Compare commits

..

7 Commits

25 changed files with 163 additions and 257 deletions

View File

@ -11,8 +11,7 @@ __author__ = 'Jan Petykiewicz'
try: try:
readme_path = pathlib.Path(__file__).parent / 'README.md' with open(pathlib.Path(__file__).parent / 'README.md', 'r') as f:
with readme_path.open('r') as f:
__doc__ = f.read() __doc__ = f.read()
except Exception: except Exception:
pass pass

View File

@ -1,12 +1,12 @@
""" """
Solvers for eigenvalue / eigenvector problems Solvers for eigenvalue / eigenvector problems
""" """
from collections.abc import Callable from typing import Callable
import numpy import numpy
from numpy.typing import NDArray, ArrayLike from numpy.typing import NDArray, ArrayLike
from numpy.linalg import norm from numpy.linalg import norm
from scipy import sparse from scipy import sparse # type: ignore
import scipy.sparse.linalg as spalg import scipy.sparse.linalg as spalg # type: ignore
def power_iteration( def power_iteration(
@ -25,9 +25,8 @@ def power_iteration(
Returns: Returns:
(Largest-magnitude eigenvalue, Corresponding eigenvector estimate) (Largest-magnitude eigenvalue, Corresponding eigenvector estimate)
""" """
rng = numpy.random.default_rng()
if guess_vector is None: if guess_vector is None:
v = rng.random(operator.shape[0]) + 1j * rng.random(operator.shape[0]) v = numpy.random.rand(operator.shape[0]) + 1j * numpy.random.rand(operator.shape[0])
else: else:
v = guess_vector v = guess_vector

View File

@ -91,12 +91,5 @@ $$
""" """
from . import ( from . import solvers, operators, functional, scpml, waveguide_2d, waveguide_3d
solvers as solvers,
operators as operators,
functional as functional,
scpml as scpml,
waveguide_2d as waveguide_2d,
waveguide_3d as waveguide_3d,
)
# from . import farfield, bloch TODO # from . import farfield, bloch TODO

View File

@ -94,17 +94,16 @@ This module contains functions for generating and solving the
""" """
from typing import Any, cast from typing import Callable, Any, cast, Sequence
from collections.abc import Callable, Sequence
import logging import logging
import numpy import numpy
from numpy import pi, real, trace from numpy import pi, real, trace
from numpy.fft import fftfreq from numpy.fft import fftfreq
from numpy.typing import NDArray, ArrayLike from numpy.typing import NDArray, ArrayLike
import scipy import scipy # type: ignore
import scipy.optimize import scipy.optimize # type: ignore
from scipy.linalg import norm from scipy.linalg import norm # type: ignore
import scipy.sparse.linalg as spalg import scipy.sparse.linalg as spalg # type: ignore
from ..fdmath import fdfield_t, cfdfield_t from ..fdmath import fdfield_t, cfdfield_t
@ -115,6 +114,7 @@ logger = logging.getLogger(__name__)
try: try:
import pyfftw.interfaces.numpy_fft # type: ignore import pyfftw.interfaces.numpy_fft # type: ignore
import pyfftw.interfaces # type: ignore import pyfftw.interfaces # type: ignore
import multiprocessing
logger.info('Using pyfftw') logger.info('Using pyfftw')
pyfftw.interfaces.cache.enable() pyfftw.interfaces.cache.enable()
@ -155,7 +155,7 @@ def generate_kmn(
All are given in the xyz basis (e.g. `|k|[0,0,0] = norm(G_matrix @ k0)`). All are given in the xyz basis (e.g. `|k|[0,0,0] = norm(G_matrix @ k0)`).
""" """
k0 = numpy.array(k0) k0 = numpy.array(k0)
G_matrix = numpy.asarray(G_matrix) G_matrix = numpy.array(G_matrix, copy=False)
Gi_grids = numpy.array(numpy.meshgrid(*(fftfreq(n, 1 / n) for n in shape[:3]), indexing='ij')) Gi_grids = numpy.array(numpy.meshgrid(*(fftfreq(n, 1 / n) for n in shape[:3]), indexing='ij'))
Gi = numpy.moveaxis(Gi_grids, 0, -1) Gi = numpy.moveaxis(Gi_grids, 0, -1)
@ -232,7 +232,7 @@ def maxwell_operator(
Raveled conv(1/mu_k, ik x conv(1/eps_k, ik x h_mn)), returned Raveled conv(1/mu_k, ik x conv(1/eps_k, ik x h_mn)), returned
and overwritten in-place of `h`. and overwritten in-place of `h`.
""" """
hin_m, hin_n = (hi.reshape(shape) for hi in numpy.split(h, 2)) hin_m, hin_n = [hi.reshape(shape) for hi in numpy.split(h, 2)]
#{d,e,h}_xyz fields are complex 3-fields in (1/x, 1/y, 1/z) basis #{d,e,h}_xyz fields are complex 3-fields in (1/x, 1/y, 1/z) basis
@ -303,12 +303,12 @@ def hmn_2_exyz(
k_mag, m, n = generate_kmn(k0, G_matrix, shape) k_mag, m, n = generate_kmn(k0, G_matrix, shape)
def operator(h: NDArray[numpy.complex128]) -> cfdfield_t: def operator(h: NDArray[numpy.complex128]) -> cfdfield_t:
hin_m, hin_n = (hi.reshape(shape) for hi in numpy.split(h, 2)) hin_m, hin_n = [hi.reshape(shape) for hi in numpy.split(h, 2)]
d_xyz = (n * hin_m d_xyz = (n * hin_m
- m * hin_n) * k_mag # noqa: E128 - m * hin_n) * k_mag # noqa: E128
# divide by epsilon # divide by epsilon
return numpy.moveaxis(ifftn(d_xyz, axes=range(3)) / epsilon, 3, 0) return numpy.array([ei for ei in numpy.moveaxis(ifftn(d_xyz, axes=range(3)) / epsilon, 3, 0)]) # TODO avoid copy
return operator return operator
@ -341,7 +341,7 @@ def hmn_2_hxyz(
_k_mag, m, n = generate_kmn(k0, G_matrix, shape) _k_mag, m, n = generate_kmn(k0, G_matrix, shape)
def operator(h: NDArray[numpy.complex128]) -> cfdfield_t: def operator(h: NDArray[numpy.complex128]) -> cfdfield_t:
hin_m, hin_n = (hi.reshape(shape) for hi in numpy.split(h, 2)) hin_m, hin_n = [hi.reshape(shape) for hi in numpy.split(h, 2)]
h_xyz = (m * hin_m h_xyz = (m * hin_m
+ n * hin_n) # noqa: E128 + n * hin_n) # noqa: E128
return numpy.array([ifftn(hi) for hi in numpy.moveaxis(h_xyz, 3, 0)]) return numpy.array([ifftn(hi) for hi in numpy.moveaxis(h_xyz, 3, 0)])
@ -394,7 +394,7 @@ def inverse_maxwell_operator_approx(
Returns: Returns:
Raveled ik x conv(eps_k, ik x conv(mu_k, h_mn)) Raveled ik x conv(eps_k, ik x conv(mu_k, h_mn))
""" """
hin_m, hin_n = (hi.reshape(shape) for hi in numpy.split(h, 2)) hin_m, hin_n = [hi.reshape(shape) for hi in numpy.split(h, 2)]
#{d,e,h}_xyz fields are complex 3-fields in (1/x, 1/y, 1/z) basis #{d,e,h}_xyz fields are complex 3-fields in (1/x, 1/y, 1/z) basis
@ -538,7 +538,7 @@ def eigsolve(
`(eigenvalues, eigenvectors)` where `eigenvalues[i]` corresponds to the `(eigenvalues, eigenvectors)` where `eigenvalues[i]` corresponds to the
vector `eigenvectors[i, :]` vector `eigenvectors[i, :]`
""" """
k0 = numpy.asarray(k0) k0 = numpy.array(k0, copy=False)
h_size = 2 * epsilon[0].size h_size = 2 * epsilon[0].size
@ -561,12 +561,11 @@ def eigsolve(
prev_theta = 0.5 prev_theta = 0.5
D = numpy.zeros(shape=y_shape, dtype=complex) D = numpy.zeros(shape=y_shape, dtype=complex)
rng = numpy.random.default_rng()
Z: NDArray[numpy.complex128] Z: NDArray[numpy.complex128]
if y0 is None: if y0 is None:
Z = rng.random(y_shape) + 1j * rng.random(y_shape) Z = numpy.random.rand(*y_shape) + 1j * numpy.random.rand(*y_shape)
else: else:
Z = numpy.asarray(y0).T Z = numpy.array(y0, copy=False).T
while True: while True:
Z *= num_modes / norm(Z) Z *= num_modes / norm(Z)
@ -574,7 +573,7 @@ def eigsolve(
try: try:
U = numpy.linalg.inv(ZtZ) U = numpy.linalg.inv(ZtZ)
except numpy.linalg.LinAlgError: except numpy.linalg.LinAlgError:
Z = rng.random(y_shape) + 1j * rng.random(y_shape) Z = numpy.random.rand(*y_shape) + 1j * numpy.random.rand(*y_shape)
continue continue
trace_U = real(trace(U)) trace_U = real(trace(U))
@ -647,7 +646,8 @@ def eigsolve(
Qi_memo: list[float | None] = [None, None] Qi_memo: list[float | None] = [None, None]
def Qi_func(theta: float, Qi_memo=Qi_memo, ZtZ=ZtZ, DtD=DtD, symZtD=symZtD) -> float: # noqa: ANN001 def Qi_func(theta: float) -> float:
nonlocal Qi_memo
if Qi_memo[0] == theta: if Qi_memo[0] == theta:
return cast(float, Qi_memo[1]) return cast(float, Qi_memo[1])
@ -656,7 +656,7 @@ def eigsolve(
Q = c * c * ZtZ + s * s * DtD + 2 * s * c * symZtD Q = c * c * ZtZ + s * s * DtD + 2 * s * c * symZtD
try: try:
Qi = numpy.linalg.inv(Q) Qi = numpy.linalg.inv(Q)
except numpy.linalg.LinAlgError as err: except numpy.linalg.LinAlgError:
logger.info('taylor Qi') logger.info('taylor Qi')
# if c or s small, taylor expand # if c or s small, taylor expand
if c < 1e-4 * s and c != 0: if c < 1e-4 * s and c != 0:
@ -666,12 +666,12 @@ def eigsolve(
ZtZi = numpy.linalg.inv(ZtZ) ZtZi = numpy.linalg.inv(ZtZ)
Qi = ZtZi / (c * c) - 2 * s / (c * c * c) * (ZtZi @ (ZtZi @ symZtD).conj().T) Qi = ZtZi / (c * c) - 2 * s / (c * c * c) * (ZtZi @ (ZtZi @ symZtD).conj().T)
else: else:
raise Exception('Inexplicable singularity in trace_func') from err raise Exception('Inexplicable singularity in trace_func')
Qi_memo[0] = theta Qi_memo[0] = theta
Qi_memo[1] = cast(float, Qi) Qi_memo[1] = cast(float, Qi)
return cast(float, Qi) return cast(float, Qi)
def trace_func(theta: float, ZtAZ=ZtAZ, DtAD=DtAD, symZtAD=symZtAD) -> float: # noqa: ANN001 def trace_func(theta: float) -> float:
c = numpy.cos(theta) c = numpy.cos(theta)
s = numpy.sin(theta) s = numpy.sin(theta)
Qi = Qi_func(theta) Qi = Qi_func(theta)
@ -680,7 +680,7 @@ def eigsolve(
return numpy.abs(trace) return numpy.abs(trace)
if False: if False:
def trace_deriv(theta, sgn: int = sgn, ZtAZ=ZtAZ, DtAD=DtAD, symZtD=symZtD, symZtAD=symZtAD, ZtZ=ZtZ, DtD=DtD): # noqa: ANN001 def trace_deriv(theta):
Qi = Qi_func(theta) Qi = Qi_func(theta)
c2 = numpy.cos(2 * theta) c2 = numpy.cos(2 * theta)
s2 = numpy.sin(2 * theta) s2 = numpy.sin(2 * theta)

View File

@ -1,8 +1,7 @@
""" """
Functions for performing near-to-farfield transformation (and the reverse). Functions for performing near-to-farfield transformation (and the reverse).
""" """
from typing import Any, cast from typing import Any, Sequence, cast
from collections.abc import Sequence
import numpy import numpy
from numpy.fft import fft2, fftshift, fftfreq, ifft2, ifftshift from numpy.fft import fft2, fftshift, fftfreq, ifft2, ifftshift
from numpy import pi from numpy import pi

View File

@ -5,7 +5,7 @@ Functional versions of many FDFD operators. These can be useful for performing
The functions generated here expect `cfdfield_t` inputs with shape (3, X, Y, Z), The functions generated here expect `cfdfield_t` inputs with shape (3, X, Y, Z),
e.g. E = [E_x, E_y, E_z] where each (complex) component has shape (X, Y, Z) e.g. E = [E_x, E_y, E_z] where each (complex) component has shape (X, Y, Z)
""" """
from collections.abc import Callable from typing import Callable
import numpy import numpy
from ..fdmath import dx_lists_t, fdfield_t, cfdfield_t, cfdfield_updater_t from ..fdmath import dx_lists_t, fdfield_t, cfdfield_t, cfdfield_updater_t
@ -47,7 +47,8 @@ def e_full(
if mu is None: if mu is None:
return op_1 return op_1
return op_mu else:
return op_mu
def eh_full( def eh_full(
@ -83,7 +84,8 @@ def eh_full(
if mu is None: if mu is None:
return op_1 return op_1
return op_mu else:
return op_mu
def e2h( def e2h(
@ -114,7 +116,8 @@ def e2h(
if mu is None: if mu is None:
return e2h_1_1 return e2h_1_1
return e2h_mu else:
return e2h_mu
def m2j( def m2j(
@ -148,7 +151,8 @@ def m2j(
if mu is None: if mu is None:
return m2j_1 return m2j_1
return m2j_mu else:
return m2j_mu
def e_tfsf_source( def e_tfsf_source(

View File

@ -28,7 +28,7 @@ The following operators are included:
""" """
import numpy import numpy
from scipy import sparse import scipy.sparse as sparse # type: ignore
from ..fdmath import vec, dx_lists_t, vfdfield_t, vcfdfield_t from ..fdmath import vec, dx_lists_t, vfdfield_t, vcfdfield_t
from ..fdmath.operators import shift_with_mirror, shift_circ, curl_forward, curl_back from ..fdmath.operators import shift_with_mirror, shift_circ, curl_forward, curl_back
@ -321,11 +321,11 @@ def poynting_e_cross(e: vcfdfield_t, dxes: dx_lists_t) -> sparse.spmatrix:
""" """
shape = [len(dx) for dx in dxes[0]] shape = [len(dx) for dx in dxes[0]]
fx, fy, fz = (shift_circ(i, shape, 1) for i in range(3)) fx, fy, fz = [shift_circ(i, shape, 1) for i in range(3)]
dxag = [dx.ravel(order='C') for dx in numpy.meshgrid(*dxes[0], indexing='ij')] dxag = [dx.ravel(order='C') for dx in numpy.meshgrid(*dxes[0], indexing='ij')]
dxbg = [dx.ravel(order='C') for dx in numpy.meshgrid(*dxes[1], indexing='ij')] dxbg = [dx.ravel(order='C') for dx in numpy.meshgrid(*dxes[1], indexing='ij')]
Ex, Ey, Ez = (ei * da for ei, da in zip(numpy.split(e, 3), dxag, strict=True)) Ex, Ey, Ez = [ei * da for ei, da in zip(numpy.split(e, 3), dxag)]
block_diags = [[ None, fx @ -Ez, fx @ Ey], block_diags = [[ None, fx @ -Ez, fx @ Ey],
[ fy @ Ez, None, fy @ -Ex], [ fy @ Ez, None, fy @ -Ex],
@ -349,11 +349,11 @@ def poynting_h_cross(h: vcfdfield_t, dxes: dx_lists_t) -> sparse.spmatrix:
""" """
shape = [len(dx) for dx in dxes[0]] shape = [len(dx) for dx in dxes[0]]
fx, fy, fz = (shift_circ(i, shape, 1) for i in range(3)) fx, fy, fz = [shift_circ(i, shape, 1) for i in range(3)]
dxag = [dx.ravel(order='C') for dx in numpy.meshgrid(*dxes[0], indexing='ij')] dxag = [dx.ravel(order='C') for dx in numpy.meshgrid(*dxes[0], indexing='ij')]
dxbg = [dx.ravel(order='C') for dx in numpy.meshgrid(*dxes[1], indexing='ij')] dxbg = [dx.ravel(order='C') for dx in numpy.meshgrid(*dxes[1], indexing='ij')]
Hx, Hy, Hz = (sparse.diags(hi * db) for hi, db in zip(numpy.split(h, 3), dxbg, strict=True)) Hx, Hy, Hz = [sparse.diags(hi * db) for hi, db in zip(numpy.split(h, 3), dxbg)]
P = (sparse.bmat( P = (sparse.bmat(
[[ None, -Hz @ fx, Hy @ fx], [[ None, -Hz @ fx, Hy @ fx],

View File

@ -2,7 +2,7 @@
Functions for creating stretched coordinate perfectly matched layer (PML) absorbers. Functions for creating stretched coordinate perfectly matched layer (PML) absorbers.
""" """
from collections.abc import Sequence, Callable from typing import Sequence, Callable
import numpy import numpy
from numpy.typing import NDArray from numpy.typing import NDArray

View File

@ -2,14 +2,13 @@
Solvers and solver interface for FDFD problems. Solvers and solver interface for FDFD problems.
""" """
from typing import Any from typing import Callable, Dict, Any, Optional
from collections.abc import Callable
import logging import logging
import numpy import numpy
from numpy.typing import ArrayLike, NDArray from numpy.typing import ArrayLike, NDArray
from numpy.linalg import norm from numpy.linalg import norm
import scipy.sparse.linalg import scipy.sparse.linalg # type: ignore
from ..fdmath import dx_lists_t, vfdfield_t, vcfdfield_t from ..fdmath import dx_lists_t, vfdfield_t, vcfdfield_t
from . import operators from . import operators
@ -69,12 +68,12 @@ def generic(
dxes: dx_lists_t, dxes: dx_lists_t,
J: vcfdfield_t, J: vcfdfield_t,
epsilon: vfdfield_t, epsilon: vfdfield_t,
mu: vfdfield_t | None = None, mu: Optional[vfdfield_t] = None,
pec: vfdfield_t | None = None, pec: Optional[vfdfield_t] = None,
pmc: vfdfield_t | None = None, pmc: Optional[vfdfield_t] = None,
adjoint: bool = False, adjoint: bool = False,
matrix_solver: Callable[..., ArrayLike] = _scipy_qmr, matrix_solver: Callable[..., ArrayLike] = _scipy_qmr,
matrix_solver_opts: dict[str, Any] | None = None, matrix_solver_opts: Optional[Dict[str, Any]] = None,
) -> vcfdfield_t: ) -> vcfdfield_t:
""" """
Conjugate gradient FDFD solver using CSR sparse matrices. Conjugate gradient FDFD solver using CSR sparse matrices.

View File

@ -182,7 +182,7 @@ from typing import Any
import numpy import numpy
from numpy.typing import NDArray, ArrayLike from numpy.typing import NDArray, ArrayLike
from numpy.linalg import norm from numpy.linalg import norm
from scipy import sparse import scipy.sparse as sparse # type: ignore
from ..fdmath.operators import deriv_forward, deriv_back, cross from ..fdmath.operators import deriv_forward, deriv_back, cross
from ..fdmath import vec, unvec, dx_lists_t, vfdfield_t, vcfdfield_t from ..fdmath import vec, unvec, dx_lists_t, vfdfield_t, vcfdfield_t

View File

@ -4,11 +4,9 @@ Tools for working with waveguide modes in 3D domains.
This module relies heavily on `waveguide_2d` and mostly just transforms This module relies heavily on `waveguide_2d` and mostly just transforms
its parameters into 2D equivalents and expands the results back into 3D. its parameters into 2D equivalents and expands the results back into 3D.
""" """
from typing import Any from typing import Sequence, Any
from collections.abc import Sequence
import numpy import numpy
from numpy.typing import NDArray from numpy.typing import NDArray
from numpy import complexfloating
from ..fdmath import vec, unvec, dx_lists_t, fdfield_t, cfdfield_t from ..fdmath import vec, unvec, dx_lists_t, fdfield_t, cfdfield_t
from . import operators, waveguide_2d from . import operators, waveguide_2d
@ -23,7 +21,7 @@ def solve_mode(
slices: Sequence[slice], slices: Sequence[slice],
epsilon: fdfield_t, epsilon: fdfield_t,
mu: fdfield_t | None = None, mu: fdfield_t | None = None,
) -> dict[str, complex | NDArray[complexfloating]]: ) -> dict[str, complex | NDArray[numpy.float_]]:
""" """
Given a 3D grid, selects a slice from the grid and attempts to Given a 3D grid, selects a slice from the grid and attempts to
solve for an eigenmode propagating through that slice. solve for an eigenmode propagating through that slice.
@ -42,8 +40,8 @@ def solve_mode(
Returns: Returns:
``` ```
{ {
'E': NDArray[complexfloating], 'E': list[NDArray[numpy.float_]],
'H': NDArray[complexfloating], 'H': list[NDArray[numpy.float_]],
'wavenumber': complex, 'wavenumber': complex,
} }
``` ```

View File

@ -9,9 +9,9 @@ As the z-dependence is known, all the functions in this file assume a 2D grid
# TODO update module docs # TODO update module docs
import numpy import numpy
from scipy import sparse import scipy.sparse as sparse # type: ignore
from ..fdmath import vec, unvec, dx_lists_t, vfdfield_t, cfdfield_t from ..fdmath import vec, unvec, dx_lists_t, fdfield_t, vfdfield_t, cfdfield_t
from ..fdmath.operators import deriv_forward, deriv_back from ..fdmath.operators import deriv_forward, deriv_back
from ..eigensolvers import signed_eigensolve, rayleigh_quotient_iteration from ..eigensolvers import signed_eigensolve, rayleigh_quotient_iteration

View File

@ -741,24 +741,8 @@ the true values can be multiplied back in after the simulation is complete if no
normalized results are needed. normalized results are needed.
""" """
from .types import ( from .types import fdfield_t, vfdfield_t, cfdfield_t, vcfdfield_t, dx_lists_t, dx_lists_mut
fdfield_t as fdfield_t, from .types import fdfield_updater_t, cfdfield_updater_t
vfdfield_t as vfdfield_t, from .vectorization import vec, unvec
cfdfield_t as cfdfield_t, from . import operators, functional, types, vectorization
vcfdfield_t as vcfdfield_t,
dx_lists_t as dx_lists_t,
dx_lists_mut as dx_lists_mut,
fdfield_updater_t as fdfield_updater_t,
cfdfield_updater_t as cfdfield_updater_t,
)
from .vectorization import (
vec as vec,
unvec as unvec,
)
from . import (
operators as operators,
functional as functional,
types as types,
vectorization as vectorization,
)

View File

@ -3,18 +3,16 @@ Math functions for finite difference simulations
Basic discrete calculus etc. Basic discrete calculus etc.
""" """
from typing import TypeVar from typing import Sequence, Callable
from collections.abc import Sequence, Callable
import numpy import numpy
from numpy.typing import NDArray from numpy.typing import NDArray
from numpy import floating, complexfloating
from .types import fdfield_t, fdfield_updater_t from .types import fdfield_t, fdfield_updater_t
def deriv_forward( def deriv_forward(
dx_e: Sequence[NDArray[floating]] | None = None, dx_e: Sequence[NDArray[numpy.float_]] | None = None,
) -> tuple[fdfield_updater_t, fdfield_updater_t, fdfield_updater_t]: ) -> tuple[fdfield_updater_t, fdfield_updater_t, fdfield_updater_t]:
""" """
Utility operators for taking discretized derivatives (backward variant). Utility operators for taking discretized derivatives (backward variant).
@ -38,7 +36,7 @@ def deriv_forward(
def deriv_back( def deriv_back(
dx_h: Sequence[NDArray[floating]] | None = None, dx_h: Sequence[NDArray[numpy.float_]] | None = None,
) -> tuple[fdfield_updater_t, fdfield_updater_t, fdfield_updater_t]: ) -> tuple[fdfield_updater_t, fdfield_updater_t, fdfield_updater_t]:
""" """
Utility operators for taking discretized derivatives (forward variant). Utility operators for taking discretized derivatives (forward variant).
@ -61,12 +59,9 @@ def deriv_back(
return derivs return derivs
TT = TypeVar('TT', bound='NDArray[floating | complexfloating]')
def curl_forward( def curl_forward(
dx_e: Sequence[NDArray[floating]] | None = None, dx_e: Sequence[NDArray[numpy.float_]] | None = None,
) -> Callable[[TT], TT]: ) -> fdfield_updater_t:
r""" r"""
Curl operator for use with the E field. Curl operator for use with the E field.
@ -80,7 +75,7 @@ def curl_forward(
""" """
Dx, Dy, Dz = deriv_forward(dx_e) Dx, Dy, Dz = deriv_forward(dx_e)
def ce_fun(e: TT) -> TT: def ce_fun(e: fdfield_t) -> fdfield_t:
output = numpy.empty_like(e) output = numpy.empty_like(e)
output[0] = Dy(e[2]) output[0] = Dy(e[2])
output[1] = Dz(e[0]) output[1] = Dz(e[0])
@ -94,8 +89,8 @@ def curl_forward(
def curl_back( def curl_back(
dx_h: Sequence[NDArray[floating]] | None = None, dx_h: Sequence[NDArray[numpy.float_]] | None = None,
) -> Callable[[TT], TT]: ) -> fdfield_updater_t:
r""" r"""
Create a function which takes the backward curl of a field. Create a function which takes the backward curl of a field.
@ -109,7 +104,7 @@ def curl_back(
""" """
Dx, Dy, Dz = deriv_back(dx_h) Dx, Dy, Dz = deriv_back(dx_h)
def ch_fun(h: TT) -> TT: def ch_fun(h: fdfield_t) -> fdfield_t:
output = numpy.empty_like(h) output = numpy.empty_like(h)
output[0] = Dy(h[2]) output[0] = Dy(h[2])
output[1] = Dz(h[0]) output[1] = Dz(h[0])
@ -123,7 +118,7 @@ def curl_back(
def curl_forward_parts( def curl_forward_parts(
dx_e: Sequence[NDArray[floating]] | None = None, dx_e: Sequence[NDArray[numpy.float_]] | None = None,
) -> Callable: ) -> Callable:
Dx, Dy, Dz = deriv_forward(dx_e) Dx, Dy, Dz = deriv_forward(dx_e)
@ -136,7 +131,7 @@ def curl_forward_parts(
def curl_back_parts( def curl_back_parts(
dx_h: Sequence[NDArray[floating]] | None = None, dx_h: Sequence[NDArray[numpy.float_]] | None = None,
) -> Callable: ) -> Callable:
Dx, Dy, Dz = deriv_back(dx_h) Dx, Dy, Dz = deriv_back(dx_h)

View File

@ -3,11 +3,10 @@ Matrix operators for finite difference simulations
Basic discrete calculus etc. Basic discrete calculus etc.
""" """
from collections.abc import Sequence from typing import Sequence
import numpy import numpy
from numpy.typing import NDArray from numpy.typing import NDArray
from numpy import floating import scipy.sparse as sparse # type: ignore
from scipy import sparse
from .types import vfdfield_t from .types import vfdfield_t
@ -35,7 +34,7 @@ def shift_circ(
raise Exception(f'Invalid direction: {axis}, shape is {shape}') raise Exception(f'Invalid direction: {axis}, shape is {shape}')
shifts = [abs(shift_distance) if a == axis else 0 for a in range(3)] shifts = [abs(shift_distance) if a == axis else 0 for a in range(3)]
shifted_diags = [(numpy.arange(n) + s) % n for n, s in zip(shape, shifts, strict=True)] shifted_diags = [(numpy.arange(n) + s) % n for n, s in zip(shape, shifts)]
ijk = numpy.meshgrid(*shifted_diags, indexing='ij') ijk = numpy.meshgrid(*shifted_diags, indexing='ij')
n = numpy.prod(shape) n = numpy.prod(shape)
@ -83,7 +82,7 @@ def shift_with_mirror(
return v return v
shifts = [shift_distance if a == axis else 0 for a in range(3)] shifts = [shift_distance if a == axis else 0 for a in range(3)]
shifted_diags = [mirrored_range(n, s) for n, s in zip(shape, shifts, strict=True)] shifted_diags = [mirrored_range(n, s) for n, s in zip(shape, shifts)]
ijk = numpy.meshgrid(*shifted_diags, indexing='ij') ijk = numpy.meshgrid(*shifted_diags, indexing='ij')
n = numpy.prod(shape) n = numpy.prod(shape)
@ -97,7 +96,7 @@ def shift_with_mirror(
def deriv_forward( def deriv_forward(
dx_e: Sequence[NDArray[floating]], dx_e: Sequence[NDArray[numpy.float_]],
) -> list[sparse.spmatrix]: ) -> list[sparse.spmatrix]:
""" """
Utility operators for taking discretized derivatives (forward variant). Utility operators for taking discretized derivatives (forward variant).
@ -124,7 +123,7 @@ def deriv_forward(
def deriv_back( def deriv_back(
dx_h: Sequence[NDArray[floating]], dx_h: Sequence[NDArray[numpy.float_]],
) -> list[sparse.spmatrix]: ) -> list[sparse.spmatrix]:
""" """
Utility operators for taking discretized derivatives (backward variant). Utility operators for taking discretized derivatives (backward variant).
@ -219,7 +218,7 @@ def avg_back(axis: int, shape: Sequence[int]) -> sparse.spmatrix:
def curl_forward( def curl_forward(
dx_e: Sequence[NDArray[floating]], dx_e: Sequence[NDArray[numpy.float_]],
) -> sparse.spmatrix: ) -> sparse.spmatrix:
""" """
Curl operator for use with the E field. Curl operator for use with the E field.
@ -235,7 +234,7 @@ def curl_forward(
def curl_back( def curl_back(
dx_h: Sequence[NDArray[floating]], dx_h: Sequence[NDArray[numpy.float_]],
) -> sparse.spmatrix: ) -> sparse.spmatrix:
""" """
Curl operator for use with the H field. Curl operator for use with the H field.

View File

@ -1,26 +1,26 @@
""" """
Types shared across multiple submodules Types shared across multiple submodules
""" """
from collections.abc import Sequence, Callable, MutableSequence from typing import Sequence, Callable, MutableSequence
import numpy
from numpy.typing import NDArray from numpy.typing import NDArray
from numpy import floating, complexfloating
# Field types # Field types
fdfield_t = NDArray[floating] fdfield_t = NDArray[numpy.float_]
"""Vector field with shape (3, X, Y, Z) (e.g. `[E_x, E_y, E_z]`)""" """Vector field with shape (3, X, Y, Z) (e.g. `[E_x, E_y, E_z]`)"""
vfdfield_t = NDArray[floating] vfdfield_t = NDArray[numpy.float_]
"""Linearized vector field (single vector of length 3*X*Y*Z)""" """Linearized vector field (single vector of length 3*X*Y*Z)"""
cfdfield_t = NDArray[complexfloating] cfdfield_t = NDArray[numpy.complex_]
"""Complex vector field with shape (3, X, Y, Z) (e.g. `[E_x, E_y, E_z]`)""" """Complex vector field with shape (3, X, Y, Z) (e.g. `[E_x, E_y, E_z]`)"""
vcfdfield_t = NDArray[complexfloating] vcfdfield_t = NDArray[numpy.complex_]
"""Linearized complex vector field (single vector of length 3*X*Y*Z)""" """Linearized complex vector field (single vector of length 3*X*Y*Z)"""
dx_lists_t = Sequence[Sequence[NDArray[floating]]] dx_lists_t = Sequence[Sequence[NDArray[numpy.float_]]]
""" """
'dxes' datastructure which contains grid cell width information in the following format: 'dxes' datastructure which contains grid cell width information in the following format:
@ -31,7 +31,7 @@ dx_lists_t = Sequence[Sequence[NDArray[floating]]]
and `dy_h[0]` is the y-width of the `y=0` cells, as used when calculating dH/dy, etc. and `dy_h[0]` is the y-width of the `y=0` cells, as used when calculating dH/dy, etc.
""" """
dx_lists_mut = MutableSequence[MutableSequence[NDArray[floating]]] dx_lists_mut = MutableSequence[MutableSequence[NDArray[numpy.float_]]]
"""Mutable version of `dx_lists_t`""" """Mutable version of `dx_lists_t`"""

View File

@ -4,8 +4,7 @@ and a 1D array representation of that field `[f_x0, f_x1, f_x2,... f_y0,... f_z0
Vectorized versions of the field use row-major (ie., C-style) ordering. Vectorized versions of the field use row-major (ie., C-style) ordering.
""" """
from typing import overload from typing import overload, Sequence
from collections.abc import Sequence
import numpy import numpy
from numpy.typing import ArrayLike from numpy.typing import ArrayLike

View File

@ -159,22 +159,8 @@ Boundary conditions
# TODO notes about boundaries / PMLs # TODO notes about boundaries / PMLs
""" """
from .base import ( from .base import maxwell_e, maxwell_h
maxwell_e as maxwell_e, from .pml import cpml_params, updates_with_cpml
maxwell_h as maxwell_h, from .energy import (poynting, poynting_divergence, energy_hstep, energy_estep,
) delta_energy_h2e, delta_energy_j)
from .pml import ( from .boundaries import conducting_boundary
cpml_params as cpml_params,
updates_with_cpml as updates_with_cpml,
)
from .energy import (
poynting as poynting,
poynting_divergence as poynting_divergence,
energy_hstep as energy_hstep,
energy_estep as energy_estep,
delta_energy_h2e as delta_energy_h2e,
delta_energy_j as delta_energy_j,
)
from .boundaries import (
conducting_boundary as conducting_boundary,
)

View File

@ -7,8 +7,7 @@ PML implementations
""" """
# TODO retest pmls! # TODO retest pmls!
from typing import Any from typing import Callable, Sequence, Any
from collections.abc import Callable, Sequence
from copy import deepcopy from copy import deepcopy
import numpy import numpy
from numpy.typing import NDArray, DTypeLike from numpy.typing import NDArray, DTypeLike
@ -112,7 +111,7 @@ def updates_with_cpml(
params_H: list[list[tuple[Any, Any, Any, Any]]] = deepcopy(params_E) params_H: list[list[tuple[Any, Any, Any, Any]]] = deepcopy(params_E)
for axis in range(3): for axis in range(3):
for pp, _polarity in enumerate((-1, 1)): for pp, polarity in enumerate((-1, 1)):
cpml_param = cpml_params[axis][pp] cpml_param = cpml_params[axis][pp]
if cpml_param is None: if cpml_param is None:
psi_E[axis][pp] = (None, None) psi_E[axis][pp] = (None, None)
@ -185,7 +184,7 @@ def updates_with_cpml(
def update_H( def update_H(
e: fdfield_t, e: fdfield_t,
h: fdfield_t, h: fdfield_t,
mu: fdfield_t | tuple[int, int, int] = (1, 1, 1), mu: fdfield_t = numpy.ones(3),
) -> None: ) -> None:
dyEx = Dfy(e[0]) dyEx = Dfy(e[0])
dzEx = Dfz(e[0]) dzEx = Dfz(e[0])

View File

@ -3,8 +3,7 @@
Test fixtures Test fixtures
""" """
# ruff: noqa: ARG001 from typing import Iterable, Any
from typing import Any
import numpy import numpy
from numpy.typing import NDArray from numpy.typing import NDArray
import pytest # type: ignore import pytest # type: ignore
@ -21,18 +20,18 @@ FixtureRequest = Any
(5, 5, 5), (5, 5, 5),
# (7, 7, 7), # (7, 7, 7),
]) ])
def shape(request: FixtureRequest) -> tuple[int, ...]: def shape(request: FixtureRequest) -> Iterable[tuple[int, ...]]:
return (3, *request.param) yield (3, *request.param)
@pytest.fixture(scope='module', params=[1.0, 1.5]) @pytest.fixture(scope='module', params=[1.0, 1.5])
def epsilon_bg(request: FixtureRequest) -> float: def epsilon_bg(request: FixtureRequest) -> Iterable[float]:
return request.param yield request.param
@pytest.fixture(scope='module', params=[1.0, 2.5]) @pytest.fixture(scope='module', params=[1.0, 2.5])
def epsilon_fg(request: FixtureRequest) -> float: def epsilon_fg(request: FixtureRequest) -> Iterable[float]:
return request.param yield request.param
@pytest.fixture(scope='module', params=['center', '000', 'random']) @pytest.fixture(scope='module', params=['center', '000', 'random'])
@ -41,7 +40,7 @@ def epsilon(
shape: tuple[int, ...], shape: tuple[int, ...],
epsilon_bg: float, epsilon_bg: float,
epsilon_fg: float, epsilon_fg: float,
) -> NDArray[numpy.float64]: ) -> Iterable[NDArray[numpy.float64]]:
is3d = (numpy.array(shape) == 1).sum() == 0 is3d = (numpy.array(shape) == 1).sum() == 0
if is3d: if is3d:
if request.param == '000': if request.param == '000':
@ -61,17 +60,17 @@ def epsilon(
high=max(epsilon_bg, epsilon_fg), high=max(epsilon_bg, epsilon_fg),
size=shape) size=shape)
return epsilon yield epsilon
@pytest.fixture(scope='module', params=[1.0]) # 1.5 @pytest.fixture(scope='module', params=[1.0]) # 1.5
def j_mag(request: FixtureRequest) -> float: def j_mag(request: FixtureRequest) -> Iterable[float]:
return request.param yield request.param
@pytest.fixture(scope='module', params=[1.0, 1.5]) @pytest.fixture(scope='module', params=[1.0, 1.5])
def dx(request: FixtureRequest) -> float: def dx(request: FixtureRequest) -> Iterable[float]:
return request.param yield request.param
@pytest.fixture(scope='module', params=['uniform', 'centerbig']) @pytest.fixture(scope='module', params=['uniform', 'centerbig'])
@ -79,7 +78,7 @@ def dxes(
request: FixtureRequest, request: FixtureRequest,
shape: tuple[int, ...], shape: tuple[int, ...],
dx: float, dx: float,
) -> list[list[NDArray[numpy.float64]]]: ) -> Iterable[list[list[NDArray[numpy.float64]]]]:
if request.param == 'uniform': if request.param == 'uniform':
dxes = [[numpy.full(s, dx) for s in shape[1:]] for _ in range(2)] dxes = [[numpy.full(s, dx) for s in shape[1:]] for _ in range(2)]
elif request.param == 'centerbig': elif request.param == 'centerbig':
@ -91,5 +90,5 @@ def dxes(
dxe = [PRNG.uniform(low=1.0 * dx, high=1.1 * dx, size=s) for s in shape[1:]] dxe = [PRNG.uniform(low=1.0 * dx, high=1.1 * dx, size=s) for s in shape[1:]]
dxh = [(d + numpy.roll(d, -1)) / 2 for d in dxe] dxh = [(d + numpy.roll(d, -1)) / 2 for d in dxe]
dxes = [dxe, dxh] dxes = [dxe, dxh]
return dxes yield dxes

View File

@ -1,4 +1,4 @@
# ruff: noqa: ARG001 from typing import Iterable
import dataclasses import dataclasses
import pytest # type: ignore import pytest # type: ignore
import numpy import numpy
@ -61,24 +61,24 @@ def test_poynting_planes(sim: 'FDResult') -> None:
# Also see conftest.py # Also see conftest.py
@pytest.fixture(params=[1 / 1500]) @pytest.fixture(params=[1 / 1500])
def omega(request: FixtureRequest) -> float: def omega(request: FixtureRequest) -> Iterable[float]:
return request.param yield request.param
@pytest.fixture(params=[None]) @pytest.fixture(params=[None])
def pec(request: FixtureRequest) -> NDArray[numpy.float64] | None: def pec(request: FixtureRequest) -> Iterable[NDArray[numpy.float64] | None]:
return request.param yield request.param
@pytest.fixture(params=[None]) @pytest.fixture(params=[None])
def pmc(request: FixtureRequest) -> NDArray[numpy.float64] | None: def pmc(request: FixtureRequest) -> Iterable[NDArray[numpy.float64] | None]:
return request.param yield request.param
#@pytest.fixture(scope='module', #@pytest.fixture(scope='module',
# params=[(25, 5, 5)]) # params=[(25, 5, 5)])
#def shape(request: FixtureRequest): #def shape(request):
# return (3, *request.param) # yield (3, *request.param)
@pytest.fixture(params=['diag']) # 'center' @pytest.fixture(params=['diag']) # 'center'
@ -86,7 +86,7 @@ def j_distribution(
request: FixtureRequest, request: FixtureRequest,
shape: tuple[int, ...], shape: tuple[int, ...],
j_mag: float, j_mag: float,
) -> NDArray[numpy.float64]: ) -> Iterable[NDArray[numpy.float64]]:
j = numpy.zeros(shape, dtype=complex) j = numpy.zeros(shape, dtype=complex)
center_mask = numpy.zeros(shape, dtype=bool) center_mask = numpy.zeros(shape, dtype=bool)
center_mask[:, shape[1] // 2, shape[2] // 2, shape[3] // 2] = True center_mask[:, shape[1] // 2, shape[2] // 2, shape[3] // 2] = True
@ -96,7 +96,7 @@ def j_distribution(
elif request.param == 'diag': elif request.param == 'diag':
j[numpy.roll(center_mask, [1, 1, 1], axis=(1, 2, 3))] = (1 + 1j) * j_mag j[numpy.roll(center_mask, [1, 1, 1], axis=(1, 2, 3))] = (1 + 1j) * j_mag
j[numpy.roll(center_mask, [-1, -1, -1], axis=(1, 2, 3))] = (1 - 1j) * j_mag j[numpy.roll(center_mask, [-1, -1, -1], axis=(1, 2, 3))] = (1 - 1j) * j_mag
return j yield j
@dataclasses.dataclass() @dataclasses.dataclass()
@ -145,7 +145,7 @@ def sim(
omega=omega, omega=omega,
dxes=dxes, dxes=dxes,
epsilon=eps_vec, epsilon=eps_vec,
matrix_solver_opts={'atol': 1e-15, 'rtol': 1e-11}, matrix_solver_opts={'atol': 1e-15, 'tol': 1e-11},
) )
e = unvec(e_vec, shape[1:]) e = unvec(e_vec, shape[1:])

View File

@ -1,4 +1,4 @@
# ruff: noqa: ARG001 from typing import Iterable
import pytest # type: ignore import pytest # type: ignore
import numpy import numpy
from numpy.typing import NDArray from numpy.typing import NDArray
@ -44,30 +44,30 @@ def test_pml(sim: FDResult, src_polarity: int) -> None:
# Also see conftest.py # Also see conftest.py
@pytest.fixture(params=[1 / 1500]) @pytest.fixture(params=[1 / 1500])
def omega(request: FixtureRequest) -> float: def omega(request: FixtureRequest) -> Iterable[float]:
return request.param yield request.param
@pytest.fixture(params=[None]) @pytest.fixture(params=[None])
def pec(request: FixtureRequest) -> NDArray[numpy.float64] | None: def pec(request: FixtureRequest) -> Iterable[NDArray[numpy.float64] | None]:
return request.param yield request.param
@pytest.fixture(params=[None]) @pytest.fixture(params=[None])
def pmc(request: FixtureRequest) -> NDArray[numpy.float64] | None: def pmc(request: FixtureRequest) -> Iterable[NDArray[numpy.float64] | None]:
return request.param yield request.param
@pytest.fixture(params=[(30, 1, 1), @pytest.fixture(params=[(30, 1, 1),
(1, 30, 1), (1, 30, 1),
(1, 1, 30)]) (1, 1, 30)])
def shape(request: FixtureRequest) -> tuple[int, int, int]: def shape(request: FixtureRequest) -> Iterable[tuple[int, ...]]:
return (3, *request.param) yield (3, *request.param)
@pytest.fixture(params=[+1, -1]) @pytest.fixture(params=[+1, -1])
def src_polarity(request: FixtureRequest) -> int: def src_polarity(request: FixtureRequest) -> Iterable[int]:
return request.param yield request.param
@pytest.fixture() @pytest.fixture()
@ -78,7 +78,7 @@ def j_distribution(
dxes: dx_lists_mut, dxes: dx_lists_mut,
omega: float, omega: float,
src_polarity: int, src_polarity: int,
) -> NDArray[numpy.complex128]: ) -> Iterable[NDArray[numpy.complex128]]:
j = numpy.zeros(shape, dtype=complex) j = numpy.zeros(shape, dtype=complex)
dim = numpy.where(numpy.array(shape[1:]) > 1)[0][0] # Propagation axis dim = numpy.where(numpy.array(shape[1:]) > 1)[0][0] # Propagation axis
@ -106,7 +106,7 @@ def j_distribution(
j = fdfd.waveguide_3d.compute_source(E=e, wavenumber=wavenumber_corrected, omega=omega, dxes=dxes, j = fdfd.waveguide_3d.compute_source(E=e, wavenumber=wavenumber_corrected, omega=omega, dxes=dxes,
axis=dim, polarity=src_polarity, slices=slices, epsilon=epsilon) axis=dim, polarity=src_polarity, slices=slices, epsilon=epsilon)
return j yield j
@pytest.fixture() @pytest.fixture()
@ -115,9 +115,9 @@ def epsilon(
shape: tuple[int, ...], shape: tuple[int, ...],
epsilon_bg: float, epsilon_bg: float,
epsilon_fg: float, epsilon_fg: float,
) -> NDArray[numpy.float64]: ) -> Iterable[NDArray[numpy.float64]]:
epsilon = numpy.full(shape, epsilon_fg, dtype=float) epsilon = numpy.full(shape, epsilon_fg, dtype=float)
return epsilon yield epsilon
@pytest.fixture(params=['uniform']) @pytest.fixture(params=['uniform'])
@ -127,7 +127,7 @@ def dxes(
dx: float, dx: float,
omega: float, omega: float,
epsilon_fg: float, epsilon_fg: float,
) -> list[list[NDArray[numpy.float64]]]: ) -> Iterable[list[list[NDArray[numpy.float64]]]]:
if request.param == 'uniform': if request.param == 'uniform':
dxes = [[numpy.full(s, dx) for s in shape[1:]] for _ in range(2)] dxes = [[numpy.full(s, dx) for s in shape[1:]] for _ in range(2)]
dim = numpy.where(numpy.array(shape[1:]) > 1)[0][0] # Propagation axis dim = numpy.where(numpy.array(shape[1:]) > 1)[0][0] # Propagation axis
@ -141,7 +141,7 @@ def dxes(
epsilon_effective=epsilon_fg, epsilon_effective=epsilon_fg,
thickness=10, thickness=10,
) )
return dxes yield dxes
@pytest.fixture() @pytest.fixture()
@ -162,7 +162,7 @@ def sim(
omega=omega, omega=omega,
dxes=dxes, dxes=dxes,
epsilon=eps_vec, epsilon=eps_vec,
matrix_solver_opts={'atol': 1e-15, 'rtol': 1e-11}, matrix_solver_opts={'atol': 1e-15, 'tol': 1e-11},
) )
e = unvec(e_vec, shape[1:]) e = unvec(e_vec, shape[1:])

View File

@ -1,5 +1,4 @@
# ruff: noqa: ARG001 from typing import Iterable, Any
from typing import Any
import dataclasses import dataclasses
import pytest # type: ignore import pytest # type: ignore
import numpy import numpy
@ -151,8 +150,8 @@ def test_poynting_planes(sim: 'TDResult') -> None:
@pytest.fixture(params=[0.3]) @pytest.fixture(params=[0.3])
def dt(request: FixtureRequest) -> float: def dt(request: FixtureRequest) -> Iterable[float]:
return request.param yield request.param
@dataclasses.dataclass() @dataclasses.dataclass()
@ -169,8 +168,8 @@ class TDResult:
@pytest.fixture(params=[(0, 4, 8)]) # (0,) @pytest.fixture(params=[(0, 4, 8)]) # (0,)
def j_steps(request: FixtureRequest) -> tuple[int, ...]: def j_steps(request: FixtureRequest) -> Iterable[tuple[int, ...]]:
return request.param yield request.param
@pytest.fixture(params=['center', 'random']) @pytest.fixture(params=['center', 'random'])
@ -178,7 +177,7 @@ def j_distribution(
request: FixtureRequest, request: FixtureRequest,
shape: tuple[int, ...], shape: tuple[int, ...],
j_mag: float, j_mag: float,
) -> NDArray[numpy.float64]: ) -> Iterable[NDArray[numpy.float64]]:
j = numpy.zeros(shape) j = numpy.zeros(shape)
if request.param == 'center': if request.param == 'center':
j[:, shape[1] // 2, shape[2] // 2, shape[3] // 2] = j_mag j[:, shape[1] // 2, shape[2] // 2, shape[3] // 2] = j_mag
@ -186,7 +185,7 @@ def j_distribution(
j[:, 0, 0, 0] = j_mag j[:, 0, 0, 0] = j_mag
elif request.param == 'random': elif request.param == 'random':
j[:] = PRNG.uniform(low=-j_mag, high=j_mag, size=shape) j[:] = PRNG.uniform(low=-j_mag, high=j_mag, size=shape)
return j yield j
@pytest.fixture() @pytest.fixture()
@ -200,8 +199,9 @@ def sim(
j_steps: tuple[int, ...], j_steps: tuple[int, ...],
) -> TDResult: ) -> TDResult:
is3d = (numpy.array(shape) == 1).sum() == 0 is3d = (numpy.array(shape) == 1).sum() == 0
if is3d and dt != 0.3: if is3d:
pytest.skip('Skipping dt != 0.3 because test is 3D (for speed)') if dt != 0.3:
pytest.skip('Skipping dt != 0.3 because test is 3D (for speed)')
sim = TDResult( sim = TDResult(
shape=shape, shape=shape,

View File

@ -1,3 +1,5 @@
from typing import Any
import numpy import numpy
from numpy.typing import NDArray from numpy.typing import NDArray
@ -8,25 +10,22 @@ PRNG = numpy.random.RandomState(12345)
def assert_fields_close( def assert_fields_close(
x: NDArray, x: NDArray,
y: NDArray, y: NDArray,
*args, *args: Any,
**kwargs, **kwargs: Any,
) -> None: ) -> None:
x_disp = numpy.moveaxis(x, -1, 0)
y_disp = numpy.moveaxis(y, -1, 0)
numpy.testing.assert_allclose( numpy.testing.assert_allclose(
x, # type: ignore x, y, verbose=False, # type: ignore
y, # type: ignore err_msg='Fields did not match:\n{}\n{}'.format(numpy.moveaxis(x, -1, 0),
numpy.moveaxis(y, -1, 0)),
*args, *args,
verbose=False,
err_msg=f'Fields did not match:\n{x_disp}\n{y_disp}',
**kwargs, **kwargs,
) )
def assert_close( def assert_close(
x: NDArray, x: NDArray,
y: NDArray, y: NDArray,
*args, *args: Any,
**kwargs, **kwargs: Any,
) -> None: ) -> None:
numpy.testing.assert_allclose(x, y, *args, **kwargs) numpy.testing.assert_allclose(x, y, *args, **kwargs)

View File

@ -39,8 +39,8 @@ include = [
] ]
dynamic = ["version"] dynamic = ["version"]
dependencies = [ dependencies = [
"numpy>=1.26", "numpy~=1.21",
"scipy~=1.14", "scipy",
] ]
@ -51,48 +51,3 @@ path = "meanas/__init__.py"
dev = ["pytest", "pdoc", "gridlock"] dev = ["pytest", "pdoc", "gridlock"]
examples = ["gridlock"] examples = ["gridlock"]
test = ["pytest"] test = ["pytest"]
[tool.ruff]
exclude = [
".git",
"dist",
]
line-length = 245
indent-width = 4
lint.dummy-variable-rgx = "^(_+|(_+[a-zA-Z0-9_]*[a-zA-Z0-9]+?))$"
lint.select = [
"NPY", "E", "F", "W", "B", "ANN", "UP", "SLOT", "SIM", "LOG",
"C4", "ISC", "PIE", "PT", "RET", "TCH", "PTH", "INT",
"ARG", "PL", "R", "TRY",
"G010", "G101", "G201", "G202",
"Q002", "Q003", "Q004",
]
lint.ignore = [
#"ANN001", # No annotation
"ANN002", # *args
"ANN003", # **kwargs
"ANN401", # Any
"ANN101", # self: Self
"SIM108", # single-line if / else assignment
"RET504", # x=y+z; return x
"PIE790", # unnecessary pass
"ISC003", # non-implicit string concatenation
"C408", # dict(x=y) instead of {'x': y}
"PLR09", # Too many xxx
"PLR2004", # magic number
"PLC0414", # import x as x
"TRY003", # Long exception message
"TRY002", # Exception()
]
[[tool.mypy.overrides]]
module = [
"scipy",
"scipy.optimize",
"scipy.linalg",
"scipy.sparse",
"scipy.sparse.linalg",
]
ignore_missing_imports = true