / dot(p, v, e) alpha = rho / dot(p, v, e)
if k % 1000 == 0: if verbose and k % 1000 == 0:
logger.info(f'iteration {k}') print(k)
# '''
# Done solving Done solving
# '''
time_elapsed = time.perf_counter() - start_time time_elapsed = time.perf_counter() - start_time
x = x.get() x = x.get()
if success: if verbose:
logging.info('Solve success') if success:
else: print('Success', end='')
logging.warning('Solve failure') else:
logging.info(f'{k} iterations in {time_elapsed} sec: {k / time_elapsed} iterations/sec') print('Failure', end=', ')
logging.debug(f'final error {errs[-1]}') print(', {} iterations in {} sec: {} iterations/sec \
logging.debug(f'overhead {start_time2 - start_time} sec') '.format(k, time_elapsed, k / time_elapsed))
print('final error', errs[-1])
print('overhead {} sec'.format(start_time2 - start_time))
residual = norm(A @ x - b) / norm(b) print('Final residual:', norm(A @ x - b) / norm(b))
logging.info(f'Final residual: {residual}')
return x return x
def fdfd_cg_solver( def fdfd_cg_solver(solver_opts: Dict[str, Any] = None,
solver_opts: dict[str, Any] | None = None, **fdfd_args
**fdfd_args, ) -> numpy.ndarray:
) -> NDArray[complexfloating]:
""" """
Conjugate gradient FDFD solver using CSR sparse matrices, mainly for Conjugate gradient FDFD solver using CSR sparse matrices, mainly for
testing and development since it's much slower than the solver in main.py. testing and development since it's much slower than the solver in main.py.
Calls meanas.fdfd.solvers.generic( Calls fdfd_tools.solvers.generic(**fdfd_args,
**fdfd_args, matrix_solver=opencl_fdfd.csr.cg,
matrix_solver=opencl_fdfd.csr.cg, matrix_solver_opts=solver_opts)
matrix_solver_opts=solver_opts,
)
Args: :param solver_opts: Passed as matrix_solver_opts to fdfd_tools.solver.generic(...).
solver_opts: Passed as matrix_solver_opts to fdfd_tools.solver.generic(...). Default {}.
Default {}. :param fdfd_args: Passed as **fdfd_args to fdfd_tools.solver.generic(...).
fdfd_args: Passed as **fdfd_args to fdfd_tools.solver.generic(...). Should include all of the arguments **except** matrix_solver and matrix_solver_opts
Should include all of the arguments **except** matrix_solver and matrix_solver_opts :return: E-field which solves the system.
Returns:
E-field which solves the system.
""" """
if solver_opts is None: if solver_opts is None:
solver_opts = dict() solver_opts = dict()
x = meanas.fdfd.solvers.generic( x = fdfd_tools.solvers.generic(matrix_solver=cg,
matrix_solver=cg, matrix_solver_opts=solver_opts,
matrix_solver_opts=solver_opts, **fdfd_args)
**fdfd_args,
)
return x return x

View File

@ -31,7 +31,7 @@ __global char *pmc_z = pmc + ZZ;
//Update H components; set them to 0 if PMC is enabled at that location. //Update H components; set them to 0 if PMC is enabled at that location.
//Mu division and PMC conditional are only included if {mu} and {pmc} are true //Mu division and PMC conditional are only included if {{mu}} and {{pmc}} are true
{% if pmc -%} {% if pmc -%}
if (pmc_x[i] != 0) { if (pmc_x[i] != 0) {
Hx[i] = zero; Hx[i] = zero;
@ -42,9 +42,9 @@ if (pmc_x[i] != 0) {
ctype Dyz = mul(sub(Ey[i + pz], Ey[i]), inv_dez[z]); ctype Dyz = mul(sub(Ey[i + pz], Ey[i]), inv_dez[z]);
ctype x_curl = sub(Dzy, Dyz); ctype x_curl = sub(Dzy, Dyz);
{%- if mu %} {%- if mu -%}
Hx[i] = mul(inv_mu_x[i], x_curl); Hx[i] = mul(inv_mu_x[i], x_curl);
{%- else %} {%- else -%}
Hx[i] = x_curl; Hx[i] = x_curl;
{%- endif %} {%- endif %}
} }
@ -59,9 +59,9 @@ if (pmc_y[i] != 0) {
ctype Dzx = mul(sub(Ez[i + px], Ez[i]), inv_dex[x]); ctype Dzx = mul(sub(Ez[i + px], Ez[i]), inv_dex[x]);
ctype y_curl = sub(Dxz, Dzx); ctype y_curl = sub(Dxz, Dzx);
{%- if mu %} {%- if mu -%}
Hy[i] = mul(inv_mu_y[i], y_curl); Hy[i] = mul(inv_mu_y[i], y_curl);
{%- else %} {%- else -%}
Hy[i] = y_curl; Hy[i] = y_curl;
{%- endif %} {%- endif %}
} }
@ -76,9 +76,9 @@ if (pmc_z[i] != 0) {
ctype Dxy = mul(sub(Ex[i + py], Ex[i]), inv_dey[y]); ctype Dxy = mul(sub(Ex[i + py], Ex[i]), inv_dey[y]);
ctype z_curl = sub(Dyx, Dxy); ctype z_curl = sub(Dyx, Dxy);
{%- if mu %} {%- if mu -%}
Hz[i] = mul(inv_mu_z[i], z_curl); Hz[i] = mul(inv_mu_z[i], z_curl);
{%- else %} {%- else -%}
Hz[i] = z_curl; Hz[i] = z_curl;
{%- endif %} {%- endif %}
} }

View File

@ -5,70 +5,67 @@ This file holds the default FDFD solver, which uses an E-field wave
operator implemented directly as OpenCL arithmetic (rather than as operator implemented directly as OpenCL arithmetic (rather than as
a matrix). a matrix).
""" """
from typing import List
import time import time
import logging
import numpy import numpy
from numpy.typing import NDArray, ArrayLike
from numpy.linalg import norm from numpy.linalg import norm
from numpy import floating, complexfloating
import pyopencl import pyopencl
import pyopencl.array import pyopencl.array
import meanas.fdfd.operators import fdfd_tools.operators
from . import ops from . import ops
__author__ = 'Jan Petykiewicz'
logger = logging.getLogger(__name__)
def cg_solver( def cg_solver(omega: complex,
omega: complex, dxes: List[List[numpy.ndarray]],
dxes: list[list[NDArray[floating | complexfloating]]], J: numpy.ndarray,
J: ArrayLike, epsilon: numpy.ndarray,
epsilon: ArrayLike, mu: numpy.ndarray = None,
mu: ArrayLike | None = None, pec: numpy.ndarray = None,
pec: ArrayLike | None = None, pmc: numpy.ndarray = None,
pmc: ArrayLike | None = None, adjoint: bool = False,
adjoint: bool = False, max_iters: int = 40000,
max_iters: int = 40000, err_threshold: float = 1e-6,
err_threshold: float = 1e-6, context: pyopencl.Context = None,
context: pyopencl.Context | None = None, verbose: bool = False,
) -> NDArray: ) -> numpy.ndarray:
""" """
OpenCL FDFD solver using the iterative conjugate gradient (cg) method OpenCL FDFD solver using the iterative conjugate gradient (cg) method
and implementing the diagonalized E-field wave operator directly in and implementing the diagonalized E-field wave operator directly in
OpenCL. OpenCL.
All ndarray arguments should be 1D arrays. To linearize a list of 3 3D ndarrays, All ndarray arguments should be 1D arrays. To linearize a list of 3 3D ndarrays,
either use meanas.fdmath.vec() or numpy: either use fdfd_tools.vec() or numpy:
f_1D = numpy.hstack(tuple((fi.flatten(order='F') for fi in [f_x, f_y, f_z]))) f_1D = numpy.hstack(tuple((fi.flatten(order='F') for fi in [f_x, f_y, f_z])))
Args: :param omega: Complex frequency to solve at.
omega: Complex frequency to solve at. :param dxes: [[dx_e, dy_e, dz_e], [dx_h, dy_h, dz_h]] (complex cell sizes)
dxes: [[dx_e, dy_e, dz_e], [dx_h, dy_h, dz_h]] (complex cell sizes) :param J: Electric current distribution (at E-field locations)
J: Electric current distribution (at E-field locations) :param epsilon: Dielectric constant distribution (at E-field locations)
epsilon: Dielectric constant distribution (at E-field locations) :param mu: Magnetic permeability distribution (at H-field locations)
mu: Magnetic permeability distribution (at H-field locations) :param pec: Perfect electric conductor distribution
pec: Perfect electric conductor distribution (at E-field locations; non-zero value indicates PEC is present)
(at E-field locations; non-zero value indicates PEC is present) :param pmc: Perfect magnetic conductor distribution
pmc: Perfect magnetic conductor distribution (at H-field locations; non-zero value indicates PMC is present)
(at H-field locations; non-zero value indicates PMC is present) :param adjoint: If true, solves the adjoint problem.
adjoint: If true, solves the adjoint problem. :param max_iters: Maximum number of iterations. Default 40,000.
max_iters: Maximum number of iterations. Default 40,000. :param err_threshold: If (r @ r.conj()) / norm(1j * omega * J) < err_threshold, success.
err_threshold: If (r @ r.conj()) / norm(1j * omega * J) < err_threshold, success. Default 1e-6.
Default 1e-6. :param context: PyOpenCL context to run in. If not given, construct a new context.
context: PyOpenCL context to run in. If not given, construct a new context. :param verbose: If True, print progress to stdout. Default False.
:return: E-field which solves the system. Returned even if we did not converge.
Returns:
E-field which solves the system. Returned even if we did not converge.
""" """
start_time = time.perf_counter() start_time = time.perf_counter()
shape = [dd.size for dd in dxes[0]] b = -1j * omega * J
b = -1j * omega * numpy.asarray(J) shape = [d.size for d in dxes[0]]
''' '''
** In this comment, I use the following notation: ** In this comment, I use the following notation:
@ -97,29 +94,30 @@ def cg_solver(
We can accomplish all this simply by conjugating everything (except J) and We can accomplish all this simply by conjugating everything (except J) and
reversing the order of L and R reversing the order of L and R
''' '''
epsilon = numpy.asarray(epsilon)
if adjoint: if adjoint:
# Conjugate everything # Conjugate everything
dxes = [[numpy.conj(dd) for dd in dds] for dds in dxes] dxes = [[numpy.conj(d) for d in dd] for dd in dxes]
omega = numpy.conj(omega) omega = numpy.conj(omega)
epsilon = numpy.conj(epsilon) epsilon = numpy.conj(epsilon)
if mu is not None: if mu is not None:
mu = numpy.conj(mu) mu = numpy.conj(mu)
assert isinstance(epsilon, NDArray[floating] | NDArray[complexfloating])
L, R = meanas.fdfd.operators.e_full_preconditioners(dxes) L, R = fdfd_tools.operators.e_full_preconditioners(dxes)
b_preconditioned = (R if adjoint else L) @ b
# if adjoint:
# Allocate GPU memory and load in data b_preconditioned = R @ b
# else:
b_preconditioned = L @ b
'''
Allocate GPU memory and load in data
'''
if context is None: if context is None:
context = pyopencl.create_some_context(interactive=True) context = pyopencl.create_some_context(interactive=True)
queue = pyopencl.CommandQueue(context) queue = pyopencl.CommandQueue(context)
def load_field(v: NDArray[complexfloating | floating], dtype: type = numpy.complex128) -> pyopencl.array.Array: def load_field(v, dtype=numpy.complex128):
return pyopencl.array.to_device(queue, v.astype(dtype)) return pyopencl.array.to_device(queue, v.astype(dtype))
r = load_field(b_preconditioned) # load preconditioned b into r r = load_field(b_preconditioned) # load preconditioned b into r
@ -132,31 +130,30 @@ def cg_solver(
rho = 1.0 + 0j rho = 1.0 + 0j
errs = [] errs = []
inv_dxes = [[load_field(1 / numpy.asarray(dd)) for dd in dds] for dds in dxes] inv_dxes = [[load_field(1 / d) for d in dd] for dd in dxes]
oeps = load_field(-omega * omega * epsilon) oeps = load_field(-omega ** 2 * epsilon)
Pl = load_field(L.diagonal()) Pl = load_field(L.diagonal())
Pr = load_field(R.diagonal()) Pr = load_field(R.diagonal())
if mu is None: if mu is None:
invm = load_field(numpy.array([])) invm = load_field(numpy.array([]))
else: else:
invm = load_field(1 / numpy.asarray(mu)) invm = load_field(1 / mu)
mu = numpy.asarray(mu)
if pec is None: if pec is None:
gpec = load_field(numpy.array([]), dtype=numpy.int8) gpec = load_field(numpy.array([]), dtype=numpy.int8)
else: else:
gpec = load_field(numpy.asarray(pec, dtype=bool), dtype=numpy.int8) gpec = load_field(pec.astype(bool), dtype=numpy.int8)
if pmc is None: if pmc is None:
gpmc = load_field(numpy.array([]), dtype=numpy.int8) gpmc = load_field(numpy.array([]), dtype=numpy.int8)
else: else:
gpmc = load_field(numpy.asarray(pmc, dtype=bool), dtype=numpy.int8) gpmc = load_field(pmc.astype(bool), dtype=numpy.int8)
# '''
# Generate OpenCL kernels Generate OpenCL kernels
# '''
has_mu, has_pec, has_pmc = (qq is not None for qq in (mu, pec, pmc)) has_mu, has_pec, has_pmc = [q is not None for q in (mu, pec, pmc)]
a_step_full = ops.create_a(context, shape, has_mu, has_pec, has_pmc) a_step_full = ops.create_a(context, shape, has_mu, has_pec, has_pmc)
xr_step = ops.create_xr_step(context) xr_step = ops.create_xr_step(context)
@ -164,28 +161,22 @@ def cg_solver(
p_step = ops.create_p_step(context) p_step = ops.create_p_step(context)
dot = ops.create_dot(context) dot = ops.create_dot(context)
def a_step( def a_step(E, H, p, events):
E: pyopencl.array.Array,
H: pyopencl.array.Array,
p: pyopencl.array.Array,
events: list[pyopencl.Event],
) -> list[pyopencl.Event]:
return a_step_full(E, H, p, inv_dxes, oeps, invm, gpec, gpmc, Pl, Pr, events) return a_step_full(E, H, p, inv_dxes, oeps, invm, gpec, gpmc, Pl, Pr, events)
# '''
# Start the solve Start the solve
# '''
start_time2 = time.perf_counter() start_time2 = time.perf_counter()
_, err2 = rhoerr_step(r, []) _, err2 = rhoerr_step(r, [])
b_norm = numpy.sqrt(err2) b_norm = numpy.sqrt(err2)
logging.debug(f'b_norm check: {b_norm}') print('b_norm check: ', b_norm)
success = False success = False
for k in range(max_iters): for k in range(max_iters):
do_print = (k % 100 == 0) if verbose:
if do_print: print('[{:06d}] rho {:.4} alpha {:4.4}'.format(k, rho, alpha), end=' ')
logger.debug(f'[{k:06d}] rho {rho:.4} alpha {alpha:4.4}')
rho_prev = rho rho_prev = rho
e = xr_step(x, p, r, v, alpha, []) e = xr_step(x, p, r, v, alpha, [])
@ -193,8 +184,8 @@ def cg_solver(
errs += [numpy.sqrt(err2) / b_norm] errs += [numpy.sqrt(err2) / b_norm]
if do_print: if verbose:
logger.debug(f'err {errs[-1]}') print('err', errs[-1])
if errs[-1] < err_threshold: if errs[-1] < err_threshold:
success = True success = True
@ -205,30 +196,32 @@ def cg_solver(
alpha = rho / dot(p, v, e) alpha = rho / dot(p, v, e)
if k % 1000 == 0: if k % 1000 == 0:
logger.info(f'iteration {k}') print(k)
# '''
# Done solving Done solving
# '''
time_elapsed = time.perf_counter() - start_time time_elapsed = time.perf_counter() - start_time
# Undo preconditioners # Undo preconditioners
x = ((Pl if adjoint else Pr) * x).get() if adjoint:
x = (Pl * x).get()
else:
x = (Pr * x).get()
if success: if success:
logger.info('Solve success') print('Success', end='')
else: else:
logger.warning('Solve failure') print('Failure', end=', ')
logger.info(f'{k} iterations in {time_elapsed} sec: {k / time_elapsed} iterations/sec') print(', {} iterations in {} sec: {} iterations/sec \
logger.debug(f'final error {errs[-1]}') '.format(k, time_elapsed, k / time_elapsed))
logger.debug(f'overhead {start_time2 - start_time} sec') print('final error', errs[-1])
print('overhead {} sec'.format(start_time2 - start_time))
A0 = meanas.fdfd.operators.e_full(omega, dxes, epsilon, mu).tocsr() A0 = fdfd_tools.operators.e_full(omega, dxes, epsilon, mu).tocsr()
if adjoint: if adjoint:
# Remember we conjugated all the contents of A earlier # Remember we conjugated all the contents of A earlier
A0 = A0.T A0 = A0.T
print('Post-everything residual:', norm(A0 @ x - b) / norm(b))
residual = norm(A0 @ x - b) / norm(b)
logger.info(f'Post-everything residual: {residual}')
return x return x

View File

@ -7,11 +7,9 @@ kernels for use by the other solvers.
See kernels/ for any of the .cl files loaded in this file. See kernels/ for any of the .cl files loaded in this file.
""" """
from collections.abc import Callable, Sequence from typing import List, Callable
import logging
import numpy import numpy
from numpy.typing import ArrayLike
import jinja2 import jinja2
import pyopencl import pyopencl
@ -20,77 +18,59 @@ from pyopencl.elementwise import ElementwiseKernel
from pyopencl.reduction import ReductionKernel from pyopencl.reduction import ReductionKernel
from .csr import CSRMatrix
logger = logging.getLogger(__name__)
class FDFDError(Exception):
""" Custom error for opencl_fdfd """
pass
# Create jinja2 env on module load # Create jinja2 env on module load
jinja_env = jinja2.Environment(loader=jinja2.PackageLoader(__name__, 'kernels')) jinja_env = jinja2.Environment(loader=jinja2.PackageLoader(__name__, 'kernels'))
# Return type for the create_opname(...) functions # Return type for the create_opname(...) functions
operation = Callable[..., list[pyopencl.Event]] operation = Callable[..., List[pyopencl.Event]]
def type_to_C( def type_to_C(float_type: numpy.float32 or numpy.float64) -> str:
float_type: type[numpy.floating | numpy.complexfloating],
) -> str:
""" """
Returns a string corresponding to the C equivalent of a numpy type. Returns a string corresponding to the C equivalent of a numpy type.
Args: :param float_type: numpy type: float32, float64, complex64, complex128
float_type: numpy type: float32, float64, complex64, complex128 :return: string containing the corresponding C type (eg. 'double')
Returns:
string containing the corresponding C type (eg. 'double')
""" """
types = { types = {
numpy.float16: 'half',
numpy.float32: 'float', numpy.float32: 'float',
numpy.float64: 'double', numpy.float64: 'double',
numpy.complex64: 'cfloat_t', numpy.complex64: 'cfloat_t',
numpy.complex128: 'cdouble_t', numpy.complex128: 'cdouble_t',
} }
if float_type not in types: if float_type not in types:
raise FDFDError('Unsupported type') raise Exception('Unsupported type')
return types[float_type] return types[float_type]
# Type names # Type names
ctype = type_to_C(numpy.complex128) ctype = type_to_C(numpy.complex128)
ctype_bare = 'cdouble' ctype_bare = 'cdouble'
# Preamble for all OpenCL code # Preamble for all OpenCL code
preamble = f''' preamble = '''
#define PYOPENCL_DEFINE_CDOUBLE #define PYOPENCL_DEFINE_CDOUBLE
#include <pyopencl-complex.h> #include <pyopencl-complex.h>
//Defines to clean up operation and type names //Defines to clean up operation and type names
#define ctype {ctype_bare}_t #define ctype {ctype}_t
#define zero {ctype_bare}_new(0.0, 0.0) #define zero {ctype}_new(0.0, 0.0)
#define add {ctype_bare}_add #define add {ctype}_add
#define sub {ctype_bare}_sub #define sub {ctype}_sub
#define mul {ctype_bare}_mul #define mul {ctype}_mul
''' '''.format(ctype=ctype_bare)
def ptrs(*args: str) -> list[str]: def ptrs(*args: str) -> List[str]:
return [ctype + ' *' + s for s in args] return [ctype + ' *' + s for s in args]
def create_a( def create_a(context: pyopencl.Context,
context: pyopencl.Context, shape: numpy.ndarray,
shape: ArrayLike, mu: bool = False,
mu: bool = False, pec: bool = False,
pec: bool = False, pmc: bool = False,
pmc: bool = False, ) -> operation:
) -> operation:
""" """
Return a function which performs (A @ p), where A is the FDFD wave equation for E-field. Return a function which performs (A @ p), where A is the FDFD wave equation for E-field.
@ -111,15 +91,12 @@ def create_a(
and returns a list of pyopencl.Event. and returns a list of pyopencl.Event.
Args: :param context: PyOpenCL context
context: PyOpenCL context :param shape: Dimensions of the E-field
shape: Dimensions of the E-field :param mu: False iff (mu == 1) everywhere
mu: False iff (mu == 1) everywhere :param pec: False iff no PEC anywhere
pec: False iff no PEC anywhere :param pmc: False iff no PMC anywhere
pmc: False iff no PMC anywhere :return: Function for computing (A @ p)
Returns:
Function for computing (A @ p)
""" """
common_source = jinja_env.get_template('common.cl').render(shape=shape) common_source = jinja_env.get_template('common.cl').render(shape=shape)
@ -129,72 +106,45 @@ def create_a(
des = [ctype + ' *inv_de' + a for a in 'xyz'] des = [ctype + ' *inv_de' + a for a in 'xyz']
dhs = [ctype + ' *inv_dh' + a for a in 'xyz'] dhs = [ctype + ' *inv_dh' + a for a in 'xyz']
# '''
# Convert p to initial E (ie, apply right preconditioner and PEC) Convert p to initial E (ie, apply right preconditioner and PEC)
# '''
p2e_source = jinja_env.get_template('p2e.cl').render(pec=pec) p2e_source = jinja_env.get_template('p2e.cl').render(pec=pec)
P2E_kernel = ElementwiseKernel( P2E_kernel = ElementwiseKernel(context,
context, name='P2E',
name='P2E', preamble=preamble,
preamble=preamble, operation=p2e_source,
operation=p2e_source, arguments=', '.join(ptrs('E', 'p', 'Pr') + pec_arg))
arguments=', '.join(ptrs('E', 'p', 'Pr') + pec_arg),
)
# '''
# Calculate intermediate H from intermediate E Calculate intermediate H from intermediate E
# '''
e2h_source = jinja_env.get_template('e2h.cl').render( e2h_source = jinja_env.get_template('e2h.cl').render(mu=mu,
mu=mu, pmc=pmc,
pmc=pmc, common_cl=common_source)
common_cl=common_source, E2H_kernel = ElementwiseKernel(context,
) name='E2H',
E2H_kernel = ElementwiseKernel( preamble=preamble,
context, operation=e2h_source,
name='E2H', arguments=', '.join(ptrs('E', 'H', 'inv_mu') + pmc_arg + des))
preamble=preamble,
operation=e2h_source,
arguments=', '.join(ptrs('E', 'H', 'inv_mu') + pmc_arg + des),
)
# '''
# Calculate final E (including left preconditioner) Calculate final E (including left preconditioner)
# '''
h2e_source = jinja_env.get_template('h2e.cl').render( h2e_source = jinja_env.get_template('h2e.cl').render(pec=pec,
pec=pec, common_cl=common_source)
common_cl=common_source, H2E_kernel = ElementwiseKernel(context,
) name='H2E',
H2E_kernel = ElementwiseKernel( preamble=preamble,
context, operation=h2e_source,
name='H2E', arguments=', '.join(ptrs('E', 'H', 'oeps', 'Pl') + pec_arg + dhs))
preamble=preamble,
operation=h2e_source,
arguments=', '.join(ptrs('E', 'H', 'oeps', 'Pl') + pec_arg + dhs),
)
def spmv( def spmv(E, H, p, idxes, oeps, inv_mu, pec, pmc, Pl, Pr, e):
E: pyopencl.array.Array,
H: pyopencl.array.Array,
p: pyopencl.array.Array,
idxes: Sequence[Sequence[pyopencl.array.Array]],
oeps: pyopencl.array.Array,
inv_mu: pyopencl.array.Array | None,
pec: pyopencl.array.Array | None,
pmc: pyopencl.array.Array | None,
Pl: pyopencl.array.Array,
Pr: pyopencl.array.Array,
e: list[pyopencl.Event],
) -> list[pyopencl.Event]:
e2 = P2E_kernel(E, p, Pr, pec, wait_for=e) e2 = P2E_kernel(E, p, Pr, pec, wait_for=e)
e2 = E2H_kernel(E, H, inv_mu, pmc, *idxes[0], wait_for=[e2]) e2 = E2H_kernel(E, H, inv_mu, pmc, *idxes[0], wait_for=[e2])
e2 = H2E_kernel(E, H, oeps, Pl, pec, *idxes[1], wait_for=[e2]) e2 = H2E_kernel(E, H, oeps, Pl, pec, *idxes[1], wait_for=[e2])
return [e2] return [e2]
logger.debug(f'Preamble: \n{preamble}')
logger.debug(f'p2e: \n{p2e_source}')
logger.debug(f'e2h: \n{e2h_source}')
logger.debug(f'h2e: \n{h2e_source}')
return spmv return spmv
@ -209,11 +159,8 @@ def create_xr_step(context: pyopencl.Context) -> operation:
after waiting for all in the list e after waiting for all in the list e
and returns a list of pyopencl.Event and returns a list of pyopencl.Event
Args: :param context: PyOpenCL context
context: PyOpenCL context :return: Function for performing x and r updates
Returns:
Function for performing x and r updates
""" """
update_xr_source = ''' update_xr_source = '''
x[i] = add(x[i], mul(alpha, p[i])); x[i] = add(x[i], mul(alpha, p[i]));
@ -222,28 +169,19 @@ def create_xr_step(context: pyopencl.Context) -> operation:
xr_args = ', '.join(ptrs('x', 'p', 'r', 'v') + [ctype + ' alpha']) xr_args = ', '.join(ptrs('x', 'p', 'r', 'v') + [ctype + ' alpha'])
xr_kernel = ElementwiseKernel( xr_kernel = ElementwiseKernel(context,
context, name='XR',
name='XR', preamble=preamble,
preamble=preamble, operation=update_xr_source,
operation=update_xr_source, arguments=xr_args)
arguments=xr_args,
)
def xr_update( def xr_update(x, p, r, v, alpha, e):
x: pyopencl.array.Array,
p: pyopencl.array.Array,
r: pyopencl.array.Array,
v: pyopencl.array.Array,
alpha: complex,
e: list[pyopencl.Event],
) -> list[pyopencl.Event]:
return [xr_kernel(x, p, r, v, alpha, wait_for=e)] return [xr_kernel(x, p, r, v, alpha, wait_for=e)]
return xr_update return xr_update
def create_rhoerr_step(context: pyopencl.Context) -> Callable[..., tuple[complex, complex]]: def create_rhoerr_step(context: pyopencl.Context) -> operation:
""" """
Return a function Return a function
ri_update(r, e) ri_update(r, e)
@ -254,11 +192,8 @@ def create_rhoerr_step(context: pyopencl.Context) -> Callable[..., tuple[complex
after waiting for all pyopencl.Event in the list e after waiting for all pyopencl.Event in the list e
and returns a list of pyopencl.Event and returns a list of pyopencl.Event
Args: :param context: PyOpenCL context
context: PyOpenCL context :return: Function for performing x and r updates
Returns:
Function for performing x and r updates
""" """
update_ri_source = ''' update_ri_source = '''
@ -270,20 +205,18 @@ def create_rhoerr_step(context: pyopencl.Context) -> Callable[..., tuple[complex
# Use a vector type (double3) to make the reduction simpler # Use a vector type (double3) to make the reduction simpler
ri_dtype = pyopencl.array.vec.double3 ri_dtype = pyopencl.array.vec.double3
ri_kernel = ReductionKernel( ri_kernel = ReductionKernel(context,
context, name='RHOERR',
name='RHOERR', preamble=preamble,
preamble=preamble, dtype_out=ri_dtype,
dtype_out=ri_dtype, neutral='(double3)(0.0, 0.0, 0.0)',
neutral='(double3)(0.0, 0.0, 0.0)', map_expr=update_ri_source,
map_expr=update_ri_source, reduce_expr='a+b',
reduce_expr='a+b', arguments=ctype + ' *r')
arguments=ctype + ' *r',
)
def ri_update(r: pyopencl.array.Array, e: list[pyopencl.Event]) -> tuple[complex, complex]: def ri_update(r, e):
g = ri_kernel(r, wait_for=e).astype(ri_dtype).get() g = ri_kernel(r, wait_for=e).astype(ri_dtype).get()
rr, ri, ii = (g[qq] for qq in 'xyz') rr, ri, ii = [g[q] for q in 'xyz']
rho = rr + 2j * ri - ii rho = rr + 2j * ri - ii
err = rr + ii err = rr + ii
return rho, err return rho, err
@ -301,66 +234,48 @@ def create_p_step(context: pyopencl.Context) -> operation:
after waiting for all pyopencl.Event in the list e after waiting for all pyopencl.Event in the list e
and returns a list of pyopencl.Event and returns a list of pyopencl.Event
Args: :param context: PyOpenCL context
context: PyOpenCL context :return: Function for performing the p update
Returns:
Function for performing the p update
""" """
update_p_source = ''' update_p_source = '''
p[i] = add(r[i], mul(beta, p[i])); p[i] = add(r[i], mul(beta, p[i]));
''' '''
p_args = ptrs('p', 'r') + [ctype + ' beta'] p_args = ptrs('p', 'r') + [ctype + ' beta']
p_kernel = ElementwiseKernel( p_kernel = ElementwiseKernel(context,
context, name='P',
name='P', preamble=preamble,
preamble=preamble, operation=update_p_source,
operation=update_p_source, arguments=', '.join(p_args))
arguments=', '.join(p_args),
)
def p_update( def p_update(p, r, beta, e):
p: pyopencl.array.Array,
r: pyopencl.array.Array,
beta: complex,
e: list[pyopencl.Event]) -> list[pyopencl.Event]:
return [p_kernel(p, r, beta, wait_for=e)] return [p_kernel(p, r, beta, wait_for=e)]
return p_update return p_update
def create_dot(context: pyopencl.Context) -> Callable[..., complex]: def create_dot(context: pyopencl.Context) -> operation:
""" """
Return a function for performing the dot product Return a function for performing the dot product
p @ v p @ v
with the signature with the signature
dot(p, v, e) -> complex dot(p, v, e) -> float
Args: :param context: PyOpenCL context
context: PyOpenCL context :return: Function for performing the dot product
Returns:
Function for performing the dot product
""" """
dot_dtype = numpy.complex128 dot_dtype = numpy.complex128
dot_kernel = ReductionKernel( dot_kernel = ReductionKernel(context,
context, name='dot',
name='dot', preamble=preamble,
preamble=preamble, dtype_out=dot_dtype,
dtype_out=dot_dtype, neutral='zero',
neutral='zero', map_expr='mul(p[i], v[i])',
map_expr='mul(p[i], v[i])', reduce_expr='add(a, b)',
reduce_expr='add(a, b)', arguments=ptrs('p', 'v'))
arguments=ptrs('p', 'v'),
)
def dot( def dot(p, v, e):
p: pyopencl.array.Array,
v: pyopencl.array.Array,
e: list[pyopencl.Event],
) -> complex:
g = dot_kernel(p, v, wait_for=e) g = dot_kernel(p, v, wait_for=e)
return g.get() return g.get()
@ -381,11 +296,8 @@ def create_a_csr(context: pyopencl.Context) -> operation:
The function waits on all the pyopencl.Event in e before running, and returns The function waits on all the pyopencl.Event in e before running, and returns
a list of pyopencl.Event. a list of pyopencl.Event.
Args: :param context: PyOpenCL context
context: PyOpenCL context :return: Function for sparse (M @ v) operation where M is in CSR format
Returns:
Function for sparse (M @ v) operation where M is in CSR format
""" """
spmv_source = ''' spmv_source = '''
int start = m_row_ptr[i]; int start = m_row_ptr[i];
@ -406,20 +318,13 @@ def create_a_csr(context: pyopencl.Context) -> operation:
m_args = 'int *m_row_ptr, int *m_col_ind, ' + ctype + ' *m_data' m_args = 'int *m_row_ptr, int *m_col_ind, ' + ctype + ' *m_data'
v_in_args = ctype + ' *v_in' v_in_args = ctype + ' *v_in'
spmv_kernel = ElementwiseKernel( spmv_kernel = ElementwiseKernel(context,
context, name='csr_spmv',
name='csr_spmv', preamble=preamble,
preamble=preamble, operation=spmv_source,
operation=spmv_source, arguments=', '.join((v_out_args, m_args, v_in_args)))
arguments=', '.join((v_out_args, m_args, v_in_args)),
)
def spmv( def spmv(v_out, m, v_in, e):
v_out: pyopencl.array.Array,
m: CSRMatrix,
v_in: pyopencl.array.Array,
e: list[pyopencl.Event],
) -> list[pyopencl.Event]:
return [spmv_kernel(v_out, m.row_ptr, m.col_ind, m.data, v_in, wait_for=e)] return [spmv_kernel(v_out, m.row_ptr, m.col_ind, m.data, v_in, wait_for=e)]
return spmv return spmv

View File

View File

@ -1,96 +0,0 @@
[build-system]
requires = ["hatchling"]
build-backend = "hatchling.build"
[project]
name = "opencl_fdfd"
description = "OpenCL FDFD solver"
readme = "README.md"
license = { file = "LICENSE.md" }
authors = [
{ name="Jan Petykiewicz", email="jan@mpxd.net" },
]
homepage = "https://mpxd.net/code/jan/opencl_fdfd"
repository = "https://mpxd.net/code/jan/opencl_fdfd"
keywords = [
"FDFD",
"finite",
"difference",
"frequency",
"domain",
"simulation",
"optics",
"electromagnetic",
"dielectric",
"PML",
"solver",
"FDTD",
]
classifiers = [
"Programming Language :: Python :: 3",
"Development Status :: 4 - Beta",
"Intended Audience :: Developers",
"Intended Audience :: Manufacturing",
"Intended Audience :: Science/Research",
"License :: OSI Approved :: GNU Affero General Public License v3",
"Topic :: Scientific/Engineering",
]
requires-python = ">=3.11"
dynamic = ["version"]
dependencies = [
"numpy>=1.26",
"pyopencl",
"jinja2",
"meanas>=0.5",
]
[tool.hatch.version]
path = "opencl_fdfd/__init__.py"
[tool.ruff]
exclude = [
".git",
"dist",
]
line-length = 145
indent-width = 4
lint.dummy-variable-rgx = "^(_+|(_+[a-zA-Z0-9_]*[a-zA-Z0-9]+?))$"
lint.select = [
"NPY", "E", "F", "W", "B", "ANN", "UP", "SLOT", "SIM", "LOG",
"C4", "ISC", "PIE", "PT", "RET", "TCH", "PTH", "INT",
"ARG", "PL", "R", "TRY",
"G010", "G101", "G201", "G202",
"Q002", "Q003", "Q004",
]
lint.ignore = [
#"ANN001", # No annotation
"ANN002", # *args
"ANN003", # **kwargs
"ANN401", # Any
"ANN101", # self: Self
"SIM108", # single-line if / else assignment
"RET504", # x=y+z; return x
"PIE790", # unnecessary pass
"ISC003", # non-implicit string concatenation
"C408", # dict(x=y) instead of {'x': y}
"PLR09", # Too many xxx
"PLR2004", # magic number
"PLC0414", # import x as x
"TRY003", # Long exception message
]
[[tool.mypy.overrides]]
module = [
"scipy",
"scipy.optimize",
"scipy.linalg",
"scipy.sparse",
"scipy.sparse.linalg",
"pyopencl",
"pyopencl.array",
"pyopencl.elementwise",
"pyopencl.reduction",
]
ignore_missing_imports = true

24
setup.py Normal file
View File

@ -0,0 +1,24 @@
#!/usr/bin/env python
from setuptools import setup, find_packages
setup(name='opencl_fdfd',
version='0.3',
description='OpenCL FDFD solver',
author='Jan Petykiewicz',
author_email='anewusername@gmail.com',
url='https://mpxd.net/gogs/jan/opencl_fdfd',
packages=find_packages(),
package_data={
'opencl_fdfd': ['kernels/*']
},
install_requires=[
'numpy',
'pyopencl',
'jinja2',
'fdfd_tools>=0.3',
],
extras_require={
},
)