2019-11-24 23:47:31 -08:00
|
|
|
"""
|
|
|
|
Operators and helper functions for cylindrical waveguides with unchanging cross-section.
|
|
|
|
|
|
|
|
WORK IN PROGRESS, CURRENTLY BROKEN
|
|
|
|
|
|
|
|
As the z-dependence is known, all the functions in this file assume a 2D grid
|
|
|
|
(i.e. `dxes = [[[dr_e_0, dx_e_1, ...], [dy_e_0, ...]], [[dr_h_0, ...], [dy_h_0, ...]]]`).
|
|
|
|
"""
|
|
|
|
# TODO update module docs
|
|
|
|
|
2022-10-04 14:32:40 -07:00
|
|
|
import numpy
|
2024-07-29 00:27:59 -07:00
|
|
|
from scipy import sparse
|
2019-11-24 23:47:31 -08:00
|
|
|
|
2024-07-28 23:23:47 -07:00
|
|
|
from ..fdmath import vec, unvec, dx_lists_t, vfdfield_t, cfdfield_t
|
2020-06-11 19:27:35 -07:00
|
|
|
from ..fdmath.operators import deriv_forward, deriv_back
|
2019-11-24 23:47:31 -08:00
|
|
|
from ..eigensolvers import signed_eigensolve, rayleigh_quotient_iteration
|
|
|
|
|
|
|
|
|
2022-10-04 14:32:40 -07:00
|
|
|
def cylindrical_operator(
|
|
|
|
omega: complex,
|
|
|
|
dxes: dx_lists_t,
|
|
|
|
epsilon: vfdfield_t,
|
|
|
|
r0: float,
|
|
|
|
) -> sparse.spmatrix:
|
2019-11-24 23:47:31 -08:00
|
|
|
"""
|
|
|
|
Cylindrical coordinate waveguide operator of the form
|
|
|
|
|
2024-07-18 01:03:42 -07:00
|
|
|
(NOTE: See 10.1364/OL.33.001848)
|
|
|
|
TODO: consider 10.1364/OE.20.021583
|
|
|
|
|
2019-11-24 23:47:31 -08:00
|
|
|
TODO
|
|
|
|
|
|
|
|
for use with a field vector of the form `[E_r, E_y]`.
|
|
|
|
|
|
|
|
This operator can be used to form an eigenvalue problem of the form
|
|
|
|
A @ [E_r, E_y] = wavenumber**2 * [E_r, E_y]
|
|
|
|
|
|
|
|
which can then be solved for the eigenmodes of the system
|
|
|
|
(an `exp(-i * wavenumber * theta)` theta-dependence is assumed for the fields).
|
|
|
|
|
|
|
|
Args:
|
|
|
|
omega: The angular frequency of the system
|
2019-11-27 22:59:52 -08:00
|
|
|
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types` (2D)
|
2019-11-24 23:47:31 -08:00
|
|
|
epsilon: Vectorized dielectric constant grid
|
|
|
|
r0: Radius of curvature for the simulation. This should be the minimum value of
|
|
|
|
r within the simulation domain.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Sparse matrix representation of the operator
|
|
|
|
"""
|
|
|
|
|
2020-06-11 19:27:35 -07:00
|
|
|
Dfx, Dfy = deriv_forward(dxes[0])
|
|
|
|
Dbx, Dby = deriv_back(dxes[1])
|
2019-11-24 23:47:31 -08:00
|
|
|
|
|
|
|
rx = r0 + numpy.cumsum(dxes[0][0])
|
2020-10-16 19:16:13 -07:00
|
|
|
ry = r0 + dxes[0][0] / 2.0 + numpy.cumsum(dxes[1][0])
|
|
|
|
tx = rx / r0
|
|
|
|
ty = ry / r0
|
2019-11-24 23:47:31 -08:00
|
|
|
|
|
|
|
Tx = sparse.diags(vec(tx[:, None].repeat(dxes[0][1].size, axis=1)))
|
|
|
|
Ty = sparse.diags(vec(ty[:, None].repeat(dxes[1][1].size, axis=1)))
|
|
|
|
|
|
|
|
eps_parts = numpy.split(epsilon, 3)
|
|
|
|
eps_x = sparse.diags(eps_parts[0])
|
|
|
|
eps_y = sparse.diags(eps_parts[1])
|
|
|
|
eps_z_inv = sparse.diags(1 / eps_parts[2])
|
|
|
|
|
|
|
|
pa = sparse.vstack((Dfx, Dfy)) @ Tx @ eps_z_inv @ sparse.hstack((Dbx, Dby))
|
|
|
|
pb = sparse.vstack((Dfx, Dfy)) @ Tx @ eps_z_inv @ sparse.hstack((Dby, Dbx))
|
|
|
|
a0 = Ty @ eps_x + omega**-2 * Dby @ Ty @ Dfy
|
|
|
|
a1 = Tx @ eps_y + omega**-2 * Dbx @ Ty @ Dfx
|
|
|
|
b0 = Dbx @ Ty @ Dfy
|
|
|
|
b1 = Dby @ Ty @ Dfx
|
|
|
|
|
|
|
|
diag = sparse.block_diag
|
|
|
|
|
2021-07-11 17:26:33 -07:00
|
|
|
omega2 = omega * omega
|
|
|
|
|
2024-07-15 16:32:48 -07:00
|
|
|
op = (
|
|
|
|
(omega2 * diag((Tx, Ty)) + pa) @ diag((a0, a1))
|
2021-07-11 17:26:33 -07:00
|
|
|
- (sparse.bmat(((None, Ty), (Tx, None))) + pb / omega2) @ diag((b0, b1))
|
2024-07-15 16:32:48 -07:00
|
|
|
)
|
2019-11-24 23:47:31 -08:00
|
|
|
return op
|
|
|
|
|
|
|
|
|
2022-10-04 14:32:40 -07:00
|
|
|
def solve_mode(
|
|
|
|
mode_number: int,
|
|
|
|
omega: complex,
|
|
|
|
dxes: dx_lists_t,
|
|
|
|
epsilon: vfdfield_t,
|
|
|
|
r0: float,
|
2023-05-22 10:53:13 -07:00
|
|
|
) -> dict[str, complex | cfdfield_t]:
|
2019-11-24 23:47:31 -08:00
|
|
|
"""
|
|
|
|
TODO: fixup
|
|
|
|
Given a 2d (r, y) slice of epsilon, attempts to solve for the eigenmode
|
|
|
|
of the bent waveguide with the specified mode number.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
mode_number: Number of the mode, 0-indexed
|
|
|
|
omega: Angular frequency of the simulation
|
2019-11-27 22:59:52 -08:00
|
|
|
dxes: Grid parameters [dx_e, dx_h] as described in meanas.fdmath.types.
|
2019-11-24 23:47:31 -08:00
|
|
|
The first coordinate is assumed to be r, the second is y.
|
|
|
|
epsilon: Dielectric constant
|
|
|
|
r0: Radius of curvature for the simulation. This should be the minimum value of
|
|
|
|
r within the simulation domain.
|
|
|
|
|
|
|
|
Returns:
|
2022-10-04 14:32:40 -07:00
|
|
|
```
|
|
|
|
{
|
2023-05-22 10:53:13 -07:00
|
|
|
'E': list[NDArray[numpy.complex_]],
|
|
|
|
'H': list[NDArray[numpy.complex_]],
|
2022-10-04 14:32:40 -07:00
|
|
|
'wavenumber': complex,
|
|
|
|
}
|
|
|
|
```
|
2019-11-24 23:47:31 -08:00
|
|
|
"""
|
|
|
|
|
|
|
|
'''
|
|
|
|
Solve for the largest-magnitude eigenvalue of the real operator
|
|
|
|
'''
|
|
|
|
dxes_real = [[numpy.real(dx) for dx in dxi] for dxi in dxes]
|
|
|
|
|
2020-06-11 19:27:35 -07:00
|
|
|
A_r = cylindrical_operator(numpy.real(omega), dxes_real, numpy.real(epsilon), r0)
|
2019-11-24 23:47:31 -08:00
|
|
|
eigvals, eigvecs = signed_eigensolve(A_r, mode_number + 3)
|
2020-10-16 19:16:13 -07:00
|
|
|
e_xy = eigvecs[:, -(mode_number + 1)]
|
2019-11-24 23:47:31 -08:00
|
|
|
|
|
|
|
'''
|
|
|
|
Now solve for the eigenvector of the full operator, using the real operator's
|
|
|
|
eigenvector as an initial guess for Rayleigh quotient iteration.
|
|
|
|
'''
|
2020-06-11 19:27:35 -07:00
|
|
|
A = cylindrical_operator(omega, dxes, epsilon, r0)
|
2019-11-24 23:47:31 -08:00
|
|
|
eigval, e_xy = rayleigh_quotient_iteration(A, e_xy)
|
|
|
|
|
|
|
|
# Calculate the wave-vector (force the real part to be positive)
|
|
|
|
wavenumber = numpy.sqrt(eigval)
|
|
|
|
wavenumber *= numpy.sign(numpy.real(wavenumber))
|
|
|
|
|
|
|
|
# TODO: Perform correction on wavenumber to account for numerical dispersion.
|
|
|
|
|
|
|
|
shape = [d.size for d in dxes[0]]
|
|
|
|
e_xy = numpy.hstack((e_xy, numpy.zeros(shape[0] * shape[1])))
|
|
|
|
fields = {
|
|
|
|
'wavenumber': wavenumber,
|
|
|
|
'E': unvec(e_xy, shape),
|
2020-10-16 19:16:13 -07:00
|
|
|
# 'E': unvec(e, shape),
|
|
|
|
# 'H': unvec(h, shape),
|
2019-11-24 23:47:31 -08:00
|
|
|
}
|
|
|
|
|
|
|
|
return fields
|