cleanup latex
This commit is contained in:
parent
53d5812b4a
commit
4afc6cf62e
@ -530,22 +530,22 @@ def exy2e(
|
|||||||
dxes: dx_lists_t,
|
dxes: dx_lists_t,
|
||||||
epsilon: vfdfield_t,
|
epsilon: vfdfield_t,
|
||||||
) -> sparse.spmatrix:
|
) -> sparse.spmatrix:
|
||||||
"""
|
r"""
|
||||||
Operator which transforms the vector `e_xy` containing the vectorized E_x and E_y fields,
|
Operator which transforms the vector `e_xy` containing the vectorized E_x and E_y fields,
|
||||||
into a vectorized E containing all three E components
|
into a vectorized E containing all three E components
|
||||||
|
|
||||||
From the operator derivation (see module docs), we have
|
From the operator derivation (see module docs), we have
|
||||||
|
|
||||||
$$
|
$$
|
||||||
\imath \omega \epsilon_{zz} E_z &= \hat{\partial}_x H_y - \hat{\partial}_y H_x \\
|
\imath \omega \epsilon_{zz} E_z = \hat{\partial}_x H_y - \hat{\partial}_y H_x \\
|
||||||
$$
|
$$
|
||||||
|
|
||||||
as well as the intermediate equations
|
as well as the intermediate equations
|
||||||
|
|
||||||
$$
|
$$
|
||||||
\begin{aligned}
|
\begin{aligned}
|
||||||
\gamma H_y &= \imath \omega \epsilon_{xx} E_x - \hat{\partial}_y H_z \\
|
\imath \beta H_y &= \imath \omega \epsilon_{xx} E_x - \hat{\partial}_y H_z \\
|
||||||
\gamma H_x &= -\imath \omega \epsilon_{yy} E_y - \hat{\partial}_x H_z \\
|
\imath \beta H_x &= -\imath \omega \epsilon_{yy} E_y - \hat{\partial}_x H_z \\
|
||||||
\end{aligned}
|
\end{aligned}
|
||||||
$$
|
$$
|
||||||
|
|
||||||
@ -553,11 +553,11 @@ def exy2e(
|
|||||||
|
|
||||||
$$
|
$$
|
||||||
\begin{aligned}
|
\begin{aligned}
|
||||||
E_z &= \frac{1}{\imath \omega \gamma \epsilon_{zz}} ((
|
E_z &= \frac{1}{- \omega \beta \epsilon_{zz}} ((
|
||||||
\hat{\partial}_y \hat{\partial}_x H_z
|
\hat{\partial}_y \hat{\partial}_x H_z
|
||||||
-\hat{\partial}_x \hat{\partial}_y H_z)
|
-\hat{\partial}_x \hat{\partial}_y H_z)
|
||||||
+ \imath \omega (\hat{\partial}_x \epsilon_{xx} E_x + \hat{\partial}_y \epsilon{yy} E_y))
|
+ \imath \omega (\hat{\partial}_x \epsilon_{xx} E_x + \hat{\partial}_y \epsilon{yy} E_y))
|
||||||
&= \frac{1}{\gamma \epsilon_{zz}} (\hat{\partial}_x \epsilon_{xx} E_x + \hat{\partial}_y \epsilon{yy} E_y)
|
&= \frac{1}{\imath \beta \epsilon_{zz}} (\hat{\partial}_x \epsilon_{xx} E_x + \hat{\partial}_y \epsilon{yy} E_y)
|
||||||
\end{aligned}
|
\end{aligned}
|
||||||
$$
|
$$
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user