modernize type annotations
This commit is contained in:
parent
7009e505e7
commit
44465f1bc9
@ -1,7 +1,7 @@
|
||||
"""
|
||||
Solvers for eigenvalue / eigenvector problems
|
||||
"""
|
||||
from typing import Tuple, Callable, Optional, Union
|
||||
from typing import Callable
|
||||
import numpy
|
||||
from numpy.typing import NDArray, ArrayLike
|
||||
from numpy.linalg import norm
|
||||
@ -11,9 +11,9 @@ import scipy.sparse.linalg as spalg # type: ignore
|
||||
|
||||
def power_iteration(
|
||||
operator: sparse.spmatrix,
|
||||
guess_vector: Optional[NDArray[numpy.complex128]] = None,
|
||||
guess_vector: NDArray[numpy.complex128] | None = None,
|
||||
iterations: int = 20,
|
||||
) -> Tuple[complex, NDArray[numpy.complex128]]:
|
||||
) -> tuple[complex, NDArray[numpy.complex128]]:
|
||||
"""
|
||||
Use power iteration to estimate the dominant eigenvector of a matrix.
|
||||
|
||||
@ -40,12 +40,12 @@ def power_iteration(
|
||||
|
||||
|
||||
def rayleigh_quotient_iteration(
|
||||
operator: Union[sparse.spmatrix, spalg.LinearOperator],
|
||||
operator: sparse.spmatrix | spalg.LinearOperator,
|
||||
guess_vector: NDArray[numpy.complex128],
|
||||
iterations: int = 40,
|
||||
tolerance: float = 1e-13,
|
||||
solver: Optional[Callable[..., NDArray[numpy.complex128]]] = None,
|
||||
) -> Tuple[complex, NDArray[numpy.complex128]]:
|
||||
solver: Callable[..., NDArray[numpy.complex128]] | None = None,
|
||||
) -> tuple[complex, NDArray[numpy.complex128]]:
|
||||
"""
|
||||
Use Rayleigh quotient iteration to refine an eigenvector guess.
|
||||
|
||||
@ -73,14 +73,14 @@ def rayleigh_quotient_iteration(
|
||||
except TypeError:
|
||||
def shift(eigval: float) -> spalg.LinearOperator:
|
||||
return spalg.LinearOperator(
|
||||
shape=operator.shape,
|
||||
dtype=operator.dtype,
|
||||
matvec=lambda v: eigval * v,
|
||||
)
|
||||
shape=operator.shape,
|
||||
dtype=operator.dtype,
|
||||
matvec=lambda v: eigval * v,
|
||||
)
|
||||
if solver is None:
|
||||
def solver(A: spalg.LinearOperator, b: ArrayLike) -> NDArray[numpy.complex128]:
|
||||
return spalg.bicgstab(A, b)[0]
|
||||
assert(solver is not None)
|
||||
assert solver is not None
|
||||
|
||||
v = numpy.squeeze(guess_vector)
|
||||
v /= norm(v)
|
||||
@ -96,10 +96,10 @@ def rayleigh_quotient_iteration(
|
||||
|
||||
|
||||
def signed_eigensolve(
|
||||
operator: Union[sparse.spmatrix, spalg.LinearOperator],
|
||||
operator: sparse.spmatrix | spalg.LinearOperator,
|
||||
how_many: int,
|
||||
negative: bool = False,
|
||||
) -> Tuple[NDArray[numpy.complex128], NDArray[numpy.complex128]]:
|
||||
) -> tuple[NDArray[numpy.complex128], NDArray[numpy.complex128]]:
|
||||
"""
|
||||
Find the largest-magnitude positive-only (or negative-only) eigenvalues and
|
||||
eigenvectors of the provided matrix.
|
||||
|
@ -94,7 +94,7 @@ This module contains functions for generating and solving the
|
||||
|
||||
'''
|
||||
|
||||
from typing import Tuple, Callable, Any, List, Optional, cast, Union, Sequence
|
||||
from typing import Callable, Any, cast, Sequence
|
||||
import logging
|
||||
import numpy
|
||||
from numpy import pi, real, trace
|
||||
@ -140,7 +140,7 @@ def generate_kmn(
|
||||
k0: ArrayLike,
|
||||
G_matrix: ArrayLike,
|
||||
shape: Sequence[int],
|
||||
) -> Tuple[NDArray[numpy.float64], NDArray[numpy.float64], NDArray[numpy.float64]]:
|
||||
) -> tuple[NDArray[numpy.float64], NDArray[numpy.float64], NDArray[numpy.float64]]:
|
||||
"""
|
||||
Generate a (k, m, n) orthogonal basis for each k-vector in the simulation grid.
|
||||
|
||||
@ -155,8 +155,9 @@ def generate_kmn(
|
||||
All are given in the xyz basis (e.g. `|k|[0,0,0] = norm(G_matrix @ k0)`).
|
||||
"""
|
||||
k0 = numpy.array(k0)
|
||||
G_matrix = numpy.array(G_matrix, copy=False)
|
||||
|
||||
Gi_grids = numpy.meshgrid(*(fftfreq(n, 1 / n) for n in shape[:3]), indexing='ij')
|
||||
Gi_grids = numpy.array(numpy.meshgrid(*(fftfreq(n, 1 / n) for n in shape[:3]), indexing='ij'))
|
||||
Gi = numpy.moveaxis(Gi_grids, 0, -1)
|
||||
|
||||
k_G = k0[None, None, None, :] - Gi
|
||||
@ -183,7 +184,7 @@ def maxwell_operator(
|
||||
k0: ArrayLike,
|
||||
G_matrix: ArrayLike,
|
||||
epsilon: fdfield_t,
|
||||
mu: Optional[fdfield_t] = None
|
||||
mu: fdfield_t | None = None
|
||||
) -> Callable[[NDArray[numpy.complex128]], NDArray[numpy.complex128]]:
|
||||
"""
|
||||
Generate the Maxwell operator
|
||||
@ -237,7 +238,7 @@ def maxwell_operator(
|
||||
|
||||
# cross product and transform into xyz basis
|
||||
d_xyz = (n * hin_m
|
||||
- m * hin_n) * k_mag
|
||||
- m * hin_n) * k_mag # noqa: E128
|
||||
|
||||
# divide by epsilon
|
||||
temp = ifftn(d_xyz, axes=range(3)) # reuses d_xyz if using pyfftw
|
||||
@ -253,7 +254,7 @@ def maxwell_operator(
|
||||
else:
|
||||
# transform from mn to xyz
|
||||
b_xyz = (m * b_m[:, :, :, None]
|
||||
+ n * b_n[:, :, :, None])
|
||||
+ n * b_n[:, :, :, None]) # noqa: E128
|
||||
|
||||
# divide by mu
|
||||
temp = ifftn(b_xyz, axes=range(3))
|
||||
@ -302,7 +303,7 @@ def hmn_2_exyz(
|
||||
def operator(h: NDArray[numpy.complex128]) -> cfdfield_t:
|
||||
hin_m, hin_n = [hi.reshape(shape) for hi in numpy.split(h, 2)]
|
||||
d_xyz = (n * hin_m
|
||||
- m * hin_n) * k_mag
|
||||
- m * hin_n) * k_mag # noqa: E128
|
||||
|
||||
# divide by epsilon
|
||||
return numpy.array([ei for ei in numpy.moveaxis(ifftn(d_xyz, axes=range(3)) / epsilon, 3, 0)]) # TODO avoid copy
|
||||
@ -340,7 +341,7 @@ def hmn_2_hxyz(
|
||||
def operator(h: NDArray[numpy.complex128]) -> cfdfield_t:
|
||||
hin_m, hin_n = [hi.reshape(shape) for hi in numpy.split(h, 2)]
|
||||
h_xyz = (m * hin_m
|
||||
+ n * hin_n)
|
||||
+ n * hin_n) # noqa: E128
|
||||
return numpy.array([ifftn(hi) for hi in numpy.moveaxis(h_xyz, 3, 0)])
|
||||
|
||||
return operator
|
||||
@ -350,7 +351,7 @@ def inverse_maxwell_operator_approx(
|
||||
k0: ArrayLike,
|
||||
G_matrix: ArrayLike,
|
||||
epsilon: fdfield_t,
|
||||
mu: Optional[fdfield_t] = None,
|
||||
mu: fdfield_t | None = None,
|
||||
) -> Callable[[NDArray[numpy.complex128]], NDArray[numpy.complex128]]:
|
||||
"""
|
||||
Generate an approximate inverse of the Maxwell operator,
|
||||
@ -400,7 +401,7 @@ def inverse_maxwell_operator_approx(
|
||||
else:
|
||||
# transform from mn to xyz
|
||||
h_xyz = (m * hin_m[:, :, :, None]
|
||||
+ n * hin_n[:, :, :, None])
|
||||
+ n * hin_n[:, :, :, None]) # noqa: E128
|
||||
|
||||
# multiply by mu
|
||||
temp = ifftn(h_xyz, axes=range(3))
|
||||
@ -413,7 +414,7 @@ def inverse_maxwell_operator_approx(
|
||||
|
||||
# cross product and transform into xyz basis
|
||||
e_xyz = (n * b_m
|
||||
- m * b_n) / k_mag
|
||||
- m * b_n) / k_mag # noqa: E128
|
||||
|
||||
# multiply by epsilon
|
||||
temp = ifftn(e_xyz, axes=range(3))
|
||||
@ -436,13 +437,13 @@ def find_k(
|
||||
direction: ArrayLike,
|
||||
G_matrix: ArrayLike,
|
||||
epsilon: fdfield_t,
|
||||
mu: Optional[fdfield_t] = None,
|
||||
mu: fdfield_t | None = None,
|
||||
band: int = 0,
|
||||
k_bounds: Tuple[float, float] = (0, 0.5),
|
||||
k_guess: Optional[float] = None,
|
||||
solve_callback: Optional[Callable[..., None]] = None,
|
||||
iter_callback: Optional[Callable[..., None]] = None,
|
||||
) -> Tuple[float, float, NDArray[numpy.complex128], NDArray[numpy.complex128]]:
|
||||
k_bounds: tuple[float, float] = (0, 0.5),
|
||||
k_guess: float | None = None,
|
||||
solve_callback: Callable[..., None] | None = None,
|
||||
iter_callback: Callable[..., None] | None = None,
|
||||
) -> tuple[float, float, NDArray[numpy.complex128], NDArray[numpy.complex128]]:
|
||||
"""
|
||||
Search for a bloch vector that has a given frequency.
|
||||
|
||||
@ -503,13 +504,13 @@ def eigsolve(
|
||||
k0: ArrayLike,
|
||||
G_matrix: ArrayLike,
|
||||
epsilon: fdfield_t,
|
||||
mu: Optional[fdfield_t] = None,
|
||||
mu: fdfield_t | None = None,
|
||||
tolerance: float = 1e-20,
|
||||
max_iters: int = 10000,
|
||||
reset_iters: int = 100,
|
||||
y0: Optional[ArrayLike] = None,
|
||||
callback: Optional[Callable[..., None]] = None,
|
||||
) -> Tuple[NDArray[numpy.complex128], NDArray[numpy.complex128]]:
|
||||
y0: ArrayLike | None = None,
|
||||
callback: Callable[..., None] | None = None,
|
||||
) -> tuple[NDArray[numpy.complex128], NDArray[numpy.complex128]]:
|
||||
"""
|
||||
Find the first (lowest-frequency) num_modes eigenmodes with Bloch wavevector
|
||||
k0 of the specified structure.
|
||||
@ -555,6 +556,7 @@ def eigsolve(
|
||||
#prev_theta = 0.5
|
||||
D = numpy.zeros(shape=y_shape, dtype=complex)
|
||||
|
||||
Z: NDArray[numpy.complex128]
|
||||
if y0 is None:
|
||||
Z = numpy.random.rand(*y_shape) + 1j * numpy.random.rand(*y_shape)
|
||||
else:
|
||||
@ -589,11 +591,12 @@ def eigsolve(
|
||||
E_signed = real(trace(ZtAZU))
|
||||
sgn = numpy.sign(E_signed)
|
||||
E = numpy.abs(E_signed)
|
||||
G = (AZ @ U - Z @ U @ ZtAZU) * sgn # G = AZU projected onto the space orthonormal to Z
|
||||
# via (1 - ZUZt)
|
||||
G = (AZ @ U - Z @ U @ ZtAZU) * sgn # G = AZU projected onto the space orthonormal to Z
|
||||
# via (1 - ZUZt)
|
||||
|
||||
if i > 0 and abs(E - prev_E) < tolerance * 0.5 * (E + prev_E + 1e-7):
|
||||
logger.info('Optimization succeded: '
|
||||
logger.info(
|
||||
'Optimization succeded: '
|
||||
f'[change in trace] {abs(E - prev_E)} - 5e-8 '
|
||||
f'< {tolerance} [tolerance] * {(E + prev_E) / 2} [value of trace]'
|
||||
)
|
||||
@ -635,7 +638,7 @@ def eigsolve(
|
||||
symZtD = _symmetrize(Zt @ D)
|
||||
symZtAD = _symmetrize(Zt @ AD)
|
||||
|
||||
Qi_memo: List[Optional[float]] = [None, None]
|
||||
Qi_memo: list[float | None] = [None, None]
|
||||
|
||||
def Qi_func(theta: float) -> float:
|
||||
nonlocal Qi_memo
|
||||
@ -659,8 +662,8 @@ def eigsolve(
|
||||
else:
|
||||
raise Exception('Inexplicable singularity in trace_func')
|
||||
Qi_memo[0] = theta
|
||||
Qi_memo[1] = Qi
|
||||
return Qi
|
||||
Qi_memo[1] = cast(float, Qi)
|
||||
return cast(float, Qi)
|
||||
|
||||
def trace_func(theta: float) -> float:
|
||||
c = numpy.cos(theta)
|
||||
@ -772,7 +775,7 @@ def linmin(x_guess, f0, df0, x_max, f_tol=0.1, df_tol=min(tolerance, 1e-6), x_to
|
||||
|
||||
def _rtrace_AtB(
|
||||
A: NDArray[numpy.complex128],
|
||||
B: Union[NDArray[numpy.complex128], float],
|
||||
B: NDArray[numpy.complex128] | float,
|
||||
) -> float:
|
||||
return real(numpy.sum(A.conj() * B))
|
||||
|
||||
|
@ -1,7 +1,7 @@
|
||||
"""
|
||||
Functions for performing near-to-farfield transformation (and the reverse).
|
||||
"""
|
||||
from typing import Dict, List, Any, Union, Sequence
|
||||
from typing import Any, Sequence, cast
|
||||
import numpy
|
||||
from numpy.fft import fft2, fftshift, fftfreq, ifft2, ifftshift
|
||||
from numpy import pi
|
||||
@ -14,8 +14,8 @@ def near_to_farfield(
|
||||
H_near: cfdfield_t,
|
||||
dx: float,
|
||||
dy: float,
|
||||
padded_size: Union[List[int], int, None] = None
|
||||
) -> Dict[str, Any]:
|
||||
padded_size: list[int] | int | None = None
|
||||
) -> dict[str, Any]:
|
||||
"""
|
||||
Compute the farfield, i.e. the distribution of the fields after propagation
|
||||
through several wavelengths of uniform medium.
|
||||
@ -62,14 +62,15 @@ def near_to_farfield(
|
||||
padded_size = (2**numpy.ceil(numpy.log2(s))).astype(int)
|
||||
if not hasattr(padded_size, '__len__'):
|
||||
padded_size = (padded_size, padded_size) # type: ignore # checked if sequence
|
||||
padded_shape = cast(Sequence[int], padded_size)
|
||||
|
||||
En_fft = [fftshift(fft2(fftshift(Eni), s=padded_size)) for Eni in E_near]
|
||||
Hn_fft = [fftshift(fft2(fftshift(Hni), s=padded_size)) for Hni in H_near]
|
||||
En_fft = [fftshift(fft2(fftshift(Eni), s=padded_shape)) for Eni in E_near]
|
||||
Hn_fft = [fftshift(fft2(fftshift(Hni), s=padded_shape)) for Hni in H_near]
|
||||
|
||||
# Propagation vectors kx, ky
|
||||
k = 2 * pi
|
||||
kxx = 2 * pi * fftshift(fftfreq(padded_size[0], dx))
|
||||
kyy = 2 * pi * fftshift(fftfreq(padded_size[1], dy))
|
||||
kxx = 2 * pi * fftshift(fftfreq(padded_shape[0], dx))
|
||||
kyy = 2 * pi * fftshift(fftfreq(padded_shape[1], dy))
|
||||
|
||||
kx, ky = numpy.meshgrid(kxx, kyy, indexing='ij')
|
||||
kxy2 = kx * kx + ky * ky
|
||||
@ -85,14 +86,14 @@ def near_to_farfield(
|
||||
|
||||
# Normalized vector potentials N, L
|
||||
N = [-Hn_fft[1] * cos_phi * cos_th + Hn_fft[0] * cos_phi * sin_th,
|
||||
Hn_fft[1] * sin_th + Hn_fft[0] * cos_th]
|
||||
Hn_fft[1] * sin_th + Hn_fft[0] * cos_th] # noqa: E127
|
||||
L = [ En_fft[1] * cos_phi * cos_th - En_fft[0] * cos_phi * sin_th,
|
||||
-En_fft[1] * sin_th - En_fft[0] * cos_th]
|
||||
-En_fft[1] * sin_th - En_fft[0] * cos_th] # noqa: E128
|
||||
|
||||
E_far = [-L[1] - N[0],
|
||||
L[0] - N[1]]
|
||||
L[0] - N[1]] # noqa: E127
|
||||
H_far = [-E_far[1],
|
||||
E_far[0]]
|
||||
E_far[0]] # noqa: E127
|
||||
|
||||
theta = numpy.arctan2(ky, kx)
|
||||
phi = numpy.arccos(cos_phi)
|
||||
@ -126,8 +127,8 @@ def far_to_nearfield(
|
||||
H_far: cfdfield_t,
|
||||
dkx: float,
|
||||
dky: float,
|
||||
padded_size: Union[List[int], int, None] = None
|
||||
) -> Dict[str, Any]:
|
||||
padded_size: list[int] | int | None = None
|
||||
) -> dict[str, Any]:
|
||||
"""
|
||||
Compute the farfield, i.e. the distribution of the fields after propagation
|
||||
through several wavelengths of uniform medium.
|
||||
@ -170,6 +171,7 @@ def far_to_nearfield(
|
||||
padded_size = (2 ** numpy.ceil(numpy.log2(s))).astype(int)
|
||||
if not hasattr(padded_size, '__len__'):
|
||||
padded_size = (padded_size, padded_size) # type: ignore # checked if sequence
|
||||
padded_shape = cast(Sequence[int], padded_size)
|
||||
|
||||
k = 2 * pi
|
||||
kxs = fftshift(fftfreq(s[0], 1 / (s[0] * dkx)))
|
||||
@ -203,9 +205,9 @@ def far_to_nearfield(
|
||||
|
||||
# Normalized vector potentials N, L
|
||||
L = [0.5 * E_far[1],
|
||||
-0.5 * E_far[0]]
|
||||
-0.5 * E_far[0]] # noqa: E128
|
||||
N = [L[1],
|
||||
-L[0]]
|
||||
-L[0]] # noqa: E128
|
||||
|
||||
En_fft = [-( L[0] * sin_th + L[1] * cos_phi * cos_th) / cos_phi,
|
||||
-(-L[0] * cos_th + L[1] * cos_phi * sin_th) / cos_phi]
|
||||
@ -217,8 +219,8 @@ def far_to_nearfield(
|
||||
En_fft[i][cos_phi == 0] = 0
|
||||
Hn_fft[i][cos_phi == 0] = 0
|
||||
|
||||
E_near = [ifftshift(ifft2(ifftshift(Ei), s=padded_size)) for Ei in En_fft]
|
||||
H_near = [ifftshift(ifft2(ifftshift(Hi), s=padded_size)) for Hi in Hn_fft]
|
||||
E_near = [ifftshift(ifft2(ifftshift(Ei), s=padded_shape)) for Ei in En_fft]
|
||||
H_near = [ifftshift(ifft2(ifftshift(Hi), s=padded_shape)) for Hi in Hn_fft]
|
||||
|
||||
dx = 2 * pi / (s[0] * dkx)
|
||||
dy = 2 * pi / (s[0] * dky)
|
||||
|
@ -5,7 +5,7 @@ Functional versions of many FDFD operators. These can be useful for performing
|
||||
The functions generated here expect `cfdfield_t` inputs with shape (3, X, Y, Z),
|
||||
e.g. E = [E_x, E_y, E_z] where each (complex) component has shape (X, Y, Z)
|
||||
"""
|
||||
from typing import Callable, Tuple, Optional
|
||||
from typing import Callable
|
||||
import numpy
|
||||
|
||||
from ..fdmath import dx_lists_t, fdfield_t, cfdfield_t, cfdfield_updater_t
|
||||
@ -19,7 +19,7 @@ def e_full(
|
||||
omega: complex,
|
||||
dxes: dx_lists_t,
|
||||
epsilon: fdfield_t,
|
||||
mu: Optional[fdfield_t] = None,
|
||||
mu: fdfield_t | None = None,
|
||||
) -> cfdfield_updater_t:
|
||||
"""
|
||||
Wave operator for use with E-field. See `operators.e_full` for details.
|
||||
@ -55,8 +55,8 @@ def eh_full(
|
||||
omega: complex,
|
||||
dxes: dx_lists_t,
|
||||
epsilon: fdfield_t,
|
||||
mu: Optional[fdfield_t] = None,
|
||||
) -> Callable[[cfdfield_t, cfdfield_t], Tuple[cfdfield_t, cfdfield_t]]:
|
||||
mu: fdfield_t | None = None,
|
||||
) -> Callable[[cfdfield_t, cfdfield_t], tuple[cfdfield_t, cfdfield_t]]:
|
||||
"""
|
||||
Wave operator for full (both E and H) field representation.
|
||||
See `operators.eh_full`.
|
||||
@ -74,11 +74,11 @@ def eh_full(
|
||||
ch = curl_back(dxes[1])
|
||||
ce = curl_forward(dxes[0])
|
||||
|
||||
def op_1(e: cfdfield_t, h: cfdfield_t) -> Tuple[cfdfield_t, cfdfield_t]:
|
||||
def op_1(e: cfdfield_t, h: cfdfield_t) -> tuple[cfdfield_t, cfdfield_t]:
|
||||
return (ch(h) - 1j * omega * epsilon * e,
|
||||
ce(e) + 1j * omega * h)
|
||||
|
||||
def op_mu(e: cfdfield_t, h: cfdfield_t) -> Tuple[cfdfield_t, cfdfield_t]:
|
||||
def op_mu(e: cfdfield_t, h: cfdfield_t) -> tuple[cfdfield_t, cfdfield_t]:
|
||||
return (ch(h) - 1j * omega * epsilon * e,
|
||||
ce(e) + 1j * omega * mu * h) # type: ignore # mu=None ok
|
||||
|
||||
@ -91,7 +91,7 @@ def eh_full(
|
||||
def e2h(
|
||||
omega: complex,
|
||||
dxes: dx_lists_t,
|
||||
mu: Optional[fdfield_t] = None,
|
||||
mu: fdfield_t | None = None,
|
||||
) -> cfdfield_updater_t:
|
||||
"""
|
||||
Utility operator for converting the `E` field into the `H` field.
|
||||
@ -123,7 +123,7 @@ def e2h(
|
||||
def m2j(
|
||||
omega: complex,
|
||||
dxes: dx_lists_t,
|
||||
mu: Optional[fdfield_t] = None,
|
||||
mu: fdfield_t | None = None,
|
||||
) -> cfdfield_updater_t:
|
||||
"""
|
||||
Utility operator for converting magnetic current `M` distribution
|
||||
@ -160,7 +160,7 @@ def e_tfsf_source(
|
||||
omega: complex,
|
||||
dxes: dx_lists_t,
|
||||
epsilon: fdfield_t,
|
||||
mu: Optional[fdfield_t] = None,
|
||||
mu: fdfield_t | None = None,
|
||||
) -> cfdfield_updater_t:
|
||||
"""
|
||||
Operator that turns an E-field distribution into a total-field/scattered-field
|
||||
|
@ -27,7 +27,6 @@ The following operators are included:
|
||||
- Cross product matrices
|
||||
"""
|
||||
|
||||
from typing import Tuple, Optional
|
||||
import numpy
|
||||
import scipy.sparse as sparse # type: ignore
|
||||
|
||||
@ -42,9 +41,9 @@ def e_full(
|
||||
omega: complex,
|
||||
dxes: dx_lists_t,
|
||||
epsilon: vfdfield_t,
|
||||
mu: Optional[vfdfield_t] = None,
|
||||
pec: Optional[vfdfield_t] = None,
|
||||
pmc: Optional[vfdfield_t] = None,
|
||||
mu: vfdfield_t | None = None,
|
||||
pec: vfdfield_t | None = None,
|
||||
pmc: vfdfield_t | None = None,
|
||||
) -> sparse.spmatrix:
|
||||
"""
|
||||
Wave operator
|
||||
@ -99,7 +98,7 @@ def e_full(
|
||||
|
||||
def e_full_preconditioners(
|
||||
dxes: dx_lists_t,
|
||||
) -> Tuple[sparse.spmatrix, sparse.spmatrix]:
|
||||
) -> tuple[sparse.spmatrix, sparse.spmatrix]:
|
||||
"""
|
||||
Left and right preconditioners `(Pl, Pr)` for symmetrizing the `e_full` wave operator.
|
||||
|
||||
@ -128,9 +127,9 @@ def h_full(
|
||||
omega: complex,
|
||||
dxes: dx_lists_t,
|
||||
epsilon: vfdfield_t,
|
||||
mu: Optional[vfdfield_t] = None,
|
||||
pec: Optional[vfdfield_t] = None,
|
||||
pmc: Optional[vfdfield_t] = None,
|
||||
mu: vfdfield_t | None = None,
|
||||
pec: vfdfield_t | None = None,
|
||||
pmc: vfdfield_t | None = None,
|
||||
) -> sparse.spmatrix:
|
||||
"""
|
||||
Wave operator
|
||||
@ -185,9 +184,9 @@ def eh_full(
|
||||
omega: complex,
|
||||
dxes: dx_lists_t,
|
||||
epsilon: vfdfield_t,
|
||||
mu: Optional[vfdfield_t] = None,
|
||||
pec: Optional[vfdfield_t] = None,
|
||||
pmc: Optional[vfdfield_t] = None,
|
||||
mu: vfdfield_t | None = None,
|
||||
pec: vfdfield_t | None = None,
|
||||
pmc: vfdfield_t | None = None,
|
||||
) -> sparse.spmatrix:
|
||||
"""
|
||||
Wave operator for `[E, H]` field representation. This operator implements Maxwell's
|
||||
@ -254,8 +253,8 @@ def eh_full(
|
||||
def e2h(
|
||||
omega: complex,
|
||||
dxes: dx_lists_t,
|
||||
mu: Optional[vfdfield_t] = None,
|
||||
pmc: Optional[vfdfield_t] = None,
|
||||
mu: vfdfield_t | None = None,
|
||||
pmc: vfdfield_t | None = None,
|
||||
) -> sparse.spmatrix:
|
||||
"""
|
||||
Utility operator for converting the E field into the H field.
|
||||
@ -286,7 +285,7 @@ def e2h(
|
||||
def m2j(
|
||||
omega: complex,
|
||||
dxes: dx_lists_t,
|
||||
mu: Optional[vfdfield_t] = None,
|
||||
mu: vfdfield_t | None = None,
|
||||
) -> sparse.spmatrix:
|
||||
"""
|
||||
Operator for converting a magnetic current M into an electric current J.
|
||||
@ -368,7 +367,7 @@ def e_tfsf_source(
|
||||
omega: complex,
|
||||
dxes: dx_lists_t,
|
||||
epsilon: vfdfield_t,
|
||||
mu: Optional[vfdfield_t] = None,
|
||||
mu: vfdfield_t | None = None,
|
||||
) -> sparse.spmatrix:
|
||||
"""
|
||||
Operator that turns a desired E-field distribution into a
|
||||
@ -399,7 +398,7 @@ def e_boundary_source(
|
||||
omega: complex,
|
||||
dxes: dx_lists_t,
|
||||
epsilon: vfdfield_t,
|
||||
mu: Optional[vfdfield_t] = None,
|
||||
mu: vfdfield_t | None = None,
|
||||
periodic_mask_edges: bool = False,
|
||||
) -> sparse.spmatrix:
|
||||
"""
|
||||
|
@ -2,10 +2,10 @@
|
||||
Functions for creating stretched coordinate perfectly matched layer (PML) absorbers.
|
||||
"""
|
||||
|
||||
from typing import Sequence, Union, Callable, Optional, List
|
||||
from typing import Sequence, Callable
|
||||
|
||||
import numpy
|
||||
from numpy.typing import ArrayLike, NDArray
|
||||
from numpy.typing import NDArray
|
||||
|
||||
|
||||
__author__ = 'Jan Petykiewicz'
|
||||
@ -43,8 +43,8 @@ def uniform_grid_scpml(
|
||||
thicknesses: Sequence[int],
|
||||
omega: float,
|
||||
epsilon_effective: float = 1.0,
|
||||
s_function: Optional[s_function_t] = None,
|
||||
) -> List[List[NDArray[numpy.float64]]]:
|
||||
s_function: s_function_t | None = None,
|
||||
) -> list[list[NDArray[numpy.float64]]]:
|
||||
"""
|
||||
Create dx arrays for a uniform grid with a cell width of 1 and a pml.
|
||||
|
||||
@ -86,7 +86,7 @@ def uniform_grid_scpml(
|
||||
for k, th in enumerate(thicknesses):
|
||||
s = shape[k]
|
||||
if th > 0:
|
||||
sr = numpy.arange(s)
|
||||
sr = numpy.arange(s, dtype=numpy.float64)
|
||||
dx_a[k] = 1 + 1j * s_function(ll(sr, s, th)) / s_correction
|
||||
dx_b[k] = 1 + 1j * s_function(ll(sr + 0.5, s, th)) / s_correction
|
||||
else:
|
||||
@ -96,14 +96,14 @@ def uniform_grid_scpml(
|
||||
|
||||
|
||||
def stretch_with_scpml(
|
||||
dxes: List[List[NDArray[numpy.float64]]],
|
||||
dxes: list[list[NDArray[numpy.float64]]],
|
||||
axis: int,
|
||||
polarity: int,
|
||||
omega: float,
|
||||
epsilon_effective: float = 1.0,
|
||||
thickness: int = 10,
|
||||
s_function: Optional[s_function_t] = None,
|
||||
) -> List[List[NDArray[numpy.float64]]]:
|
||||
s_function: s_function_t | None = None,
|
||||
) -> list[list[NDArray[numpy.float64]]]:
|
||||
"""
|
||||
Stretch dxes to contain a stretched-coordinate PML (SCPML) in one direction along one axis.
|
||||
|
||||
|
@ -178,7 +178,7 @@ to account for numerical dispersion if the result is introduced into a space wit
|
||||
"""
|
||||
# TODO update module docs
|
||||
|
||||
from typing import List, Tuple, Optional, Any
|
||||
from typing import Any
|
||||
import numpy
|
||||
from numpy.typing import NDArray, ArrayLike
|
||||
from numpy.linalg import norm
|
||||
@ -196,7 +196,7 @@ def operator_e(
|
||||
omega: complex,
|
||||
dxes: dx_lists_t,
|
||||
epsilon: vfdfield_t,
|
||||
mu: Optional[vfdfield_t] = None,
|
||||
mu: vfdfield_t | None = None,
|
||||
) -> sparse.spmatrix:
|
||||
"""
|
||||
Waveguide operator of the form
|
||||
@ -263,7 +263,7 @@ def operator_h(
|
||||
omega: complex,
|
||||
dxes: dx_lists_t,
|
||||
epsilon: vfdfield_t,
|
||||
mu: Optional[vfdfield_t] = None,
|
||||
mu: vfdfield_t | None = None,
|
||||
) -> sparse.spmatrix:
|
||||
"""
|
||||
Waveguide operator of the form
|
||||
@ -333,9 +333,9 @@ def normalized_fields_e(
|
||||
omega: complex,
|
||||
dxes: dx_lists_t,
|
||||
epsilon: vfdfield_t,
|
||||
mu: Optional[vfdfield_t] = None,
|
||||
mu: vfdfield_t | None = None,
|
||||
prop_phase: float = 0,
|
||||
) -> Tuple[vcfdfield_t, vcfdfield_t]:
|
||||
) -> tuple[vcfdfield_t, vcfdfield_t]:
|
||||
"""
|
||||
Given a vector `e_xy` containing the vectorized E_x and E_y fields,
|
||||
returns normalized, vectorized E and H fields for the system.
|
||||
@ -368,9 +368,9 @@ def normalized_fields_h(
|
||||
omega: complex,
|
||||
dxes: dx_lists_t,
|
||||
epsilon: vfdfield_t,
|
||||
mu: Optional[vfdfield_t] = None,
|
||||
mu: vfdfield_t | None = None,
|
||||
prop_phase: float = 0,
|
||||
) -> Tuple[vcfdfield_t, vcfdfield_t]:
|
||||
) -> tuple[vcfdfield_t, vcfdfield_t]:
|
||||
"""
|
||||
Given a vector `h_xy` containing the vectorized H_x and H_y fields,
|
||||
returns normalized, vectorized E and H fields for the system.
|
||||
@ -403,9 +403,9 @@ def _normalized_fields(
|
||||
omega: complex,
|
||||
dxes: dx_lists_t,
|
||||
epsilon: vfdfield_t,
|
||||
mu: Optional[vfdfield_t] = None,
|
||||
mu: vfdfield_t | None = None,
|
||||
prop_phase: float = 0,
|
||||
) -> Tuple[vcfdfield_t, vcfdfield_t]:
|
||||
) -> tuple[vcfdfield_t, vcfdfield_t]:
|
||||
# TODO documentation
|
||||
shape = [s.size for s in dxes[0]]
|
||||
dxes_real = [[numpy.real(d) for d in numpy.meshgrid(*dxes[v], indexing='ij')] for v in (0, 1)]
|
||||
@ -445,7 +445,7 @@ def exy2h(
|
||||
omega: complex,
|
||||
dxes: dx_lists_t,
|
||||
epsilon: vfdfield_t,
|
||||
mu: Optional[vfdfield_t] = None
|
||||
mu: vfdfield_t | None = None
|
||||
) -> sparse.spmatrix:
|
||||
"""
|
||||
Operator which transforms the vector `e_xy` containing the vectorized E_x and E_y fields,
|
||||
@ -471,7 +471,7 @@ def hxy2e(
|
||||
omega: complex,
|
||||
dxes: dx_lists_t,
|
||||
epsilon: vfdfield_t,
|
||||
mu: Optional[vfdfield_t] = None
|
||||
mu: vfdfield_t | None = None
|
||||
) -> sparse.spmatrix:
|
||||
"""
|
||||
Operator which transforms the vector `h_xy` containing the vectorized H_x and H_y fields,
|
||||
@ -495,7 +495,7 @@ def hxy2e(
|
||||
def hxy2h(
|
||||
wavenumber: complex,
|
||||
dxes: dx_lists_t,
|
||||
mu: Optional[vfdfield_t] = None
|
||||
mu: vfdfield_t | None = None
|
||||
) -> sparse.spmatrix:
|
||||
"""
|
||||
Operator which transforms the vector `h_xy` containing the vectorized H_x and H_y fields,
|
||||
@ -564,7 +564,7 @@ def e2h(
|
||||
wavenumber: complex,
|
||||
omega: complex,
|
||||
dxes: dx_lists_t,
|
||||
mu: Optional[vfdfield_t] = None
|
||||
mu: vfdfield_t | None = None
|
||||
) -> sparse.spmatrix:
|
||||
"""
|
||||
Returns an operator which, when applied to a vectorized E eigenfield, produces
|
||||
@ -654,7 +654,7 @@ def h_err(
|
||||
omega: complex,
|
||||
dxes: dx_lists_t,
|
||||
epsilon: vfdfield_t,
|
||||
mu: Optional[vfdfield_t] = None
|
||||
mu: vfdfield_t | None = None
|
||||
) -> float:
|
||||
"""
|
||||
Calculates the relative error in the H field
|
||||
@ -680,7 +680,7 @@ def h_err(
|
||||
else:
|
||||
op = ce @ eps_inv @ ch @ h - omega ** 2 * (mu * h)
|
||||
|
||||
return norm(op) / norm(h)
|
||||
return float(norm(op) / norm(h))
|
||||
|
||||
|
||||
def e_err(
|
||||
@ -689,7 +689,7 @@ def e_err(
|
||||
omega: complex,
|
||||
dxes: dx_lists_t,
|
||||
epsilon: vfdfield_t,
|
||||
mu: Optional[vfdfield_t] = None,
|
||||
mu: vfdfield_t | None = None,
|
||||
) -> float:
|
||||
"""
|
||||
Calculates the relative error in the E field
|
||||
@ -714,17 +714,17 @@ def e_err(
|
||||
mu_inv = sparse.diags(1 / mu)
|
||||
op = ch @ mu_inv @ ce @ e - omega ** 2 * (epsilon * e)
|
||||
|
||||
return norm(op) / norm(e)
|
||||
return float(norm(op) / norm(e))
|
||||
|
||||
|
||||
def solve_modes(
|
||||
mode_numbers: List[int],
|
||||
mode_numbers: list[int],
|
||||
omega: complex,
|
||||
dxes: dx_lists_t,
|
||||
epsilon: vfdfield_t,
|
||||
mu: Optional[vfdfield_t] = None,
|
||||
mu: vfdfield_t | None = None,
|
||||
mode_margin: int = 2,
|
||||
) -> Tuple[NDArray[numpy.float64], NDArray[numpy.complex128]]:
|
||||
) -> tuple[NDArray[numpy.complex128], NDArray[numpy.complex128]]:
|
||||
"""
|
||||
Given a 2D region, attempts to solve for the eigenmode with the specified mode numbers.
|
||||
|
||||
@ -772,7 +772,7 @@ def solve_mode(
|
||||
mode_number: int,
|
||||
*args: Any,
|
||||
**kwargs: Any,
|
||||
) -> Tuple[vcfdfield_t, complex]:
|
||||
) -> tuple[vcfdfield_t, complex]:
|
||||
"""
|
||||
Wrapper around `solve_modes()` that solves for a single mode.
|
||||
|
||||
|
@ -4,7 +4,7 @@ Tools for working with waveguide modes in 3D domains.
|
||||
This module relies heavily on `waveguide_2d` and mostly just transforms
|
||||
its parameters into 2D equivalents and expands the results back into 3D.
|
||||
"""
|
||||
from typing import Dict, Optional, Sequence, Union, Any
|
||||
from typing import Sequence, Any
|
||||
import numpy
|
||||
from numpy.typing import NDArray
|
||||
|
||||
@ -20,8 +20,8 @@ def solve_mode(
|
||||
polarity: int,
|
||||
slices: Sequence[slice],
|
||||
epsilon: fdfield_t,
|
||||
mu: Optional[fdfield_t] = None,
|
||||
) -> Dict[str, Union[complex, NDArray[numpy.float_]]]:
|
||||
mu: fdfield_t | None = None,
|
||||
) -> dict[str, complex | NDArray[numpy.float_]]:
|
||||
"""
|
||||
Given a 3D grid, selects a slice from the grid and attempts to
|
||||
solve for an eigenmode propagating through that slice.
|
||||
@ -40,8 +40,8 @@ def solve_mode(
|
||||
Returns:
|
||||
```
|
||||
{
|
||||
'E': List[NDArray[numpy.float_]],
|
||||
'H': List[NDArray[numpy.float_]],
|
||||
'E': list[NDArray[numpy.float_]],
|
||||
'H': list[NDArray[numpy.float_]],
|
||||
'wavenumber': complex,
|
||||
}
|
||||
```
|
||||
@ -63,7 +63,7 @@ def solve_mode(
|
||||
dx_prop = 0.5 * dxab_forward.sum()
|
||||
|
||||
# Reduce to 2D and solve the 2D problem
|
||||
args_2d: Dict[str, Any] = {
|
||||
args_2d: dict[str, Any] = {
|
||||
'omega': omega,
|
||||
'dxes': [[dx[i][slices[i]] for i in order[:2]] for dx in dxes],
|
||||
'epsilon': vec([epsilon[i][slices].transpose(order) for i in order]),
|
||||
@ -114,7 +114,7 @@ def compute_source(
|
||||
polarity: int,
|
||||
slices: Sequence[slice],
|
||||
epsilon: fdfield_t,
|
||||
mu: Optional[fdfield_t] = None,
|
||||
mu: fdfield_t | None = None,
|
||||
) -> cfdfield_t:
|
||||
"""
|
||||
Given an eigenmode obtained by `solve_mode`, returns the current source distribution
|
||||
|
@ -8,7 +8,6 @@ As the z-dependence is known, all the functions in this file assume a 2D grid
|
||||
"""
|
||||
# TODO update module docs
|
||||
|
||||
from typing import Dict, Union
|
||||
import numpy
|
||||
import scipy.sparse as sparse # type: ignore
|
||||
|
||||
@ -85,7 +84,7 @@ def solve_mode(
|
||||
dxes: dx_lists_t,
|
||||
epsilon: vfdfield_t,
|
||||
r0: float,
|
||||
) -> Dict[str, Union[complex, cfdfield_t]]:
|
||||
) -> dict[str, complex | cfdfield_t]:
|
||||
"""
|
||||
TODO: fixup
|
||||
Given a 2d (r, y) slice of epsilon, attempts to solve for the eigenmode
|
||||
@ -103,8 +102,8 @@ def solve_mode(
|
||||
Returns:
|
||||
```
|
||||
{
|
||||
'E': List[NDArray[numpy.complex_]],
|
||||
'H': List[NDArray[numpy.complex_]],
|
||||
'E': list[NDArray[numpy.complex_]],
|
||||
'H': list[NDArray[numpy.complex_]],
|
||||
'wavenumber': complex,
|
||||
}
|
||||
```
|
||||
|
@ -8,7 +8,7 @@ Fields, Functions, and Operators
|
||||
|
||||
Discrete fields are stored in one of two forms:
|
||||
|
||||
- The `fdfield_t` form is a multidimensional `numpy.ndarray`
|
||||
- The `fdfield_t` form is a multidimensional `numpy.NDArray`
|
||||
+ For a scalar field, this is just `U[m, n, p]`, where `m`, `n`, and `p` are
|
||||
discrete indices referring to positions on the x, y, and z axes respectively.
|
||||
+ For a vector field, the first index specifies which vector component is accessed:
|
||||
|
@ -3,7 +3,7 @@ Math functions for finite difference simulations
|
||||
|
||||
Basic discrete calculus etc.
|
||||
"""
|
||||
from typing import Sequence, Tuple, Optional, Callable
|
||||
from typing import Sequence, Callable
|
||||
|
||||
import numpy
|
||||
from numpy.typing import NDArray
|
||||
@ -12,8 +12,8 @@ from .types import fdfield_t, fdfield_updater_t
|
||||
|
||||
|
||||
def deriv_forward(
|
||||
dx_e: Optional[Sequence[NDArray[numpy.float_]]] = None,
|
||||
) -> Tuple[fdfield_updater_t, fdfield_updater_t, fdfield_updater_t]:
|
||||
dx_e: Sequence[NDArray[numpy.float_]] | None = None,
|
||||
) -> tuple[fdfield_updater_t, fdfield_updater_t, fdfield_updater_t]:
|
||||
"""
|
||||
Utility operators for taking discretized derivatives (backward variant).
|
||||
|
||||
@ -36,8 +36,8 @@ def deriv_forward(
|
||||
|
||||
|
||||
def deriv_back(
|
||||
dx_h: Optional[Sequence[NDArray[numpy.float_]]] = None,
|
||||
) -> Tuple[fdfield_updater_t, fdfield_updater_t, fdfield_updater_t]:
|
||||
dx_h: Sequence[NDArray[numpy.float_]] | None = None,
|
||||
) -> tuple[fdfield_updater_t, fdfield_updater_t, fdfield_updater_t]:
|
||||
"""
|
||||
Utility operators for taking discretized derivatives (forward variant).
|
||||
|
||||
@ -60,7 +60,7 @@ def deriv_back(
|
||||
|
||||
|
||||
def curl_forward(
|
||||
dx_e: Optional[Sequence[NDArray[numpy.float_]]] = None,
|
||||
dx_e: Sequence[NDArray[numpy.float_]] | None = None,
|
||||
) -> fdfield_updater_t:
|
||||
"""
|
||||
Curl operator for use with the E field.
|
||||
@ -89,7 +89,7 @@ def curl_forward(
|
||||
|
||||
|
||||
def curl_back(
|
||||
dx_h: Optional[Sequence[NDArray[numpy.float_]]] = None,
|
||||
dx_h: Sequence[NDArray[numpy.float_]] | None = None,
|
||||
) -> fdfield_updater_t:
|
||||
"""
|
||||
Create a function which takes the backward curl of a field.
|
||||
@ -118,11 +118,11 @@ def curl_back(
|
||||
|
||||
|
||||
def curl_forward_parts(
|
||||
dx_e: Optional[Sequence[NDArray[numpy.float_]]] = None,
|
||||
dx_e: Sequence[NDArray[numpy.float_]] | None = None,
|
||||
) -> Callable:
|
||||
Dx, Dy, Dz = deriv_forward(dx_e)
|
||||
|
||||
def mkparts_fwd(e: fdfield_t) -> Tuple[Tuple[fdfield_t, fdfield_t], ...]:
|
||||
def mkparts_fwd(e: fdfield_t) -> tuple[tuple[fdfield_t, fdfield_t], ...]:
|
||||
return ((-Dz(e[1]), Dy(e[2])),
|
||||
( Dz(e[0]), -Dx(e[2])),
|
||||
(-Dy(e[0]), Dx(e[1])))
|
||||
@ -131,11 +131,11 @@ def curl_forward_parts(
|
||||
|
||||
|
||||
def curl_back_parts(
|
||||
dx_h: Optional[Sequence[NDArray[numpy.float_]]] = None,
|
||||
dx_h: Sequence[NDArray[numpy.float_]] | None = None,
|
||||
) -> Callable:
|
||||
Dx, Dy, Dz = deriv_back(dx_h)
|
||||
|
||||
def mkparts_back(h: fdfield_t) -> Tuple[Tuple[fdfield_t, fdfield_t], ...]:
|
||||
def mkparts_back(h: fdfield_t) -> tuple[tuple[fdfield_t, fdfield_t], ...]:
|
||||
return ((-Dz(h[1]), Dy(h[2])),
|
||||
( Dz(h[0]), -Dx(h[2])),
|
||||
(-Dy(h[0]), Dx(h[1])))
|
||||
|
@ -3,7 +3,7 @@ Matrix operators for finite difference simulations
|
||||
|
||||
Basic discrete calculus etc.
|
||||
"""
|
||||
from typing import Sequence, List
|
||||
from typing import Sequence
|
||||
import numpy
|
||||
from numpy.typing import NDArray
|
||||
import scipy.sparse as sparse # type: ignore
|
||||
@ -98,7 +98,7 @@ def shift_with_mirror(
|
||||
|
||||
def deriv_forward(
|
||||
dx_e: Sequence[NDArray[numpy.float_]],
|
||||
) -> List[sparse.spmatrix]:
|
||||
) -> list[sparse.spmatrix]:
|
||||
"""
|
||||
Utility operators for taking discretized derivatives (forward variant).
|
||||
|
||||
@ -125,7 +125,7 @@ def deriv_forward(
|
||||
|
||||
def deriv_back(
|
||||
dx_h: Sequence[NDArray[numpy.float_]],
|
||||
) -> List[sparse.spmatrix]:
|
||||
) -> list[sparse.spmatrix]:
|
||||
"""
|
||||
Utility operators for taking discretized derivatives (backward variant).
|
||||
|
||||
|
@ -4,7 +4,7 @@ and a 1D array representation of that field `[f_x0, f_x1, f_x2,... f_y0,... f_z0
|
||||
Vectorized versions of the field use row-major (ie., C-style) ordering.
|
||||
"""
|
||||
|
||||
from typing import Optional, overload, Union, Sequence
|
||||
from typing import overload, Sequence
|
||||
import numpy
|
||||
from numpy.typing import ArrayLike
|
||||
|
||||
@ -24,10 +24,10 @@ def vec(f: cfdfield_t) -> vcfdfield_t:
|
||||
pass
|
||||
|
||||
@overload
|
||||
def vec(f: ArrayLike) -> Union[vfdfield_t, vcfdfield_t]:
|
||||
def vec(f: ArrayLike) -> vfdfield_t | vcfdfield_t:
|
||||
pass
|
||||
|
||||
def vec(f: Union[fdfield_t, cfdfield_t, ArrayLike, None]) -> Union[vfdfield_t, vcfdfield_t, None]:
|
||||
def vec(f: fdfield_t | cfdfield_t | ArrayLike | None) -> vfdfield_t | vcfdfield_t | None:
|
||||
"""
|
||||
Create a 1D ndarray from a 3D vector field which spans a 1-3D region.
|
||||
|
||||
@ -57,7 +57,7 @@ def unvec(v: vfdfield_t, shape: Sequence[int]) -> fdfield_t:
|
||||
def unvec(v: vcfdfield_t, shape: Sequence[int]) -> cfdfield_t:
|
||||
pass
|
||||
|
||||
def unvec(v: Union[vfdfield_t, vcfdfield_t, None], shape: Sequence[int]) -> Union[fdfield_t, cfdfield_t, None]:
|
||||
def unvec(v: vfdfield_t | vcfdfield_t | None, shape: Sequence[int]) -> fdfield_t | cfdfield_t | None:
|
||||
"""
|
||||
Perform the inverse of vec(): take a 1D ndarray and output a 3D field
|
||||
of form `[f_x, f_y, f_z]` where each of `f_*` is a len(shape)-dimensional
|
||||
|
@ -3,8 +3,6 @@ Basic FDTD field updates
|
||||
|
||||
|
||||
"""
|
||||
from typing import Union, Optional
|
||||
|
||||
from ..fdmath import dx_lists_t, fdfield_t, fdfield_updater_t
|
||||
from ..fdmath.functional import curl_forward, curl_back
|
||||
|
||||
@ -14,7 +12,7 @@ __author__ = 'Jan Petykiewicz'
|
||||
|
||||
def maxwell_e(
|
||||
dt: float,
|
||||
dxes: Optional[dx_lists_t] = None,
|
||||
dxes: dx_lists_t | None = None,
|
||||
) -> fdfield_updater_t:
|
||||
"""
|
||||
Build a function which performs a portion the time-domain E-field update,
|
||||
@ -49,7 +47,7 @@ def maxwell_e(
|
||||
else:
|
||||
curl_h_fun = curl_back()
|
||||
|
||||
def me_fun(e: fdfield_t, h: fdfield_t, epsilon: Union[fdfield_t, float]) -> fdfield_t:
|
||||
def me_fun(e: fdfield_t, h: fdfield_t, epsilon: fdfield_t | float) -> fdfield_t:
|
||||
"""
|
||||
Update the E-field.
|
||||
|
||||
@ -69,7 +67,7 @@ def maxwell_e(
|
||||
|
||||
def maxwell_h(
|
||||
dt: float,
|
||||
dxes: Optional[dx_lists_t] = None,
|
||||
dxes: dx_lists_t | None = None,
|
||||
) -> fdfield_updater_t:
|
||||
"""
|
||||
Build a function which performs part of the time-domain H-field update,
|
||||
@ -105,7 +103,7 @@ def maxwell_h(
|
||||
else:
|
||||
curl_e_fun = curl_forward()
|
||||
|
||||
def mh_fun(e: fdfield_t, h: fdfield_t, mu: Union[fdfield_t, float, None] = None) -> fdfield_t:
|
||||
def mh_fun(e: fdfield_t, h: fdfield_t, mu: fdfield_t | float | None = None) -> fdfield_t:
|
||||
"""
|
||||
Update the H-field.
|
||||
|
||||
|
@ -4,7 +4,7 @@ Boundary conditions
|
||||
#TODO conducting boundary documentation
|
||||
"""
|
||||
|
||||
from typing import Tuple, Any, List
|
||||
from typing import Any
|
||||
|
||||
from ..fdmath import fdfield_t, fdfield_updater_t
|
||||
|
||||
@ -12,7 +12,7 @@ from ..fdmath import fdfield_t, fdfield_updater_t
|
||||
def conducting_boundary(
|
||||
direction: int,
|
||||
polarity: int
|
||||
) -> Tuple[fdfield_updater_t, fdfield_updater_t]:
|
||||
) -> tuple[fdfield_updater_t, fdfield_updater_t]:
|
||||
dirs = [0, 1, 2]
|
||||
if direction not in dirs:
|
||||
raise Exception('Invalid direction: {}'.format(direction))
|
||||
@ -20,8 +20,8 @@ def conducting_boundary(
|
||||
u, v = dirs
|
||||
|
||||
if polarity < 0:
|
||||
boundary_slice = [slice(None)] * 3 # type: List[Any]
|
||||
shifted1_slice = [slice(None)] * 3 # type: List[Any]
|
||||
boundary_slice = [slice(None)] * 3 # type: list[Any]
|
||||
shifted1_slice = [slice(None)] * 3 # type: list[Any]
|
||||
boundary_slice[direction] = 0
|
||||
shifted1_slice[direction] = 1
|
||||
|
||||
@ -42,7 +42,7 @@ def conducting_boundary(
|
||||
if polarity > 0:
|
||||
boundary_slice = [slice(None)] * 3
|
||||
shifted1_slice = [slice(None)] * 3
|
||||
shifted2_slice = [slice(None)] * 3 # type: List[Any]
|
||||
shifted2_slice = [slice(None)] * 3 # type: list[Any]
|
||||
boundary_slice[direction] = -1
|
||||
shifted1_slice[direction] = -2
|
||||
shifted2_slice[direction] = -3
|
||||
|
@ -1,4 +1,3 @@
|
||||
from typing import Optional, Union
|
||||
import numpy
|
||||
|
||||
from ..fdmath import dx_lists_t, fdfield_t
|
||||
@ -11,7 +10,7 @@ from ..fdmath.functional import deriv_back
|
||||
def poynting(
|
||||
e: fdfield_t,
|
||||
h: fdfield_t,
|
||||
dxes: Optional[dx_lists_t] = None,
|
||||
dxes: dx_lists_t | None = None,
|
||||
) -> fdfield_t:
|
||||
"""
|
||||
Calculate the poynting vector `S` ($S$).
|
||||
@ -89,11 +88,11 @@ def poynting(
|
||||
|
||||
|
||||
def poynting_divergence(
|
||||
s: Optional[fdfield_t] = None,
|
||||
s: fdfield_t | None = None,
|
||||
*,
|
||||
e: Optional[fdfield_t] = None,
|
||||
h: Optional[fdfield_t] = None,
|
||||
dxes: Optional[dx_lists_t] = None,
|
||||
e: fdfield_t | None = None,
|
||||
h: fdfield_t | None = None,
|
||||
dxes: dx_lists_t | None = None,
|
||||
) -> fdfield_t:
|
||||
"""
|
||||
Calculate the divergence of the poynting vector.
|
||||
@ -116,9 +115,9 @@ def poynting_divergence(
|
||||
energy cell.
|
||||
"""
|
||||
if s is None:
|
||||
assert(e is not None)
|
||||
assert(h is not None)
|
||||
assert(dxes is not None)
|
||||
assert e is not None
|
||||
assert h is not None
|
||||
assert dxes is not None
|
||||
s = poynting(e, h, dxes=dxes)
|
||||
|
||||
Dx, Dy, Dz = deriv_back()
|
||||
@ -130,9 +129,9 @@ def energy_hstep(
|
||||
e0: fdfield_t,
|
||||
h1: fdfield_t,
|
||||
e2: fdfield_t,
|
||||
epsilon: Optional[fdfield_t] = None,
|
||||
mu: Optional[fdfield_t] = None,
|
||||
dxes: Optional[dx_lists_t] = None,
|
||||
epsilon: fdfield_t | None = None,
|
||||
mu: fdfield_t | None = None,
|
||||
dxes: dx_lists_t | None = None,
|
||||
) -> fdfield_t:
|
||||
"""
|
||||
Calculate energy `U` at the time of the provided H-field `h1`.
|
||||
@ -158,9 +157,9 @@ def energy_estep(
|
||||
h0: fdfield_t,
|
||||
e1: fdfield_t,
|
||||
h2: fdfield_t,
|
||||
epsilon: Optional[fdfield_t] = None,
|
||||
mu: Optional[fdfield_t] = None,
|
||||
dxes: Optional[dx_lists_t] = None,
|
||||
epsilon: fdfield_t | None = None,
|
||||
mu: fdfield_t | None = None,
|
||||
dxes: dx_lists_t | None = None,
|
||||
) -> fdfield_t:
|
||||
"""
|
||||
Calculate energy `U` at the time of the provided E-field `e1`.
|
||||
@ -188,9 +187,9 @@ def delta_energy_h2e(
|
||||
h1: fdfield_t,
|
||||
e2: fdfield_t,
|
||||
h3: fdfield_t,
|
||||
epsilon: Optional[fdfield_t] = None,
|
||||
mu: Optional[fdfield_t] = None,
|
||||
dxes: Optional[dx_lists_t] = None,
|
||||
epsilon: fdfield_t | None = None,
|
||||
mu: fdfield_t | None = None,
|
||||
dxes: dx_lists_t | None = None,
|
||||
) -> fdfield_t:
|
||||
"""
|
||||
Change in energy during the half-step from `h1` to `e2`.
|
||||
@ -221,9 +220,9 @@ def delta_energy_e2h(
|
||||
e1: fdfield_t,
|
||||
h2: fdfield_t,
|
||||
e3: fdfield_t,
|
||||
epsilon: Optional[fdfield_t] = None,
|
||||
mu: Optional[fdfield_t] = None,
|
||||
dxes: Optional[dx_lists_t] = None,
|
||||
epsilon: fdfield_t | None = None,
|
||||
mu: fdfield_t | None = None,
|
||||
dxes: dx_lists_t | None = None,
|
||||
) -> fdfield_t:
|
||||
"""
|
||||
Change in energy during the half-step from `e1` to `h2`.
|
||||
@ -251,7 +250,7 @@ def delta_energy_e2h(
|
||||
def delta_energy_j(
|
||||
j0: fdfield_t,
|
||||
e1: fdfield_t,
|
||||
dxes: Optional[dx_lists_t] = None,
|
||||
dxes: dx_lists_t | None = None,
|
||||
) -> fdfield_t:
|
||||
"""
|
||||
Calculate
|
||||
@ -274,9 +273,9 @@ def delta_energy_j(
|
||||
def dxmul(
|
||||
ee: fdfield_t,
|
||||
hh: fdfield_t,
|
||||
epsilon: Optional[Union[fdfield_t, float]] = None,
|
||||
mu: Optional[Union[fdfield_t, float]] = None,
|
||||
dxes: Optional[dx_lists_t] = None,
|
||||
epsilon: fdfield_t | float | None = None,
|
||||
mu: fdfield_t | float | None = None,
|
||||
dxes: dx_lists_t | None = None,
|
||||
) -> fdfield_t:
|
||||
if epsilon is None:
|
||||
epsilon = 1
|
||||
|
@ -7,7 +7,7 @@ PML implementations
|
||||
"""
|
||||
# TODO retest pmls!
|
||||
|
||||
from typing import List, Callable, Tuple, Dict, Sequence, Any, Optional
|
||||
from typing import Callable, Sequence, Any
|
||||
from copy import deepcopy
|
||||
import numpy
|
||||
from numpy.typing import NDArray, DTypeLike
|
||||
@ -30,7 +30,7 @@ def cpml_params(
|
||||
m: float = 3.5,
|
||||
ma: float = 1,
|
||||
cfs_alpha: float = 0,
|
||||
) -> Dict[str, Any]:
|
||||
) -> dict[str, Any]:
|
||||
|
||||
if axis not in range(3):
|
||||
raise Exception('Invalid axis: {}'.format(axis))
|
||||
@ -59,11 +59,11 @@ def cpml_params(
|
||||
else:
|
||||
raise Exception('Bad polarity!')
|
||||
|
||||
expand_slice_l: List[Any] = [None, None, None]
|
||||
expand_slice_l: list[Any] = [None, None, None]
|
||||
expand_slice_l[axis] = slice(None)
|
||||
expand_slice = tuple(expand_slice_l)
|
||||
|
||||
def par(x: NDArray[numpy.float64]) -> Tuple[NDArray[numpy.float64], NDArray[numpy.float64], NDArray[numpy.float64]]:
|
||||
def par(x: NDArray[numpy.float64]) -> tuple[NDArray[numpy.float64], NDArray[numpy.float64], NDArray[numpy.float64]]:
|
||||
scaling = (x / thickness) ** m
|
||||
sigma = scaling * sigma_max
|
||||
kappa = 1 + scaling * (kappa_max - 1)
|
||||
@ -93,23 +93,22 @@ def cpml_params(
|
||||
|
||||
|
||||
def updates_with_cpml(
|
||||
cpml_params: Sequence[Sequence[Optional[Dict[str, Any]]]],
|
||||
dt: float,
|
||||
dxes: dx_lists_t,
|
||||
epsilon: fdfield_t,
|
||||
*,
|
||||
dtype: DTypeLike = numpy.float32,
|
||||
) -> Tuple[Callable[[fdfield_t, fdfield_t, fdfield_t], None],
|
||||
Callable[[fdfield_t, fdfield_t, fdfield_t], None]]:
|
||||
cpml_params: Sequence[Sequence[dict[str, Any] | None]],
|
||||
dt: float,
|
||||
dxes: dx_lists_t,
|
||||
epsilon: fdfield_t,
|
||||
*,
|
||||
dtype: DTypeLike = numpy.float32,
|
||||
) -> tuple[Callable[[fdfield_t, fdfield_t, fdfield_t], None],
|
||||
Callable[[fdfield_t, fdfield_t, fdfield_t], None]]:
|
||||
|
||||
Dfx, Dfy, Dfz = deriv_forward(dxes[1])
|
||||
Dbx, Dby, Dbz = deriv_back(dxes[1])
|
||||
|
||||
|
||||
psi_E: List[List[Tuple[Any, Any]]] = [[(None, None) for _ in range(2)] for _ in range(3)]
|
||||
psi_H: List[List[Tuple[Any, Any]]] = deepcopy(psi_E)
|
||||
params_E: List[List[Tuple[Any, Any, Any, Any]]] = [[(None, None, None, None) for _ in range(2)] for _ in range(3)]
|
||||
params_H: List[List[Tuple[Any, Any, Any, Any]]] = deepcopy(params_E)
|
||||
psi_E: list[list[tuple[Any, Any]]] = [[(None, None) for _ in range(2)] for _ in range(3)]
|
||||
psi_H: list[list[tuple[Any, Any]]] = deepcopy(psi_E)
|
||||
params_E: list[list[tuple[Any, Any, Any, Any]]] = [[(None, None, None, None) for _ in range(2)] for _ in range(3)]
|
||||
params_H: list[list[tuple[Any, Any, Any, Any]]] = deepcopy(params_E)
|
||||
|
||||
for axis in range(3):
|
||||
for pp, polarity in enumerate((-1, 1)):
|
||||
@ -133,7 +132,6 @@ def updates_with_cpml(
|
||||
params_E[axis][pp] = cpml_param['param_e'] + (region,)
|
||||
params_H[axis][pp] = cpml_param['param_h'] + (region,)
|
||||
|
||||
|
||||
pE = numpy.empty_like(epsilon, dtype=dtype)
|
||||
pH = numpy.empty_like(epsilon, dtype=dtype)
|
||||
|
||||
@ -183,7 +181,6 @@ def updates_with_cpml(
|
||||
e[1] += dt / epsilon[1] * (dzHx - dxHz + pE[1])
|
||||
e[2] += dt / epsilon[2] * (dxHy - dyHx + pE[2])
|
||||
|
||||
|
||||
def update_H(
|
||||
e: fdfield_t,
|
||||
h: fdfield_t,
|
||||
|
@ -3,9 +3,9 @@
|
||||
Test fixtures
|
||||
|
||||
"""
|
||||
from typing import Tuple, Iterable, List, Any
|
||||
from typing import Iterable, Any
|
||||
import numpy
|
||||
from numpy.typing import NDArray, ArrayLike
|
||||
from numpy.typing import NDArray
|
||||
import pytest # type: ignore
|
||||
|
||||
from .utils import PRNG
|
||||
@ -20,7 +20,7 @@ FixtureRequest = Any
|
||||
(5, 5, 5),
|
||||
# (7, 7, 7),
|
||||
])
|
||||
def shape(request: FixtureRequest) -> Iterable[Tuple[int, ...]]:
|
||||
def shape(request: FixtureRequest) -> Iterable[tuple[int, ...]]:
|
||||
yield (3, *request.param)
|
||||
|
||||
|
||||
@ -37,7 +37,7 @@ def epsilon_fg(request: FixtureRequest) -> Iterable[float]:
|
||||
@pytest.fixture(scope='module', params=['center', '000', 'random'])
|
||||
def epsilon(
|
||||
request: FixtureRequest,
|
||||
shape: Tuple[int, ...],
|
||||
shape: tuple[int, ...],
|
||||
epsilon_bg: float,
|
||||
epsilon_fg: float,
|
||||
) -> Iterable[NDArray[numpy.float64]]:
|
||||
@ -76,9 +76,9 @@ def dx(request: FixtureRequest) -> Iterable[float]:
|
||||
@pytest.fixture(scope='module', params=['uniform', 'centerbig'])
|
||||
def dxes(
|
||||
request: FixtureRequest,
|
||||
shape: Tuple[int, ...],
|
||||
shape: tuple[int, ...],
|
||||
dx: float,
|
||||
) -> Iterable[List[List[NDArray[numpy.float64]]]]:
|
||||
) -> Iterable[list[list[NDArray[numpy.float64]]]]:
|
||||
if request.param == 'uniform':
|
||||
dxes = [[numpy.full(s, dx) for s in shape[1:]] for _ in range(2)]
|
||||
elif request.param == 'centerbig':
|
||||
|
@ -1,8 +1,8 @@
|
||||
from typing import List, Tuple, Iterable, Optional
|
||||
from typing import Iterable
|
||||
import dataclasses
|
||||
import pytest # type: ignore
|
||||
import numpy
|
||||
from numpy.typing import NDArray, ArrayLike
|
||||
from numpy.typing import NDArray
|
||||
#from numpy.testing import assert_allclose, assert_array_equal
|
||||
|
||||
from .. import fdfd
|
||||
@ -60,12 +60,12 @@ def omega(request: FixtureRequest) -> Iterable[float]:
|
||||
|
||||
|
||||
@pytest.fixture(params=[None])
|
||||
def pec(request: FixtureRequest) -> Iterable[Optional[NDArray[numpy.float64]]]:
|
||||
def pec(request: FixtureRequest) -> Iterable[NDArray[numpy.float64] | None]:
|
||||
yield request.param
|
||||
|
||||
|
||||
@pytest.fixture(params=[None])
|
||||
def pmc(request: FixtureRequest) -> Iterable[Optional[NDArray[numpy.float64]]]:
|
||||
def pmc(request: FixtureRequest) -> Iterable[NDArray[numpy.float64] | None]:
|
||||
yield request.param
|
||||
|
||||
|
||||
@ -78,7 +78,7 @@ def pmc(request: FixtureRequest) -> Iterable[Optional[NDArray[numpy.float64]]]:
|
||||
@pytest.fixture(params=['diag']) # 'center'
|
||||
def j_distribution(
|
||||
request: FixtureRequest,
|
||||
shape: Tuple[int, ...],
|
||||
shape: tuple[int, ...],
|
||||
j_mag: float,
|
||||
) -> Iterable[NDArray[numpy.float64]]:
|
||||
j = numpy.zeros(shape, dtype=complex)
|
||||
@ -95,26 +95,26 @@ def j_distribution(
|
||||
|
||||
@dataclasses.dataclass()
|
||||
class FDResult:
|
||||
shape: Tuple[int, ...]
|
||||
dxes: List[List[NDArray[numpy.float64]]]
|
||||
shape: tuple[int, ...]
|
||||
dxes: list[list[NDArray[numpy.float64]]]
|
||||
epsilon: NDArray[numpy.float64]
|
||||
omega: complex
|
||||
j: NDArray[numpy.complex128]
|
||||
e: NDArray[numpy.complex128]
|
||||
pmc: Optional[NDArray[numpy.float64]]
|
||||
pec: Optional[NDArray[numpy.float64]]
|
||||
pmc: NDArray[numpy.float64] | None
|
||||
pec: NDArray[numpy.float64] | None
|
||||
|
||||
|
||||
@pytest.fixture()
|
||||
def sim(
|
||||
request: FixtureRequest,
|
||||
shape: Tuple[int, ...],
|
||||
shape: tuple[int, ...],
|
||||
epsilon: NDArray[numpy.float64],
|
||||
dxes: List[List[NDArray[numpy.float64]]],
|
||||
dxes: list[list[NDArray[numpy.float64]]],
|
||||
j_distribution: NDArray[numpy.complex128],
|
||||
omega: float,
|
||||
pec: Optional[NDArray[numpy.float64]],
|
||||
pmc: Optional[NDArray[numpy.float64]],
|
||||
pec: NDArray[numpy.float64] | None,
|
||||
pmc: NDArray[numpy.float64] | None,
|
||||
) -> FDResult:
|
||||
"""
|
||||
Build simulation from parts
|
||||
|
@ -1,7 +1,7 @@
|
||||
from typing import Optional, Tuple, Iterable, List
|
||||
from typing import Iterable
|
||||
import pytest # type: ignore
|
||||
import numpy
|
||||
from numpy.typing import NDArray, ArrayLike
|
||||
from numpy.typing import NDArray
|
||||
from numpy.testing import assert_allclose
|
||||
|
||||
from .. import fdfd
|
||||
@ -49,19 +49,19 @@ def omega(request: FixtureRequest) -> Iterable[float]:
|
||||
|
||||
|
||||
@pytest.fixture(params=[None])
|
||||
def pec(request: FixtureRequest) -> Iterable[Optional[NDArray[numpy.float64]]]:
|
||||
def pec(request: FixtureRequest) -> Iterable[NDArray[numpy.float64] | None]:
|
||||
yield request.param
|
||||
|
||||
|
||||
@pytest.fixture(params=[None])
|
||||
def pmc(request: FixtureRequest) -> Iterable[Optional[NDArray[numpy.float64]]]:
|
||||
def pmc(request: FixtureRequest) -> Iterable[NDArray[numpy.float64] | None]:
|
||||
yield request.param
|
||||
|
||||
|
||||
@pytest.fixture(params=[(30, 1, 1),
|
||||
(1, 30, 1),
|
||||
(1, 1, 30)])
|
||||
def shape(request: FixtureRequest) -> Iterable[Tuple[int, ...]]:
|
||||
def shape(request: FixtureRequest) -> Iterable[tuple[int, ...]]:
|
||||
yield (3, *request.param)
|
||||
|
||||
|
||||
@ -73,7 +73,7 @@ def src_polarity(request: FixtureRequest) -> Iterable[int]:
|
||||
@pytest.fixture()
|
||||
def j_distribution(
|
||||
request: FixtureRequest,
|
||||
shape: Tuple[int, ...],
|
||||
shape: tuple[int, ...],
|
||||
epsilon: NDArray[numpy.float64],
|
||||
dxes: dx_lists_mut,
|
||||
omega: float,
|
||||
@ -86,7 +86,7 @@ def j_distribution(
|
||||
other_dims.remove(dim)
|
||||
|
||||
dx_prop = (dxes[0][dim][shape[dim + 1] // 2]
|
||||
+ dxes[1][dim][shape[dim + 1] // 2]) / 2 # TODO is this right for nonuniform dxes?
|
||||
+ dxes[1][dim][shape[dim + 1] // 2]) / 2 # noqa: E128 # TODO is this right for nonuniform dxes?
|
||||
|
||||
# Mask only contains components orthogonal to propagation direction
|
||||
center_mask = numpy.zeros(shape, dtype=bool)
|
||||
@ -112,7 +112,7 @@ def j_distribution(
|
||||
@pytest.fixture()
|
||||
def epsilon(
|
||||
request: FixtureRequest,
|
||||
shape: Tuple[int, ...],
|
||||
shape: tuple[int, ...],
|
||||
epsilon_bg: float,
|
||||
epsilon_fg: float,
|
||||
) -> Iterable[NDArray[numpy.float64]]:
|
||||
@ -123,11 +123,11 @@ def epsilon(
|
||||
@pytest.fixture(params=['uniform'])
|
||||
def dxes(
|
||||
request: FixtureRequest,
|
||||
shape: Tuple[int, ...],
|
||||
shape: tuple[int, ...],
|
||||
dx: float,
|
||||
omega: float,
|
||||
epsilon_fg: float,
|
||||
) -> Iterable[List[List[NDArray[numpy.float64]]]]:
|
||||
) -> Iterable[list[list[NDArray[numpy.float64]]]]:
|
||||
if request.param == 'uniform':
|
||||
dxes = [[numpy.full(s, dx) for s in shape[1:]] for _ in range(2)]
|
||||
dim = numpy.where(numpy.array(shape[1:]) > 1)[0][0] # Propagation axis
|
||||
@ -147,13 +147,13 @@ def dxes(
|
||||
@pytest.fixture()
|
||||
def sim(
|
||||
request: FixtureRequest,
|
||||
shape: Tuple[int, ...],
|
||||
shape: tuple[int, ...],
|
||||
epsilon: NDArray[numpy.float64],
|
||||
dxes: dx_lists_mut,
|
||||
j_distribution: NDArray[numpy.complex128],
|
||||
omega: float,
|
||||
pec: Optional[NDArray[numpy.float64]],
|
||||
pmc: Optional[NDArray[numpy.float64]],
|
||||
pec: NDArray[numpy.float64] | None,
|
||||
pmc: NDArray[numpy.float64] | None,
|
||||
) -> FDResult:
|
||||
j_vec = vec(j_distribution)
|
||||
eps_vec = vec(epsilon)
|
||||
|
@ -1,8 +1,8 @@
|
||||
from typing import List, Tuple, Iterable, Any, Dict
|
||||
from typing import Iterable, Any
|
||||
import dataclasses
|
||||
import pytest # type: ignore
|
||||
import numpy
|
||||
from numpy.typing import NDArray, ArrayLike
|
||||
from numpy.typing import NDArray
|
||||
#from numpy.testing import assert_allclose, assert_array_equal
|
||||
|
||||
from .. import fdtd
|
||||
@ -33,7 +33,7 @@ def test_initial_energy(sim: 'TDResult') -> None:
|
||||
|
||||
dV = numpy.prod(numpy.meshgrid(*sim.dxes[0], indexing='ij'), axis=0)
|
||||
u0 = (j0 * j0.conj() / sim.epsilon * dV).sum(axis=0)
|
||||
args: Dict[str, Any] = {
|
||||
args: dict[str, Any] = {
|
||||
'dxes': sim.dxes,
|
||||
'epsilon': sim.epsilon,
|
||||
}
|
||||
@ -52,7 +52,7 @@ def test_energy_conservation(sim: 'TDResult') -> None:
|
||||
e0 = sim.es[0]
|
||||
j0 = sim.js[0]
|
||||
u = fdtd.delta_energy_j(j0=j0, e1=e0, dxes=sim.dxes).sum()
|
||||
args: Dict[str, Any] = {
|
||||
args: dict[str, Any] = {
|
||||
'dxes': sim.dxes,
|
||||
'epsilon': sim.epsilon,
|
||||
}
|
||||
@ -70,7 +70,7 @@ def test_energy_conservation(sim: 'TDResult') -> None:
|
||||
|
||||
|
||||
def test_poynting_divergence(sim: 'TDResult') -> None:
|
||||
args: Dict[str, Any] = {
|
||||
args: dict[str, Any] = {
|
||||
'dxes': sim.dxes,
|
||||
'epsilon': sim.epsilon,
|
||||
}
|
||||
@ -103,7 +103,7 @@ def test_poynting_planes(sim: 'TDResult') -> None:
|
||||
if mask.sum() > 1:
|
||||
pytest.skip('test_poynting_planes can only test single point sources, got {}'.format(mask.sum()))
|
||||
|
||||
args: Dict[str, Any] = {
|
||||
args: dict[str, Any] = {
|
||||
'dxes': sim.dxes,
|
||||
'epsilon': sim.epsilon,
|
||||
}
|
||||
@ -156,26 +156,26 @@ def dt(request: FixtureRequest) -> Iterable[float]:
|
||||
|
||||
@dataclasses.dataclass()
|
||||
class TDResult:
|
||||
shape: Tuple[int, ...]
|
||||
shape: tuple[int, ...]
|
||||
dt: float
|
||||
dxes: List[List[NDArray[numpy.float64]]]
|
||||
dxes: list[list[NDArray[numpy.float64]]]
|
||||
epsilon: NDArray[numpy.float64]
|
||||
j_distribution: NDArray[numpy.float64]
|
||||
j_steps: Tuple[int, ...]
|
||||
es: List[NDArray[numpy.float64]] = dataclasses.field(default_factory=list)
|
||||
hs: List[NDArray[numpy.float64]] = dataclasses.field(default_factory=list)
|
||||
js: List[NDArray[numpy.float64]] = dataclasses.field(default_factory=list)
|
||||
j_steps: tuple[int, ...]
|
||||
es: list[NDArray[numpy.float64]] = dataclasses.field(default_factory=list)
|
||||
hs: list[NDArray[numpy.float64]] = dataclasses.field(default_factory=list)
|
||||
js: list[NDArray[numpy.float64]] = dataclasses.field(default_factory=list)
|
||||
|
||||
|
||||
@pytest.fixture(params=[(0, 4, 8)]) # (0,)
|
||||
def j_steps(request: FixtureRequest) -> Iterable[Tuple[int, ...]]:
|
||||
def j_steps(request: FixtureRequest) -> Iterable[tuple[int, ...]]:
|
||||
yield request.param
|
||||
|
||||
|
||||
@pytest.fixture(params=['center', 'random'])
|
||||
def j_distribution(
|
||||
request: FixtureRequest,
|
||||
shape: Tuple[int, ...],
|
||||
shape: tuple[int, ...],
|
||||
j_mag: float,
|
||||
) -> Iterable[NDArray[numpy.float64]]:
|
||||
j = numpy.zeros(shape)
|
||||
@ -191,12 +191,12 @@ def j_distribution(
|
||||
@pytest.fixture()
|
||||
def sim(
|
||||
request: FixtureRequest,
|
||||
shape: Tuple[int, ...],
|
||||
shape: tuple[int, ...],
|
||||
epsilon: NDArray[numpy.float64],
|
||||
dxes: List[List[NDArray[numpy.float64]]],
|
||||
dxes: list[list[NDArray[numpy.float64]]],
|
||||
dt: float,
|
||||
j_distribution: NDArray[numpy.float64],
|
||||
j_steps: Tuple[int, ...],
|
||||
j_steps: tuple[int, ...],
|
||||
) -> TDResult:
|
||||
is3d = (numpy.array(shape) == 1).sum() == 0
|
||||
if is3d:
|
||||
|
@ -1,7 +1,7 @@
|
||||
from typing import Any
|
||||
|
||||
import numpy
|
||||
from numpy.typing import ArrayLike, NDArray
|
||||
from numpy.typing import NDArray
|
||||
|
||||
|
||||
PRNG = numpy.random.RandomState(12345)
|
||||
@ -14,7 +14,7 @@ def assert_fields_close(
|
||||
**kwargs: Any,
|
||||
) -> None:
|
||||
numpy.testing.assert_allclose(
|
||||
x, y, verbose=False,
|
||||
x, y, verbose=False, # type: ignore
|
||||
err_msg='Fields did not match:\n{}\n{}'.format(numpy.moveaxis(x, -1, 0),
|
||||
numpy.moveaxis(y, -1, 0)),
|
||||
*args,
|
||||
|
Loading…
Reference in New Issue
Block a user