use f-strings in place of .format()
This commit is contained in:
parent
9763c67657
commit
18d766f35a
@ -157,7 +157,8 @@ def main():
|
|||||||
e[1][tuple(grid.shape//2)] += field_source(t)
|
e[1][tuple(grid.shape//2)] += field_source(t)
|
||||||
update_H(e, h)
|
update_H(e, h)
|
||||||
|
|
||||||
print('iteration {}: average {} iterations per sec'.format(t, (t+1)/(time.perf_counter()-start)))
|
avg_rate = (t + 1)/(time.perf_counter() - start))
|
||||||
|
print(f'iteration {t}: average {avg_rate} iterations per sec')
|
||||||
sys.stdout.flush()
|
sys.stdout.flush()
|
||||||
|
|
||||||
if t % 20 == 0:
|
if t % 20 == 0:
|
||||||
|
@ -781,7 +781,7 @@ def linmin(x_guess, f0, df0, x_max, f_tol=0.1, df_tol=min(tolerance, 1e-6), x_to
|
|||||||
x_min, x_max, isave, dsave)
|
x_min, x_max, isave, dsave)
|
||||||
for i in range(int(1e6)):
|
for i in range(int(1e6)):
|
||||||
if task != 'F':
|
if task != 'F':
|
||||||
logging.info('search converged in {} iterations'.format(i))
|
logging.info(f'search converged in {i} iterations')
|
||||||
break
|
break
|
||||||
fx = f(x, dfx)
|
fx = f(x, dfx)
|
||||||
x, fx, dfx, task = minpack2.dsrch(x, fx, dfx, f_tol, df_tol, x_tol, task,
|
x, fx, dfx, task = minpack2.dsrch(x, fx, dfx, f_tol, df_tol, x_tol, task,
|
||||||
|
@ -43,7 +43,8 @@ def _scipy_qmr(
|
|||||||
nonlocal ii
|
nonlocal ii
|
||||||
ii += 1
|
ii += 1
|
||||||
if ii % 100 == 0:
|
if ii % 100 == 0:
|
||||||
logger.info('Solver residual at iteration {} : {}'.format(ii, norm(A @ xk - b)))
|
cur_norm = norm(A @ xk - b)
|
||||||
|
logger.info(f'Solver residual at iteration {ii} : {cur_norm}')
|
||||||
|
|
||||||
if 'callback' in kwargs:
|
if 'callback' in kwargs:
|
||||||
def augmented_callback(xk: ArrayLike) -> None:
|
def augmented_callback(xk: ArrayLike) -> None:
|
||||||
|
@ -420,7 +420,7 @@ def _normalized_fields(
|
|||||||
Sz_a = E[0] * numpy.conj(H[1] * phase) * dxes_real[0][1] * dxes_real[1][0]
|
Sz_a = E[0] * numpy.conj(H[1] * phase) * dxes_real[0][1] * dxes_real[1][0]
|
||||||
Sz_b = E[1] * numpy.conj(H[0] * phase) * dxes_real[0][0] * dxes_real[1][1]
|
Sz_b = E[1] * numpy.conj(H[0] * phase) * dxes_real[0][0] * dxes_real[1][1]
|
||||||
Sz_tavg = numpy.real(Sz_a.sum() - Sz_b.sum()) * 0.5 # 0.5 since E, H are assumed to be peak (not RMS) amplitudes
|
Sz_tavg = numpy.real(Sz_a.sum() - Sz_b.sum()) * 0.5 # 0.5 since E, H are assumed to be peak (not RMS) amplitudes
|
||||||
assert Sz_tavg > 0, 'Found a mode propagating in the wrong direction! Sz_tavg={}'.format(Sz_tavg)
|
assert Sz_tavg > 0, f'Found a mode propagating in the wrong direction! {Sz_tavg=}'
|
||||||
|
|
||||||
energy = epsilon * e.conj() * e
|
energy = epsilon * e.conj() * e
|
||||||
|
|
||||||
|
@ -29,9 +29,9 @@ def shift_circ(
|
|||||||
Sparse matrix for performing the circular shift.
|
Sparse matrix for performing the circular shift.
|
||||||
"""
|
"""
|
||||||
if len(shape) not in (2, 3):
|
if len(shape) not in (2, 3):
|
||||||
raise Exception('Invalid shape: {}'.format(shape))
|
raise Exception(f'Invalid shape: {shape}')
|
||||||
if axis not in range(len(shape)):
|
if axis not in range(len(shape)):
|
||||||
raise Exception('Invalid direction: {}, shape is {}'.format(axis, shape))
|
raise Exception(f'Invalid direction: {axis}, shape is {shape}')
|
||||||
|
|
||||||
shifts = [abs(shift_distance) if a == axis else 0 for a in range(3)]
|
shifts = [abs(shift_distance) if a == axis else 0 for a in range(3)]
|
||||||
shifted_diags = [(numpy.arange(n) + s) % n for n, s in zip(shape, shifts)]
|
shifted_diags = [(numpy.arange(n) + s) % n for n, s in zip(shape, shifts)]
|
||||||
@ -69,12 +69,11 @@ def shift_with_mirror(
|
|||||||
Sparse matrix for performing the shift-with-mirror.
|
Sparse matrix for performing the shift-with-mirror.
|
||||||
"""
|
"""
|
||||||
if len(shape) not in (2, 3):
|
if len(shape) not in (2, 3):
|
||||||
raise Exception('Invalid shape: {}'.format(shape))
|
raise Exception(f'Invalid shape: {shape}')
|
||||||
if axis not in range(len(shape)):
|
if axis not in range(len(shape)):
|
||||||
raise Exception('Invalid direction: {}, shape is {}'.format(axis, shape))
|
raise Exception(f'Invalid direction: {axis}, shape is {shape}')
|
||||||
if shift_distance >= shape[axis]:
|
if shift_distance >= shape[axis]:
|
||||||
raise Exception('Shift ({}) is too large for axis {} of size {}'.format(
|
raise Exception(f'Shift ({shift_distance}) is too large for axis {axis} of size {shape[axis]}')
|
||||||
shift_distance, axis, shape[axis]))
|
|
||||||
|
|
||||||
def mirrored_range(n: int, s: int) -> NDArray[numpy.int_]:
|
def mirrored_range(n: int, s: int) -> NDArray[numpy.int_]:
|
||||||
v = numpy.arange(n) + s
|
v = numpy.arange(n) + s
|
||||||
@ -198,7 +197,7 @@ def avg_forward(axis: int, shape: Sequence[int]) -> sparse.spmatrix:
|
|||||||
Sparse matrix for forward average operation.
|
Sparse matrix for forward average operation.
|
||||||
"""
|
"""
|
||||||
if len(shape) not in (2, 3):
|
if len(shape) not in (2, 3):
|
||||||
raise Exception('Invalid shape: {}'.format(shape))
|
raise Exception(f'Invalid shape: {shape}')
|
||||||
|
|
||||||
n = numpy.prod(shape)
|
n = numpy.prod(shape)
|
||||||
return 0.5 * (sparse.eye(n) + shift_circ(axis, shape))
|
return 0.5 * (sparse.eye(n) + shift_circ(axis, shape))
|
||||||
|
@ -15,7 +15,7 @@ def conducting_boundary(
|
|||||||
) -> tuple[fdfield_updater_t, fdfield_updater_t]:
|
) -> tuple[fdfield_updater_t, fdfield_updater_t]:
|
||||||
dirs = [0, 1, 2]
|
dirs = [0, 1, 2]
|
||||||
if direction not in dirs:
|
if direction not in dirs:
|
||||||
raise Exception('Invalid direction: {}'.format(direction))
|
raise Exception(f'Invalid direction: {direction}')
|
||||||
dirs.remove(direction)
|
dirs.remove(direction)
|
||||||
u, v = dirs
|
u, v = dirs
|
||||||
|
|
||||||
@ -64,4 +64,4 @@ def conducting_boundary(
|
|||||||
|
|
||||||
return ep, hp
|
return ep, hp
|
||||||
|
|
||||||
raise Exception('Bad polarity: {}'.format(polarity))
|
raise Exception(f'Bad polarity: {polarity}')
|
||||||
|
@ -33,10 +33,10 @@ def cpml_params(
|
|||||||
) -> dict[str, Any]:
|
) -> dict[str, Any]:
|
||||||
|
|
||||||
if axis not in range(3):
|
if axis not in range(3):
|
||||||
raise Exception('Invalid axis: {}'.format(axis))
|
raise Exception(f'Invalid axis: {axis}')
|
||||||
|
|
||||||
if polarity not in (-1, 1):
|
if polarity not in (-1, 1):
|
||||||
raise Exception('Invalid polarity: {}'.format(polarity))
|
raise Exception(f'Invalid polarity: {polarity}')
|
||||||
|
|
||||||
if thickness <= 2:
|
if thickness <= 2:
|
||||||
raise Exception('It would be wise to have a pml with 4+ cells of thickness')
|
raise Exception('It would be wise to have a pml with 4+ cells of thickness')
|
||||||
|
@ -101,7 +101,7 @@ def test_poynting_divergence(sim: 'TDResult') -> None:
|
|||||||
def test_poynting_planes(sim: 'TDResult') -> None:
|
def test_poynting_planes(sim: 'TDResult') -> None:
|
||||||
mask = (sim.js[0] != 0).any(axis=0)
|
mask = (sim.js[0] != 0).any(axis=0)
|
||||||
if mask.sum() > 1:
|
if mask.sum() > 1:
|
||||||
pytest.skip('test_poynting_planes can only test single point sources, got {}'.format(mask.sum()))
|
pytest.skip(f'test_poynting_planes can only test single point sources, got {mask.sum()}')
|
||||||
|
|
||||||
args: dict[str, Any] = {
|
args: dict[str, Any] = {
|
||||||
'dxes': sim.dxes,
|
'dxes': sim.dxes,
|
||||||
|
Loading…
Reference in New Issue
Block a user