351 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
		
		
			
		
	
	
			351 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								from simphony.elements import Model
							 | 
						||
| 
								 | 
							
								from simphony.netlist import Subcircuit
							 | 
						||
| 
								 | 
							
								from simphony.simulation import SweepSimulation
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								from matplotlib import pyplot as plt
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class PeriodicLayer(Model):
							 | 
						||
| 
								 | 
							
								    def __init__(self, left_modes, right_modes, s_params):
							 | 
						||
| 
								 | 
							
								        self.left_modes = left_modes
							 | 
						||
| 
								 | 
							
								        self.right_modes = right_modes
							 | 
						||
| 
								 | 
							
								        self.left_ports = len(self.left_modes)
							 | 
						||
| 
								 | 
							
								        self.right_ports = len(self.right_modes)
							 | 
						||
| 
								 | 
							
								        self.normalize_fields()
							 | 
						||
| 
								 | 
							
								        self.s_params = s_params
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def normalize_fields(self):
							 | 
						||
| 
								 | 
							
								        for mode in range(len(self.left_modes)):
							 | 
						||
| 
								 | 
							
								            self.left_modes[mode].normalize()
							 | 
						||
| 
								 | 
							
								        for mode in range(len(self.right_modes)):
							 | 
						||
| 
								 | 
							
								            self.right_modes[mode].normalize()
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class PeriodicEME:
							 | 
						||
| 
								 | 
							
								    def __init__(self, layers=[], num_periods=1):
							 | 
						||
| 
								 | 
							
								        self.layers = layers
							 | 
						||
| 
								 | 
							
								        self.num_periods = num_periods
							 | 
						||
| 
								 | 
							
								        self.wavelength = wavelength
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def propagate(self):
							 | 
						||
| 
								 | 
							
								        wl = self.wavelength
							 | 
						||
| 
								 | 
							
								        if not len(self.layers):
							 | 
						||
| 
								 | 
							
								            raise Exception("Must place layers before propagating")
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        num_modes = max([l.num_modes for l in self.layers])
							 | 
						||
| 
								 | 
							
								        iface = InterfaceSingleMode if num_modes == 1 else InterfaceMultiMode
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        eme = EME(layers=self.layers)
							 | 
						||
| 
								 | 
							
								        left, right = eme.propagate()
							 | 
						||
| 
								 | 
							
								        self.single_period = eme.s_matrix
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        period_layer = PeriodicLayer(left.modes, right.modes, self.single_period)
							 | 
						||
| 
								 | 
							
								        current_layer = PeriodicLayer(left.modes, right.modes, self.single_period)
							 | 
						||
| 
								 | 
							
								        interface = iface(right, left)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        for _ in range(self.num_periods - 1):
							 | 
						||
| 
								 | 
							
								            current_layer.s_params = cascade(current_layer, interface, wl)
							 | 
						||
| 
								 | 
							
								            current_layer.s_params = cascade(current_layer, period_layer, wl)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        self.s_params = current_layer.s_params
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class EME:
							 | 
						||
| 
								 | 
							
								    def __init__(self, layers=[]):
							 | 
						||
| 
								 | 
							
								        self.layers = layers
							 | 
						||
| 
								 | 
							
								        self.wavelength = None
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def propagate(self):
							 | 
						||
| 
								 | 
							
								        layers = self.layers
							 | 
						||
| 
								 | 
							
								        wl = layers[0].wavelength if self.wavelength is None else self.wavelength
							 | 
						||
| 
								 | 
							
								        if not len(layers):
							 | 
						||
| 
								 | 
							
								            raise Exception("Must place layers before propagating")
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        num_modes = max([l.num_modes for l in layers])
							 | 
						||
| 
								 | 
							
								        iface = InterfaceSingleMode if num_modes == 1 else InterfaceMultiMode
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        first_layer = layers[0]
							 | 
						||
| 
								 | 
							
								        current = Current(wl, first_layer)
							 | 
						||
| 
								 | 
							
								        interface = iface(first_layer, layers[1])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        current.s = cascade(current, interface, wl)
							 | 
						||
| 
								 | 
							
								        current.right_pins = interface.right_pins
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        for index in range(1, len(layers) - 1):
							 | 
						||
| 
								 | 
							
								            layer1 = layers[index]
							 | 
						||
| 
								 | 
							
								            layer2 = layers[index + 1]
							 | 
						||
| 
								 | 
							
								            interface = iface(layer1, layer2)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            current.s = cascade(current, layer1, wl)
							 | 
						||
| 
								 | 
							
								            current.right_pins = layer1.right_pins
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								            current.s = cascade(current, interface, wl)
							 | 
						||
| 
								 | 
							
								            current.right_pins = interface.right_pins
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        last_layer = layers[-1]
							 | 
						||
| 
								 | 
							
								        current.s = cascade(current, last_layer, wl)
							 | 
						||
| 
								 | 
							
								        current.right_pins = last_layer.right_pins
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        self.s_matrix = current.s
							 | 
						||
| 
								 | 
							
								        return first_layer, last_layer
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def stack(sa, sb):
							 | 
						||
| 
								 | 
							
								    qab = numpy.eye() - sa.r11 @ sb.r11
							 | 
						||
| 
								 | 
							
								    qba = numpy.eye() - sa.r11 @ sb.r11
							 | 
						||
| 
								 | 
							
								    #s.t12 = sa.t12 @ numpy.pinv(qab) @ sb.t12
							 | 
						||
| 
								 | 
							
								    #s.r21 = sa.t12 @ numpy.pinv(qab) @ sb.r22 @ sa.t21 + sa.r22
							 | 
						||
| 
								 | 
							
								    #s.r12 = sb.t21 @ numpy.pinv(qba) @ sa.r11 @ sb.t12 + sb.r11
							 | 
						||
| 
								 | 
							
								    #s.t21 = sb.t21 @ numpy.pinv(qba) @ sa.t21
							 | 
						||
| 
								 | 
							
								    s.t12 = sa.t12 @ numpy.linalg.solve(qab, sb.t12)
							 | 
						||
| 
								 | 
							
								    s.r21 = sa.t12 @ numpy.linalg.solve(qab, sb.r22 @ sa.t21) + sa.r22
							 | 
						||
| 
								 | 
							
								    s.r12 = sb.t21 @ numpy.linalg.solve(qba, sa.r11 @ sb.t12) + sb.r11
							 | 
						||
| 
								 | 
							
								    s.t21 = sb.t21 @ numpy.linalg.solve(qba, sa.t21)
							 | 
						||
| 
								 | 
							
								    return s
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def cascade(first, second, wavelength):
							 | 
						||
| 
								 | 
							
								    circuit = Subcircuit("Device")
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    circuit.add([(first, "first"), (second, "second")])
							 | 
						||
| 
								 | 
							
								    for port in range(first.right_ports):
							 | 
						||
| 
								 | 
							
								        circuit.connect("first", "right" + str(port), "second", "left" + str(port))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    simulation = SweepSimulation(circuit, wavelength, wavelength, num=1)
							 | 
						||
| 
								 | 
							
								    result = simulation.simulate()
							 | 
						||
| 
								 | 
							
								    return result.s
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class InterfaceSingleMode(Model):
							 | 
						||
| 
								 | 
							
								    def __init__(self, layer1, layer2, num_modes=1):
							 | 
						||
| 
								 | 
							
								        self.num_modes = num_modes
							 | 
						||
| 
								 | 
							
								        self.num_ports = 2 * num_modes
							 | 
						||
| 
								 | 
							
								        self.s = self.solve(layer1, layer2, num_modes)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def solve(self, layer1, layer2, num_modes):
							 | 
						||
| 
								 | 
							
								        nm = num_modes
							 | 
						||
| 
								 | 
							
								        s = numpy.zeros((2 * nm, 2 * nm), dtype=complex)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        for ii, left_mode in enumerate(layer1.modes):
							 | 
						||
| 
								 | 
							
								            for oo, right_mode in enumerate(layer2.modes):
							 | 
						||
| 
								 | 
							
								                r, t = get_rt(left_mode, right_mode)
							 | 
						||
| 
								 | 
							
								                s[     oo, ii] = r
							 | 
						||
| 
								 | 
							
								                s[nm + oo, ii] = t
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        for ii, right_mode in enumerate(layer2.modes):
							 | 
						||
| 
								 | 
							
								            for oo, left_mode in enumerate(layer1.modes):
							 | 
						||
| 
								 | 
							
								                r, t = get_rt(right_mode, left_mode)
							 | 
						||
| 
								 | 
							
								                s[     oo, nm + ii] = t
							 | 
						||
| 
								 | 
							
								                s[nm + oo, nm + ii] = r
							 | 
						||
| 
								 | 
							
								        return s
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								class InterfaceMultiMode(Model):
							 | 
						||
| 
								 | 
							
								    def __init__(self, layer1, layer2):
							 | 
						||
| 
								 | 
							
								        self.s = self.solve(layer1, layer2)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    def solve(self, layer1, layer2):
							 | 
						||
| 
								 | 
							
								        n1p = layer1.num_modes
							 | 
						||
| 
								 | 
							
								        n2p = layer2.num_modes
							 | 
						||
| 
								 | 
							
								        num_ports = n1p + n2p
							 | 
						||
| 
								 | 
							
								        s = numpy.zeros((num_ports, num_ports), dtype=complex)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        for l1p in range(n1p):
							 | 
						||
| 
								 | 
							
								            ts = get_t(l1p, layer1, layer2)
							 | 
						||
| 
								 | 
							
								            rs = get_r(l1p, layer1, layer2, ts)
							 | 
						||
| 
								 | 
							
								            s[n1p:, l1p] = ts
							 | 
						||
| 
								 | 
							
								            s[:n1p, l1p] = rs
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        for l2p in range(n2p):
							 | 
						||
| 
								 | 
							
								            ts = get_t(l2p, layer2, layer1)
							 | 
						||
| 
								 | 
							
								            rs = get_r(l2p, layer2, layer1, ts)
							 | 
						||
| 
								 | 
							
								            s[:n1p, n1p + l2p] = ts
							 | 
						||
| 
								 | 
							
								            s[n1p:, n1p + l2p] = rs
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								        return s
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def get_t(p, left, right):
							 | 
						||
| 
								 | 
							
								    A = numpy.empty(left.num_modes, right.num_modes, dtype=complex)
							 | 
						||
| 
								 | 
							
								    for i in range(left.num_modes):
							 | 
						||
| 
								 | 
							
								        for k in range(right.num_modes):
							 | 
						||
| 
								 | 
							
								            # TODO optimize loop
							 | 
						||
| 
								 | 
							
								            A[i, k] = inner_product(right[k], left[i]) + inner_product(left[i], right[k])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    b = numpy.zeros(left.num_modes)
							 | 
						||
| 
								 | 
							
								    b[p] = 2 * inner_product(left[p], left[p])
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    x = numpy.linalg.solve(A, b)
							 | 
						||
| 
								 | 
							
								    # NOTE: `A` does not depend on `p`, so it might make sense to partially precompute
							 | 
						||
| 
								 | 
							
								    # the solution (pinv(A), or LU decomposition?)
							 | 
						||
| 
								 | 
							
								    # Actually solve() can take multiple vectors, so just pass it something with the full diagonal?
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    xx = numpy.matmul(numpy.linalg.pinv(A), b)        #TODO verify
							 | 
						||
| 
								 | 
							
								    assert numpy.allclose(xx, x)
							 | 
						||
| 
								 | 
							
								    return x
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def get_r(p, left, right, t):
							 | 
						||
| 
								 | 
							
								    r = numpy.empty(left.num_modes, dtype=complex)
							 | 
						||
| 
								 | 
							
								    for ii in range(left.num_modes):
							 | 
						||
| 
								 | 
							
								        r[ii] = sum((inner_product(right[kk], left[ii]) - inner_product(left[ii], right[kk])) * t[kk]
							 | 
						||
| 
								 | 
							
								                    for kk in range(right.num_modes)
							 | 
						||
| 
								 | 
							
								                   ) / (2 * inner_product(left[ii], left[ii]))
							 | 
						||
| 
								 | 
							
								    return r
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def get_rt(left, right):
							 | 
						||
| 
								 | 
							
								    a = 0.5 * (inner_product(left, right) + inner_product(right, left))
							 | 
						||
| 
								 | 
							
								    b = 0.5 * (inner_product(left, right) - inner_product(right, left))
							 | 
						||
| 
								 | 
							
								    t = (a ** 2 - b ** 2) / a
							 | 
						||
| 
								 | 
							
								    r = 1 - t / (a + b)
							 | 
						||
| 
								 | 
							
								    return -r, t
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def inner_product(left_E, right_H, dxes):
							 | 
						||
| 
								 | 
							
								    #  ExHy' - EyHx'
							 | 
						||
| 
								 | 
							
								    cross_z = left_E[0] * right_H[1].conj() - left_E[1] * right_H[0].conj()
							 | 
						||
| 
								 | 
							
								#    cross_z = numpy.cross(left_E, numpy.conj(right_H), axisa=0, axisb=0, axisc=0)[2]
							 | 
						||
| 
								 | 
							
								    return numpy.trapz(numpy.trapz(cross_z, dxes[0][0]), dxes[0][1]) / 2       # TODO might need cumsum on dxes
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def propagation_matrix(mode_neffs: ArrayLike, wavelength: float, distance: float):
							 | 
						||
| 
								 | 
							
								    eigenv = numpy.array(mode_neffs, copy=False) * 2 * numpy.pi / wavelength
							 | 
						||
| 
								 | 
							
								    prop_diag = numpy.diag(numpy.exp(distance * 1j * numpy.hstack((eigenv, eigenv))))
							 | 
						||
| 
								 | 
							
								    prop_matrix = numpy.roll(prop_diag, len(eigenv), axis=0)
							 | 
						||
| 
								 | 
							
								    return prop_matrix
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def connect_s(
							 | 
						||
| 
								 | 
							
								        A: NDArray[numpy.complex128],
							 | 
						||
| 
								 | 
							
								        k: int,
							 | 
						||
| 
								 | 
							
								        B: NDArray[numpy.complex128],
							 | 
						||
| 
								 | 
							
								        l: int,
							 | 
						||
| 
								 | 
							
								        ) -> NDArray[numpy.complex128]:
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    TODO
							 | 
						||
| 
								 | 
							
								    connect two n-port networks' s-matrices together.
							 | 
						||
| 
								 | 
							
								    specifically, connect port `k` on network `A` to port `l` on network
							 | 
						||
| 
								 | 
							
								    `B`. The resultant network has nports = (A.rank + B.rank-2); first
							 | 
						||
| 
								 | 
							
								    (A.rank - 1) ports are from `A`, remainder are from B.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Args:
							 | 
						||
| 
								 | 
							
								        A: S-parameter matrix of `A`, shape is fxnxn
							 | 
						||
| 
								 | 
							
								        k: port index on `A` (port indices start from 0)
							 | 
						||
| 
								 | 
							
								        B: S-parameter matrix of `B`, shape is fxnxn
							 | 
						||
| 
								 | 
							
								        l: port index on `B`
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Returns:
							 | 
						||
| 
								 | 
							
								        C: new S-parameter matrix
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    if k > A.shape[-1] - 1 or l > B.shape[-1] - 1:
							 | 
						||
| 
								 | 
							
								        raise ValueError("port indices are out of range")
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    C = scipy.sparse.block_diag((A, B), dtype=complex)
							 | 
						||
| 
								 | 
							
								    return innerconnect_s(C, k, A.shape[0] + l)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def innerconnect_s(
							 | 
						||
| 
								 | 
							
								        S: NDArray[numpy.complex128],
							 | 
						||
| 
								 | 
							
								        k: int,
							 | 
						||
| 
								 | 
							
								        l: int,
							 | 
						||
| 
								 | 
							
								        ) -> NDArray[numpy.complex128]:
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    TODO
							 | 
						||
| 
								 | 
							
								    n x n x freq
							 | 
						||
| 
								 | 
							
								    connect two ports of a single n-port network's s-matrix.
							 | 
						||
| 
								 | 
							
								    Specifically, connect port `k`  to port `l` on `S`. This results in
							 | 
						||
| 
								 | 
							
								    a (n-2)-port network.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Args:
							 | 
						||
| 
								 | 
							
								        S: S-parameter matrix of `S`, shape is fxnxn
							 | 
						||
| 
								 | 
							
								        k: port index on `S` (port indices start from 0)
							 | 
						||
| 
								 | 
							
								        l: port index on `S`
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Returns:
							 | 
						||
| 
								 | 
							
								        new S-parameter matrix
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    Notes:
							 | 
						||
| 
								 | 
							
								        - Compton, R.C., "Perspectives in microwave circuit analysis",
							 | 
						||
| 
								 | 
							
								            doi:10.1109/MWSCAS.1989.101955
							 | 
						||
| 
								 | 
							
								        - Filipsson, G., "A New General Computer Algorithm for S-Matrix Calculation
							 | 
						||
| 
								 | 
							
								            of Interconnected Multiports",
							 | 
						||
| 
								 | 
							
								            doi:10.1109/EUMA.1981.332972
							 | 
						||
| 
								 | 
							
								    """
							 | 
						||
| 
								 | 
							
								    if k > S.shape[-1] - 1 or l > S.shape[-1] - 1:
							 | 
						||
| 
								 | 
							
								        raise ValueError("port indices are out of range")
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    l = [l]
							 | 
						||
| 
								 | 
							
								    k = [k]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    mkl = 1 - S[k, l]
							 | 
						||
| 
								 | 
							
								    mlk = 1 - S[l, k]
							 | 
						||
| 
								 | 
							
								    C = S + (
							 | 
						||
| 
								 | 
							
								              S[k, :] * S[:, l] * mlk
							 | 
						||
| 
								 | 
							
								            + S[l, :] * S[:, k] * mkl
							 | 
						||
| 
								 | 
							
								            + S[k, :] * S[l, l] * S[:, k]
							 | 
						||
| 
								 | 
							
								            + S[l, :] * S[k, k] * S[:, l]
							 | 
						||
| 
								 | 
							
								        ) / (
							 | 
						||
| 
								 | 
							
								            mlk * mkl - S[k, k] * S[l, l]
							 | 
						||
| 
								 | 
							
								        )
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    # remove connected ports
							 | 
						||
| 
								 | 
							
								    C = npy.delete(C, (k, l), 1)
							 | 
						||
| 
								 | 
							
								    C = npy.delete(C, (k, l), 2)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    return C
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def s2abcd(
							 | 
						||
| 
								 | 
							
								        S: NDArray[numpy.complex128],
							 | 
						||
| 
								 | 
							
								        z0: NDArray[numpy.complex128],
							 | 
						||
| 
								 | 
							
								        ) -> NDArray[numpy.complex128]:
							 | 
						||
| 
								 | 
							
								    assert numpy.array_equal(S.shape[:2] == (2, 2))
							 | 
						||
| 
								 | 
							
								    Z1, Z2 = z0
							 | 
						||
| 
								 | 
							
								    cross = S[0, 1] * S[1, 0]
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    T = numpy.empty_like(S, dtype=complex)
							 | 
						||
| 
								 | 
							
								    T[0, 0, :] = (Z1.conj() + S[0, 0] * Z1) * (1 - S[1, 1]) + cross * Z1    # A numerator
							 | 
						||
| 
								 | 
							
								    T[0, 1, :] = (Z1.conj() + S[0, 0] * Z1) * (Z1.conj() + S[1, 1] * Z2) - cross * Z1 * Z2  # B numerator
							 | 
						||
| 
								 | 
							
								    T[1, 0, :] = (1 - S[0, 0]) * (1 - S[1, 1]) - cross                      # C numerator
							 | 
						||
| 
								 | 
							
								    T[1, 1, :] = (1 - S[0, 0]) * (Z2.conj() + S[1, 1] * Z2) + cross * Z2    # D numerator
							 | 
						||
| 
								 | 
							
								    det = 2 * S[1, 0] * numpy.sqrt(Z1.real * Z2.real)
							 | 
						||
| 
								 | 
							
								    T /= det
							 | 
						||
| 
								 | 
							
								    return T
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def generalize_S(
							 | 
						||
| 
								 | 
							
								        S: NDArray[numpy.complex128],
							 | 
						||
| 
								 | 
							
								        r0: float,
							 | 
						||
| 
								 | 
							
								        z0: NDArray[numpy.complex128],
							 | 
						||
| 
								 | 
							
								        ) -> NDArray[numpy.complex128]:
							 | 
						||
| 
								 | 
							
								    g = (z0 - r0) / (z0 + r0)
							 | 
						||
| 
								 | 
							
								    D = numpy.diag((1 - g) / numpy.abs(1 - g.conj()) * numpy.sqrt(1 - numpy.abs(g * g.conj())))
							 | 
						||
| 
								 | 
							
								    G = numpy.diag(g)
							 | 
						||
| 
								 | 
							
								    U = numpy.eye(S.shape[0])
							 | 
						||
| 
								 | 
							
								    S_gen = pinv(D.conj()) @ (S - G.conj()) @ pinv(U - G @ S) @ D
							 | 
						||
| 
								 | 
							
								    return S_gen
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								def change_R0(
							 | 
						||
| 
								 | 
							
								        S: NDArray[numpy.complex128],
							 | 
						||
| 
								 | 
							
								        r1: float,
							 | 
						||
| 
								 | 
							
								        r2: float,
							 | 
						||
| 
								 | 
							
								        ) -> NDArray[numpy.complex128]:
							 | 
						||
| 
								 | 
							
								    g = (r2 - r1) / (r2 + r1)
							 | 
						||
| 
								 | 
							
								    U = numpy.eye(S.shape[0])
							 | 
						||
| 
								 | 
							
								    G = U * g
							 | 
						||
| 
								 | 
							
								    S_r2 = (S - G) @ pinv(U - G @ S)
							 | 
						||
| 
								 | 
							
								    return S_r2
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								# Zc = numpy.sqrt(B / C)
							 | 
						||
| 
								 | 
							
								# gamma = numpy.arccosh(A) / L_TL
							 | 
						||
| 
								 | 
							
								# n_eff = -1j * gamma * c_light / (2 * pi * f)
							 | 
						||
| 
								 | 
							
								# n_eff_grp = n_eff + f * diff(n_eff) / diff(f)
							 | 
						||
| 
								 | 
							
								# attenuation = (1 - S[0, 0] * S[0, 0].conj()) / (S[1, 0] * S[1, 0].conj())
							 | 
						||
| 
								 | 
							
								# R = numpy.real(gamma * Zc)
							 | 
						||
| 
								 | 
							
								# C = numpy.real(gamma / Zc)
							 | 
						||
| 
								 | 
							
								# L = numpy.imag(gamma * Zc) / (-1j * 2 * pi * f)
							 | 
						||
| 
								 | 
							
								# G = numpy.imag(gamma / Zc) / (-1j * 2 * pi * f)
							 |