add sensitivity calculation
This commit is contained in:
parent
ccfd4fbf04
commit
9763c67657
@ -718,6 +718,111 @@ def e_err(
|
||||
return float(norm(op) / norm(e))
|
||||
|
||||
|
||||
def sensitivity(
|
||||
e_norm: vcfdfield_t,
|
||||
h_norm: vcfdfield_t,
|
||||
wavenumber: complex,
|
||||
omega: complex,
|
||||
dxes: dx_lists_t,
|
||||
epsilon: vfdfield_t,
|
||||
mu: vfdfield_t | None = None,
|
||||
) -> vcfdfield_t:
|
||||
r"""
|
||||
Given a waveguide structure (`dxes`, `epsilon`, `mu`) and mode fields
|
||||
(`e_norm`, `h_norm`, `wavenumber`, `omega`), calculates the sensitivity of the wavenumber
|
||||
$\beta$ to changes in the dielectric structure $\epsilon$.
|
||||
|
||||
The output is a vector of the same size as `vec(epsilon)`, with each element specifying the
|
||||
sensitivity of `wavenumber` to changes in the corresponding element in `vec(epsilon)`, i.e.
|
||||
|
||||
$$sens_{i} = \frac{\partial\beta}{\partial\epsilon_i}$$
|
||||
|
||||
An adjoint approach is used to calculate the sensitivity; the derivation is provided here:
|
||||
|
||||
Starting with the eigenvalue equation
|
||||
|
||||
$$\beta^2 E_{xy} = A_E E_{xy}$$
|
||||
|
||||
where $A_E$ is the waveguide operator from `operator_e()`, and $E_{xy} = \begin{bmatrix} E_x \\
|
||||
E_y \end{bmatrix}$,
|
||||
we can differentiate with respect to one of the $\epsilon$ elements (i.e. at one Yee grid point), $\epsilon_i$:
|
||||
|
||||
$$
|
||||
(2 \beta) \partial_{\epsilon_i}(\beta) E_{xy} + \beta^2 \partial_{\epsilon_i} E_{xy}
|
||||
= \partial_{\epsilon_i}(A_E) E_{xy} + A_E \partial_{\epsilon_i} E_{xy}
|
||||
$$
|
||||
|
||||
We then multiply by $H_{yx}^\star = \begin{bmatrix}H_y^\star \\ -H_x^\star \end{bmatrix}$ from the left:
|
||||
|
||||
$$
|
||||
(2 \beta) \partial_{\epsilon_i}(\beta) H_{yx}^\star E_{xy} + \beta^2 H_{yx}^\star \partial_{\epsilon_i} E_{xy}
|
||||
= H_{yx}^\star \partial_{\epsilon_i}(A_E) E_{xy} + H_{yx}^\star A_E \partial_{\epsilon_i} E_{xy}
|
||||
$$
|
||||
|
||||
However, $H_{yx}^\star$ is actually a left-eigenvector of $A_E$. This can be verified by inspecting
|
||||
the form of `operator_h` ($A_H$) and comparing its conjugate transpose to `operator_e` ($A_E$). Also, note
|
||||
$H_{yx}^\star \cdot E_{xy} = H^\star \times E$ recalls the mode orthogonality relation. See doi:10.5194/ars-9-85-201
|
||||
for a similar approach. Therefore,
|
||||
|
||||
$$
|
||||
H_{yx}^\star A_E \partial_{\epsilon_i} E_{xy} = \beta^2 H_{yx}^\star \partial_{\epsilon_i} E_{xy}
|
||||
$$
|
||||
|
||||
and we can simplify to
|
||||
|
||||
$$
|
||||
\partial_{\epsilon_i}(\beta)
|
||||
= \frac{1}{2 \beta} \frac{H_{yx}^\star \partial_{\epsilon_i}(A_E) E_{xy} }{H_{yx}^\star E_{xy}}
|
||||
$$
|
||||
|
||||
This expression can be quickly calculated for all $i$ by writing out the various terms of
|
||||
$\partial_{\epsilon_i} A_E$ and recognizing that the vector-matrix-vector products (i.e. scalars)
|
||||
$sens_i = \vec{v}_{left} \partial_{\epsilon_i} (\epsilon_{xyz}) \vec{v}_{right}$, indexed by $i$, can be expressed as
|
||||
elementwise multiplications $\vec{sens} = \vec{v}_{left} \star \vec{v}_{right}$
|
||||
|
||||
|
||||
Args:
|
||||
e_norm: Normalized, vectorized E_xyz field for the mode. E.g. as returned by `normalized_fields_e`.
|
||||
h_norm: Normalized, vectorized H_xyz field for the mode. E.g. as returned by `normalized_fields_e`.
|
||||
wavenumber: Propagation constant for the mode. The z-axis is assumed to be continuous (i.e. without numerical dispersion).
|
||||
omega: The angular frequency of the system.
|
||||
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types` (2D)
|
||||
epsilon: Vectorized dielectric constant grid
|
||||
mu: Vectorized magnetic permeability grid (default 1 everywhere)
|
||||
|
||||
Returns:
|
||||
Sparse matrix representation of the operator.
|
||||
"""
|
||||
if mu is None:
|
||||
mu = numpy.ones_like(epsilon)
|
||||
|
||||
Dfx, Dfy = deriv_forward(dxes[0])
|
||||
Dbx, Dby = deriv_back(dxes[1])
|
||||
|
||||
|
||||
eps_x, eps_y, eps_z = numpy.split(epsilon, 3)
|
||||
eps_xy = sparse.diags(numpy.hstack((eps_x, eps_y)))
|
||||
eps_z_inv = sparse.diags(1 / eps_z)
|
||||
|
||||
mu_x, mu_y, mu_z = numpy.split(mu, 3)
|
||||
mu_yx = sparse.diags(numpy.hstack((mu_y, mu_x)))
|
||||
mu_z_inv = sparse.diags(1 / mu_z)
|
||||
|
||||
dv_e = dxes[0][0][:, None, None] * dxes[0][1][None, :, None] * dxes[0][2][None, None, :]
|
||||
dv_h = dxes[1][0][:, None, None] * dxes[1][1][None, :, None] * dxes[1][2][None, None, :]
|
||||
ev_xy = numpy.concatenate(numpy.split(e_norm, 3)[:2]) * dv_e
|
||||
hx, hy, hz = numpy.split(h_norm, 3)
|
||||
hv_yx_conj = numpy.conj(numpy.concatenate([hy, -hx])) * dv_h
|
||||
|
||||
sens_xy1 = (hv_yx_conj @ (omega * omega @ mu_yx)) * ev_xy
|
||||
sens_xy2 = (hv_yx_conj @ sparse.vstack((Dfx, Dfy)) @ eps_z_inv @ sparse.hstack((Dbx, Dby))) * ev_xy
|
||||
sens_z = (hv_yx_conj @ sparse.vstack((Dfx, Dfy)) @ (-eps_z_inv * eps_z_inv)) * (sparse.hstack((Dbx, Dby)) @ eps_xy @ ev_xy)
|
||||
norm = hv_yx_conj @ ev_xy
|
||||
|
||||
sens_tot = numpy.concatenate([sens_xy1 + sens_xy2, sens_z]) / (2 * wavenumber * norm)
|
||||
return sens_tot
|
||||
|
||||
|
||||
def solve_modes(
|
||||
mode_numbers: list[int],
|
||||
omega: complex,
|
||||
|
Loading…
Reference in New Issue
Block a user