add all files
This commit is contained in:
commit
e6f51d721a
3
.gitignore
vendored
Normal file
3
.gitignore
vendored
Normal file
@ -0,0 +1,3 @@
|
|||||||
|
*.pyc
|
||||||
|
__pycache__
|
||||||
|
*.idea
|
22
README.md
Normal file
22
README.md
Normal file
@ -0,0 +1,22 @@
|
|||||||
|
# Gridlock README
|
||||||
|
|
||||||
|
Gridlock is a Python module for drawing on coupled grids.
|
||||||
|
|
||||||
|
Gridlock is used primarily for 'painting' shapes in 3D on multiple grids which represent the
|
||||||
|
same spatial region, but are offset from each other. It does straightforward natural <-> grid unit
|
||||||
|
conversion and can handle non-uniform rectangular grids (the entire grid is generated based on
|
||||||
|
the coordinates of the boundary points along each axis).
|
||||||
|
|
||||||
|
## Installation
|
||||||
|
|
||||||
|
Requirements:
|
||||||
|
* python 3 (written and tested with 3.5)
|
||||||
|
* numpy
|
||||||
|
* [float_raster](https://mpxd.net/gogs/jan/float_raster)
|
||||||
|
* matplotlib (optional, used for visualization functions)
|
||||||
|
* mpl_toolkits.mplot3d (optional, used for isosurface visualization)
|
||||||
|
* skimage (optional, used for isosurface visualization)
|
||||||
|
|
||||||
|
Install with pip, via git:
|
||||||
|
|
||||||
|
>pip install --upgrade git+https://mpxd.net/gogs/jan/gridlock.git
|
23
gridlock/__init__.py
Normal file
23
gridlock/__init__.py
Normal file
@ -0,0 +1,23 @@
|
|||||||
|
"""
|
||||||
|
3D coupled grid generator
|
||||||
|
|
||||||
|
Grid generator, used primarily for 'painting' shapes in 3D on multiple grids which represent the
|
||||||
|
same spatial region, but are offset from each other. It does straightforward natural <-> grid unit
|
||||||
|
conversion and can handle non-uniform rectangular grids (the entire grid is generated based on
|
||||||
|
the coordinates of the boundary points along each axis).
|
||||||
|
|
||||||
|
Its primary purpose is for drawing Yee grids for electromagnetic simulations.
|
||||||
|
|
||||||
|
|
||||||
|
Dependencies:
|
||||||
|
- numpy
|
||||||
|
- matplotlib [Grid.visualize_*]
|
||||||
|
- mpl_toolkits.mplot3d [Grid.visualize_isosurface()]
|
||||||
|
- skimage [Grid.visualize_isosurface()]
|
||||||
|
"""
|
||||||
|
|
||||||
|
from .error import GridError
|
||||||
|
from .direction import Direction
|
||||||
|
from .grid import Grid
|
||||||
|
|
||||||
|
__author__ = 'Jan Petykiewicz'
|
10
gridlock/_helpers.py
Normal file
10
gridlock/_helpers.py
Normal file
@ -0,0 +1,10 @@
|
|||||||
|
from typing import Any
|
||||||
|
|
||||||
|
|
||||||
|
def is_scalar(var: Any) -> bool:
|
||||||
|
"""
|
||||||
|
Alias for 'not hasattr(var, "__len__")'
|
||||||
|
|
||||||
|
:param var: Checks if var has a length.
|
||||||
|
"""
|
||||||
|
return not hasattr(var, "__len__")
|
10
gridlock/direction.py
Normal file
10
gridlock/direction.py
Normal file
@ -0,0 +1,10 @@
|
|||||||
|
from enum import Enum
|
||||||
|
|
||||||
|
|
||||||
|
class Direction(Enum):
|
||||||
|
"""
|
||||||
|
Enum for axis->integer mapping
|
||||||
|
"""
|
||||||
|
x = 0
|
||||||
|
y = 1
|
||||||
|
z = 2
|
9
gridlock/error.py
Normal file
9
gridlock/error.py
Normal file
@ -0,0 +1,9 @@
|
|||||||
|
class GridError(Exception):
|
||||||
|
"""
|
||||||
|
Simple Exception for Grid
|
||||||
|
"""
|
||||||
|
def __init__(self, value):
|
||||||
|
self.value = value
|
||||||
|
|
||||||
|
def __str__(self):
|
||||||
|
return repr(self.value)
|
804
gridlock/grid.py
Normal file
804
gridlock/grid.py
Normal file
@ -0,0 +1,804 @@
|
|||||||
|
from typing import List, Tuple, Callable
|
||||||
|
|
||||||
|
import numpy
|
||||||
|
from numpy import diff, floor, ceil, zeros, hstack, newaxis
|
||||||
|
|
||||||
|
import pickle
|
||||||
|
import warnings
|
||||||
|
|
||||||
|
from float_raster import raster
|
||||||
|
|
||||||
|
# .visualize_* uses matplotlib
|
||||||
|
# .visualize_isosurface uses skimage
|
||||||
|
# .visualize_isosurface uses mpl_toolkits.mplot3d
|
||||||
|
|
||||||
|
from . import GridError, Direction
|
||||||
|
from ._helpers import is_scalar
|
||||||
|
|
||||||
|
__author__ = 'Jan Petykiewicz'
|
||||||
|
|
||||||
|
eps_callable_type = Callable[[numpy.ndarray, numpy.ndarray, numpy.ndarray], numpy.ndarray]
|
||||||
|
|
||||||
|
|
||||||
|
class Grid(object):
|
||||||
|
"""
|
||||||
|
Simulation grid generator intended for electromagnetic simulations.
|
||||||
|
Can be used to generate non-uniform rectangular grids (the entire grid
|
||||||
|
is generated based on the coordinates of the boundary points). Also does
|
||||||
|
straightforward natural <-> grid unit conversion.
|
||||||
|
|
||||||
|
self.grids[i][a,b,c] contains the value of epsilon for the cell located at
|
||||||
|
(xyz[0][a]+dxyz[0][a]*shifts[i, 0],
|
||||||
|
xyz[1][b]+dxyz[1][b]*shifts[i, 1],
|
||||||
|
xyz[2][c]+dxyz[2][c]*shifts[i, 2]).
|
||||||
|
You can get raw edge coordinates (exyz),
|
||||||
|
center coordinates (xyz),
|
||||||
|
cell sizes (dxyz),
|
||||||
|
from the properties named as above, or get them for a given grid by using the
|
||||||
|
self.shifted_*xyz(which_shifts) functions.
|
||||||
|
|
||||||
|
It is tricky to determine the size of the right-most cell after shifting,
|
||||||
|
since its right boundary should shift by shifts[i][a] * dxyz[a][dxyz[a].size],
|
||||||
|
where the dxyz element refers to a cell that does not exist.
|
||||||
|
Because of this, we either assume this 'ghost' cell is the same size as the last
|
||||||
|
real cell, or, if self.periodic[a] is set to True, the same size as the first cell.
|
||||||
|
"""
|
||||||
|
|
||||||
|
# Cell edges. Monotonically increasing without duplicates
|
||||||
|
exyz = [] # type: List[numpy.ndarray]
|
||||||
|
|
||||||
|
# epsilon (or mu, or whatever) grids
|
||||||
|
grids = [] # type: List[numpy.ndarray]
|
||||||
|
|
||||||
|
# [[x0 y0 z0], [x1, y1, z1], ...] offsets for grid 0,1,...
|
||||||
|
shifts = None # type: numpy.ndarray
|
||||||
|
|
||||||
|
# For each axis, determines how far the rightmost boundary gets shifted
|
||||||
|
periodic = [False] * 3 # type: List[bool]
|
||||||
|
|
||||||
|
# Intended for use as a static constant
|
||||||
|
Yee_Shifts = 0.5 * numpy.array([[1, 0, 0],
|
||||||
|
[0, 1, 0],
|
||||||
|
[0, 0, 1],
|
||||||
|
[0, 1, 1],
|
||||||
|
[1, 0, 1],
|
||||||
|
[1, 1, 0]], dtype=float) # type: numpy.ndarray
|
||||||
|
|
||||||
|
@property
|
||||||
|
def dxyz(self) -> List[numpy.ndarray]:
|
||||||
|
"""
|
||||||
|
Cell sizes for each axis, no shifts applied
|
||||||
|
|
||||||
|
:return: List of 3 ndarrays of cell sizes
|
||||||
|
"""
|
||||||
|
return [diff(self.exyz[a]) for a in range(3)]
|
||||||
|
|
||||||
|
@property
|
||||||
|
def xyz(self) -> List[numpy.ndarray]:
|
||||||
|
"""
|
||||||
|
Cell centers for each axis, no shifts applied
|
||||||
|
|
||||||
|
:return: List of 3 ndarrays of cell edges
|
||||||
|
"""
|
||||||
|
return [self.exyz[a][:-1] + self.dxyz[a] / 2.0 for a in range(3)]
|
||||||
|
|
||||||
|
@property
|
||||||
|
def shape(self) -> numpy.ndarray:
|
||||||
|
"""
|
||||||
|
The number of cells in x, y, and z
|
||||||
|
|
||||||
|
:return: ndarray [x_centers.size, y_centers.size, z_centers.size]
|
||||||
|
"""
|
||||||
|
return numpy.array([coord.size - 1 for coord in self.exyz], dtype=int)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def dxyz_with_ghost(self) -> List[numpy.ndarray]:
|
||||||
|
"""
|
||||||
|
Gives dxyz with an additional 'ghost' cell at the end, whose value depends
|
||||||
|
on whether or not the axis has periodic boundary conditions. See main description
|
||||||
|
above to learn why this is necessary.
|
||||||
|
|
||||||
|
If periodic, final edge shifts same amount as first
|
||||||
|
Otherwise, final edge shifts same amount as second-to-last
|
||||||
|
|
||||||
|
:return: list of [dxs, dys, dzs] with each element same length as elements of self.xyz
|
||||||
|
"""
|
||||||
|
el = [0 if p else -1 for p in self.periodic]
|
||||||
|
return [hstack((self.dxyz[a], self.dxyz[a][e])) for a, e in zip(range(3), el)]
|
||||||
|
|
||||||
|
@property
|
||||||
|
def center(self) -> numpy.ndarray:
|
||||||
|
"""
|
||||||
|
Center position of the entire grid, no shifts applied
|
||||||
|
:return: ndarray [x_center, y_center, z_center]
|
||||||
|
"""
|
||||||
|
# center is just average of first and last xyz, which is just the average of the
|
||||||
|
# first two and last two exyz
|
||||||
|
centers = [(self.exyz[a][:1] + self.exyz[a][-1:]) / 4.0 for a in range(3)]
|
||||||
|
return numpy.array(centers, dtype=float)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def dxyz_limits(self) -> Tuple[numpy.ndarray, numpy.ndarray]:
|
||||||
|
"""
|
||||||
|
Returns the minimum and maximum cell size for each axis, as a tuple of two 3-element
|
||||||
|
ndarrays. No shifts are applied, so these are extreme bounds on these values (as a
|
||||||
|
weighted average is performed when shifting).
|
||||||
|
|
||||||
|
:return: List of 2 ndarrays, d_min=[min(dx), min(dy), min(dz)] and d_max=[...]
|
||||||
|
"""
|
||||||
|
d_min = numpy.array([min(self.dxyz[a]) for a in range(3)], dtype=float)
|
||||||
|
d_max = numpy.array([max(self.dxyz[a]) for a in range(3)], dtype=float)
|
||||||
|
return d_min, d_max
|
||||||
|
|
||||||
|
def shifted_exyz(self, which_shifts: int or None) -> List[numpy.ndarray]:
|
||||||
|
"""
|
||||||
|
Returns edges for which_shifts.
|
||||||
|
|
||||||
|
:param which_shifts: Which grid (which shifts) to use, or None for unshifted
|
||||||
|
:return: List of 3 ndarrays of cell edges
|
||||||
|
"""
|
||||||
|
if which_shifts is None:
|
||||||
|
return self.exyz
|
||||||
|
dxyz = self.dxyz_with_ghost
|
||||||
|
shifts = self.shifts[which_shifts, :]
|
||||||
|
return [self.exyz[a] + dxyz[a] * shifts[a] for a in range(3)]
|
||||||
|
|
||||||
|
def shifted_dxyz(self, which_shifts: int or None) -> List[numpy.ndarray]:
|
||||||
|
"""
|
||||||
|
Returns cell sizes for which_shifts.
|
||||||
|
|
||||||
|
:param which_shifts: Which grid (which shifts) to use, or None for unshifted
|
||||||
|
:return: List of 3 ndarrays of cell sizes
|
||||||
|
"""
|
||||||
|
if which_shifts is None:
|
||||||
|
return self.dxyz
|
||||||
|
shifts = self.shifts[which_shifts, :]
|
||||||
|
dxyz = self.dxyz_with_ghost
|
||||||
|
return [(dxyz[a][:-1] * (1 - shifts[a]) + dxyz[a][1:] * shifts[a]) for a in range(3)]
|
||||||
|
|
||||||
|
def shifted_xyz(self, which_shifts: int or None) -> List[numpy.ndarray]:
|
||||||
|
"""
|
||||||
|
Returns cell centers for which_shifts.
|
||||||
|
|
||||||
|
:param which_shifts: Which grid (which shifts) to use, or None for unshifted
|
||||||
|
:return: List of 3 ndarrays of cell centers
|
||||||
|
"""
|
||||||
|
if which_shifts is None:
|
||||||
|
return self.xyz
|
||||||
|
exyz = self.shifted_exyz(which_shifts)
|
||||||
|
dxyz = self.shifted_dxyz(which_shifts)
|
||||||
|
return [exyz[a][:-1] + dxyz[a] / 2.0 for a in range(3)]
|
||||||
|
|
||||||
|
def ind2pos(self,
|
||||||
|
ind: numpy.ndarray or List,
|
||||||
|
which_shifts: int or None=None,
|
||||||
|
round_ind: bool=True,
|
||||||
|
check_bounds: bool=True
|
||||||
|
) -> numpy.ndarray:
|
||||||
|
"""
|
||||||
|
Returns the natural position corresponding to the specified indices.
|
||||||
|
The resulting position is clipped to the bounds of the grid
|
||||||
|
(to cell centers if round_ind=True, or cell outer edges if round_ind=False)
|
||||||
|
|
||||||
|
:param ind: Indices of the position. Can be fractional. (3-element ndarray or list)
|
||||||
|
:param which_shifts: which grid number (shifts) to use
|
||||||
|
:param round_ind: Whether to round ind to the nearest integer position before indexing
|
||||||
|
(default True)
|
||||||
|
:param check_bounds: Whether to raise an GridError if the provided ind is outside of
|
||||||
|
the grid, as defined above (centers if round_ind, else edges) (default True)
|
||||||
|
:return: 3-element ndarray specifying the natural position
|
||||||
|
:raises: GridError
|
||||||
|
"""
|
||||||
|
if which_shifts is not None and which_shifts >= self.shifts.shape[0]:
|
||||||
|
raise GridError('Invalid shifts')
|
||||||
|
ind = numpy.array(ind, dtype=float)
|
||||||
|
|
||||||
|
if check_bounds:
|
||||||
|
if round_ind:
|
||||||
|
low_bound = 0.0
|
||||||
|
high_bound = -1
|
||||||
|
else:
|
||||||
|
low_bound = -0.5
|
||||||
|
high_bound = -0.5
|
||||||
|
if (ind < low_bound).any() or (ind > self.shape - high_bound).any():
|
||||||
|
raise GridError('Position outside of grid: {}'.format(ind))
|
||||||
|
|
||||||
|
if round_ind:
|
||||||
|
rind = numpy.clip(numpy.round(ind), 0, self.shape - 1)
|
||||||
|
sxyz = self.shifted_xyz(which_shifts)
|
||||||
|
position = [sxyz[a][rind[a]].astype(int) for a in range(3)]
|
||||||
|
else:
|
||||||
|
sexyz = self.shifted_exyz(which_shifts)
|
||||||
|
position = [numpy.interp(ind[a], numpy.arange(sexyz[a].size) - 0.5, sexyz[a])
|
||||||
|
for a in range(3)]
|
||||||
|
return numpy.array(position, dtype=float)
|
||||||
|
|
||||||
|
def pos2ind(self,
|
||||||
|
r: numpy.ndarray or List,
|
||||||
|
which_shifts: int or None,
|
||||||
|
round_ind: bool=True,
|
||||||
|
check_bounds: bool=True
|
||||||
|
) -> numpy.ndarray:
|
||||||
|
"""
|
||||||
|
Returns the indices corresponding to the specified natural position.
|
||||||
|
The resulting position is clipped to within the outer centers of the grid.
|
||||||
|
|
||||||
|
:param r: Natural position that we will convert into indices (3-element ndarray or list)
|
||||||
|
:param which_shifts: which grid number (shifts) to use
|
||||||
|
:param round_ind: Whether to round the returned indices to the nearest integers.
|
||||||
|
:param check_bounds: Whether to throw an GridError if r is outside the grid edges
|
||||||
|
:return: 3-element ndarray specifying the indices
|
||||||
|
:raises: GridError
|
||||||
|
"""
|
||||||
|
r = numpy.squeeze(r)
|
||||||
|
if r.size != 3:
|
||||||
|
raise GridError('r must be 3-element vector: {}'.format(r))
|
||||||
|
|
||||||
|
if (which_shifts is not None) and (which_shifts >= self.shifts.shape[0]):
|
||||||
|
raise GridError('')
|
||||||
|
|
||||||
|
sexyz = self.shifted_exyz(which_shifts)
|
||||||
|
|
||||||
|
if check_bounds:
|
||||||
|
for a in range(3):
|
||||||
|
if self.shape[a] > 1 and (r[a] < sexyz[a][0] or r[a] > sexyz[a][-1]):
|
||||||
|
raise GridError('Position[{}] outside of grid!'.format(a))
|
||||||
|
|
||||||
|
grid_pos = zeros((3,))
|
||||||
|
for a in range(3):
|
||||||
|
xi = numpy.digitize(r[a], sexyz[a]) # Figure out which cell we're in
|
||||||
|
xi_clipped = numpy.clip(xi, 1, sexyz[a].size - 1) - 1 # Clip back into grid bounds
|
||||||
|
|
||||||
|
# No need to interpolate if round_ind is true or we were outside the grid
|
||||||
|
if round_ind or xi != xi_clipped:
|
||||||
|
grid_pos[a] = xi_clipped
|
||||||
|
else:
|
||||||
|
# Interpolate
|
||||||
|
x = self.shifted_xyz(which_shifts)[a][xi]
|
||||||
|
dx = self.shifted_dxyz(which_shifts)[a][xi]
|
||||||
|
f = (r[a] - x) / dx
|
||||||
|
# Clip to centers
|
||||||
|
grid_pos[a] = numpy.clip(xi + f, 0, self.shape[a] - 1)
|
||||||
|
return grid_pos
|
||||||
|
|
||||||
|
def __init__(self,
|
||||||
|
pixel_edge_coordinates: List[List or numpy.ndarray],
|
||||||
|
shifts: numpy.ndarray or List=Yee_Shifts,
|
||||||
|
initial: float or numpy.ndarray or List[float] or List[numpy.ndarray]=(1.0,)*3,
|
||||||
|
num_grids: int=None,
|
||||||
|
periodic: bool or List[bool]=False):
|
||||||
|
"""
|
||||||
|
Initialize a new Grid
|
||||||
|
|
||||||
|
:param pixel_edge_coordinates: 3-element list of (ndarrays or lists) specifying the
|
||||||
|
coordinates of the pixel edges in each dimensions
|
||||||
|
(ie, [[x0, x1, x2,...], [y0,...], [z0,...]] where the first pixel has x-edges x=x0 and
|
||||||
|
x=x1, the second has edges x=x1 and x=x2, etc.)
|
||||||
|
:param shifts: Nx3 array containing [x, y, z] offsets for each of N grids.
|
||||||
|
Yee shifts are used by default.
|
||||||
|
:param initial: Grids are initialized to this value. If scalar, all grids are initialized
|
||||||
|
with ndarrays full of the scalar. If a list of scalars, grid[i] is initialized to an
|
||||||
|
ndarray full of initial[i]. If a list of ndarrays of the same shape as the grids, grid[i]
|
||||||
|
is set to initial[i]. Default 1.
|
||||||
|
:param num_grids: How many grids to create. Must be <= shifts.shape[0].
|
||||||
|
Default is shifts.shape[0]
|
||||||
|
:param periodic: Specifies how the sizes of edge cells are calculated; see main class
|
||||||
|
documentation. List of 3 bool, or a single bool that gets broadcast. Default False.
|
||||||
|
:raises: GridError
|
||||||
|
"""
|
||||||
|
self.exyz = [numpy.unique(pixel_edge_coordinates[i]) for i in range(3)]
|
||||||
|
for i in range(3):
|
||||||
|
if len(self.exyz[i]) != len(pixel_edge_coordinates[i]):
|
||||||
|
warnings.warn('Dimension {} had duplicate edge coordinates'.format(i))
|
||||||
|
|
||||||
|
if is_scalar(periodic):
|
||||||
|
periodic = [periodic] * 3
|
||||||
|
self.periodic = periodic
|
||||||
|
|
||||||
|
self.shifts = numpy.array(shifts, dtype=float)
|
||||||
|
if self.shifts.shape[1] != 3:
|
||||||
|
GridError('Misshapen shifts; second axis size should be 3,'
|
||||||
|
' shape is {}'.format(self.shifts.shape))
|
||||||
|
|
||||||
|
num_shifts = self.shifts.shape[0]
|
||||||
|
if num_grids is None:
|
||||||
|
num_grids = num_shifts
|
||||||
|
elif num_grids > num_shifts:
|
||||||
|
raise GridError('Number of grids exceeds number of shifts (%u)' % num_shifts)
|
||||||
|
|
||||||
|
grids_shape = hstack((num_grids, self.shape))
|
||||||
|
if is_scalar(initial):
|
||||||
|
self.grids = numpy.full(grids_shape, initial)
|
||||||
|
else:
|
||||||
|
if len(initial) < num_grids:
|
||||||
|
raise GridError('Too few initial grids specified!')
|
||||||
|
|
||||||
|
self.grids = [None] * num_grids
|
||||||
|
for i in range(num_grids):
|
||||||
|
if is_scalar(initial[i]):
|
||||||
|
if initial[i] is not None:
|
||||||
|
self.grids[i] = numpy.full(self.shape, initial[i])
|
||||||
|
else:
|
||||||
|
if not numpy.array_equal(initial[i].shape, self.shape):
|
||||||
|
raise GridError('Initial grid sizes must match given coordinates')
|
||||||
|
self.grids[i] = initial[i]
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def load(filename: str) -> 'Grid':
|
||||||
|
"""
|
||||||
|
Load a grid from a file
|
||||||
|
|
||||||
|
:param filename: Filename to load from.
|
||||||
|
"""
|
||||||
|
with open(filename, 'rb') as f:
|
||||||
|
tmp_dict = pickle.load(f)
|
||||||
|
|
||||||
|
g = Grid([[-1, 1]] * 3)
|
||||||
|
g.__dict__.update(tmp_dict)
|
||||||
|
return g
|
||||||
|
|
||||||
|
def save(self, filename: str):
|
||||||
|
"""
|
||||||
|
Save to file.
|
||||||
|
|
||||||
|
:param filename: Filename to save to.
|
||||||
|
"""
|
||||||
|
with open(filename, 'wb') as f:
|
||||||
|
pickle.dump(self.__dict__, f, protocol=2)
|
||||||
|
|
||||||
|
def draw_polygons(self,
|
||||||
|
surface_normal: Direction or int,
|
||||||
|
center: List or numpy.ndarray,
|
||||||
|
polygons: List[numpy.ndarray or List],
|
||||||
|
thickness: float,
|
||||||
|
eps: List[float or eps_callable_type] or float or eps_callable_type):
|
||||||
|
"""
|
||||||
|
Draw polygons on an axis-aligned plane.
|
||||||
|
|
||||||
|
:param surface_normal: Axis normal to the plane we're drawing on. Can be a Direction or
|
||||||
|
integer in range(3)
|
||||||
|
:param center: 3-element ndarray or list specifying an offset applied to all the polygons
|
||||||
|
:param polygons: List of Nx2 or Nx3 ndarrays, each specifying the vertices of a polygon
|
||||||
|
(non-closed, clockwise). If Nx3, the surface_normal coordinate is ignored. Each polygon
|
||||||
|
must have at least 3 vertices.
|
||||||
|
:param thickness: Thickness of the layer to draw
|
||||||
|
:param eps: Value to draw with ('epsilon'). Can be scalar, callable, or a list
|
||||||
|
of any of these (1 per grid). Callable values should take ndarrays x, y, z of equal
|
||||||
|
shape and return an ndarray of equal shape containing the eps value at the given x, y,
|
||||||
|
and z (natural, not grid coordinates).
|
||||||
|
:raises: GridError
|
||||||
|
"""
|
||||||
|
# Turn surface_normal into its integer representation
|
||||||
|
if isinstance(surface_normal, Direction):
|
||||||
|
surface_normal = surface_normal.value
|
||||||
|
|
||||||
|
if surface_normal not in range(3):
|
||||||
|
raise GridError('Invalid surface_normal direction')
|
||||||
|
|
||||||
|
center = numpy.squeeze(center)
|
||||||
|
|
||||||
|
# Check polygons, and remove redundant coordinates
|
||||||
|
surface = numpy.delete(range(3), surface_normal)
|
||||||
|
|
||||||
|
for i, polygon in enumerate(polygons):
|
||||||
|
malformed = 'Malformed polygon: (%i)' % i
|
||||||
|
if polygon.shape[1] not in (2, 3):
|
||||||
|
raise GridError(malformed + 'must be a Nx2 or Nx3 ndarray')
|
||||||
|
if polygon.shape[1] == 3:
|
||||||
|
polygon = polygon[surface, :]
|
||||||
|
|
||||||
|
if not polygon.shape[0] > 2:
|
||||||
|
raise GridError(malformed + 'must consist of more than 2 points')
|
||||||
|
if polygon.ndim > 2 and not numpy.unique(polygon[:, surface_normal]).size == 1:
|
||||||
|
raise GridError(malformed + 'must be in plane with surface normal %s'
|
||||||
|
% 'xyz'[surface_normal])
|
||||||
|
|
||||||
|
# Broadcast eps where necessary
|
||||||
|
if is_scalar(eps):
|
||||||
|
eps = [eps] * len(self.grids)
|
||||||
|
elif isinstance(eps, numpy.ndarray):
|
||||||
|
raise GridError('ndarray not supported for eps')
|
||||||
|
|
||||||
|
# ## Compute sub-domain of the grid occupied by polygons
|
||||||
|
# 1) Compute outer bounds (bd) of polygons
|
||||||
|
bd_2d_min = [0, 0]
|
||||||
|
bd_2d_max = [0, 0]
|
||||||
|
for polygon in polygons:
|
||||||
|
bd_2d_min = numpy.minimum(bd_2d_min, polygon.min(axis=0))
|
||||||
|
bd_2d_max = numpy.maximum(bd_2d_max, polygon.max(axis=0))
|
||||||
|
bd_min = numpy.insert(bd_2d_min, surface_normal, -thickness / 2.0) + center
|
||||||
|
bd_max = numpy.insert(bd_2d_max, surface_normal, +thickness / 2.0) + center
|
||||||
|
|
||||||
|
# 2) Find indices (bdi) just outside bd elements
|
||||||
|
buf = 2 # size of safety buffer
|
||||||
|
# Use s_min and s_max with unshifted pos2ind to get absolute limits on
|
||||||
|
# the indices the polygons might affect
|
||||||
|
s_min = self.shifts.min(axis=0)
|
||||||
|
s_max = self.shifts.max(axis=0)
|
||||||
|
bdi_min = self.pos2ind(bd_min + s_min, None, round_ind=False, check_bounds=False) - buf
|
||||||
|
bdi_max = self.pos2ind(bd_max + s_max, None, round_ind=False, check_bounds=False) + buf
|
||||||
|
bdi_min = numpy.maximum(floor(bdi_min), 0).astype(int)
|
||||||
|
bdi_max = numpy.minimum(ceil(bdi_max), self.shape - 1).astype(int)
|
||||||
|
|
||||||
|
# 3) Adjust polygons for center
|
||||||
|
polygons = [poly + center[surface] for poly in polygons]
|
||||||
|
|
||||||
|
# iterate over grids
|
||||||
|
for (i, grid) in enumerate(self.grids):
|
||||||
|
# ## Evaluate or expand eps[i]
|
||||||
|
if callable(eps[i]):
|
||||||
|
# meshgrid over the (shifted) domain
|
||||||
|
domain = [self.shifted_xyz(i)[k][bdi_min[k]:bdi_max[k]+1] for k in range(3)]
|
||||||
|
(x0, y0, z0) = numpy.meshgrid(*domain, indexing='ij')
|
||||||
|
|
||||||
|
# evaluate on the meshgrid
|
||||||
|
eps[i] = eps[i](x0, y0, z0)
|
||||||
|
if not numpy.isfinite(eps[i]).all():
|
||||||
|
raise GridError('Non-finite values in eps[%u]' % i)
|
||||||
|
elif not is_scalar(eps[i]):
|
||||||
|
raise GridError('Unsupported eps[{}]: {}'.format(i, type(eps[i])))
|
||||||
|
# do nothing if eps[i] is scalar non-callable
|
||||||
|
|
||||||
|
# ## Generate weighing function
|
||||||
|
def to_3d(vector: List or numpy.ndarray, val: float=0.0):
|
||||||
|
return numpy.insert(vector, surface_normal, (val,))
|
||||||
|
|
||||||
|
w_xy = zeros((bdi_max - bdi_min + 1)[surface].astype(int))
|
||||||
|
|
||||||
|
# Draw each polygon separately
|
||||||
|
for polygon in polygons:
|
||||||
|
|
||||||
|
# Get the boundaries of the polygon
|
||||||
|
pbd_min = polygon.min(axis=0)
|
||||||
|
pbd_max = polygon.max(axis=0)
|
||||||
|
|
||||||
|
# Find indices in w_xy just outside polygon
|
||||||
|
# using per-grid xy-weights (self.shifted_xyz())
|
||||||
|
corner_min = self.pos2ind(to_3d(pbd_min), i,
|
||||||
|
check_bounds=False)[surface].astype(int)
|
||||||
|
corner_max = self.pos2ind(to_3d(pbd_max), i,
|
||||||
|
check_bounds=False)[surface].astype(int)
|
||||||
|
|
||||||
|
# Find indices in w_xy which are modified by polygon
|
||||||
|
# First for the edge coordinates (+1 since we're indexing edges)
|
||||||
|
edge_slices = [numpy.s_[i:f + 2] for i, f in zip(corner_min, corner_max)]
|
||||||
|
# Then for the pixel centers (-bdi_min since we're
|
||||||
|
# calculating weights within a subspace)
|
||||||
|
centers_slice = [numpy.s_[i:f + 1] for i, f in zip(corner_min - bdi_min[surface],
|
||||||
|
corner_max - bdi_min[surface])]
|
||||||
|
|
||||||
|
aa_x, aa_y = (self.shifted_exyz(i)[a][s] for a, s in zip(surface, edge_slices))
|
||||||
|
w_xy[centers_slice] += raster(polygon.T, aa_x, aa_y)
|
||||||
|
|
||||||
|
# Clamp overlapping polygons to 1
|
||||||
|
w_xy = numpy.minimum(w_xy, 1.0)
|
||||||
|
|
||||||
|
# 2) Generate weights in z-direction
|
||||||
|
w_z = numpy.zeros(((bdi_max - bdi_min + 1)[surface_normal], ))
|
||||||
|
|
||||||
|
def get_zi(offset):
|
||||||
|
pos_3d = to_3d([0, 0], center[surface_normal] + offset)
|
||||||
|
grid_coords = self.pos2ind(pos_3d, i, check_bounds=False, round_ind=False)
|
||||||
|
w_coord_fp = (grid_coords - bdi_min)[surface_normal]
|
||||||
|
w_coord = floor(w_coord_fp).astype(int)
|
||||||
|
return w_coord_fp, w_coord
|
||||||
|
|
||||||
|
zi_top_fp, zi_top = get_zi(+thickness/2.0)
|
||||||
|
zi_bot_fp, zi_bot = get_zi(-thickness/2.0)
|
||||||
|
|
||||||
|
w_z[zi_bot:zi_top + 1] = 1
|
||||||
|
|
||||||
|
if zi_top_fp != zi_top < self.shape[surface_normal] - 1:
|
||||||
|
f = zi_top_fp - zi_top
|
||||||
|
w_z[zi_top] = f
|
||||||
|
if zi_bot_fp != zi_bot > 0:
|
||||||
|
f = zi_bot_fp - zi_bot
|
||||||
|
w_z[zi_bot] = 1 - f
|
||||||
|
|
||||||
|
# 3) Generate total weight function
|
||||||
|
w = (w_xy[:, :, newaxis] * w_z).transpose(numpy.insert([0, 1], surface_normal, (2,)))
|
||||||
|
|
||||||
|
# ## Modify the grid
|
||||||
|
g_slice = [numpy.s_[bdi_min[a]:bdi_max[a] + 1] for a in range(3)]
|
||||||
|
self.grids[i][g_slice] = (1 - w) * self.grids[i][g_slice] + w * eps[i]
|
||||||
|
|
||||||
|
def draw_polygon(self,
|
||||||
|
surface_normal: Direction or int,
|
||||||
|
center: List or numpy.ndarray,
|
||||||
|
polygon: List or numpy.ndarray,
|
||||||
|
thickness: float,
|
||||||
|
eps: List[float or eps_callable_type] or float or eps_callable_type):
|
||||||
|
"""
|
||||||
|
Draw a polygon on an axis-aligned plane.
|
||||||
|
|
||||||
|
:param surface_normal: Axis normal to the plane we're drawing on. Can be a Direction or
|
||||||
|
integer in range(3)
|
||||||
|
:param center: 3-element ndarray or list specifying an offset applied to the polygon
|
||||||
|
:param polygon: Nx2 or Nx3 ndarray specifying the vertices of a polygon (non-closed,
|
||||||
|
clockwise). If Nx3, the surface_normal coordinate is ignored. Must have at least 3
|
||||||
|
vertices.
|
||||||
|
:param thickness: Thickness of the layer to draw
|
||||||
|
:param eps: Value to draw with ('epsilon'). See draw_polygons() for details.
|
||||||
|
"""
|
||||||
|
self.draw_polygons(surface_normal, center, [polygon], thickness, eps)
|
||||||
|
|
||||||
|
def draw_slab(self,
|
||||||
|
surface_normal: Direction or int,
|
||||||
|
center: List or numpy.ndarray,
|
||||||
|
thickness: float,
|
||||||
|
eps: List[float or eps_callable_type] or float or eps_callable_type):
|
||||||
|
"""
|
||||||
|
Draw an axis-aligned infinite slab.
|
||||||
|
|
||||||
|
:param surface_normal: Axis normal to the plane we're drawing on. Can be a Direction or
|
||||||
|
integer in range(3)
|
||||||
|
:param center: Surface_normal coordinate at the center of the slab
|
||||||
|
:param thickness: Thickness of the layer to draw
|
||||||
|
:param eps: Value to draw with ('epsilon'). See draw_polygons() for details.
|
||||||
|
"""
|
||||||
|
# Turn surface_normal into its integer representation
|
||||||
|
if isinstance(surface_normal, Direction):
|
||||||
|
surface_normal = surface_normal.value
|
||||||
|
if surface_normal not in range(3):
|
||||||
|
raise GridError('Invalid surface_normal direction')
|
||||||
|
|
||||||
|
if not is_scalar(center):
|
||||||
|
center = numpy.squeeze(center)
|
||||||
|
if len(center) == 3:
|
||||||
|
center = center[surface_normal]
|
||||||
|
else:
|
||||||
|
raise GridError('Bad center: {}'.format(center))
|
||||||
|
|
||||||
|
# Find center of slab
|
||||||
|
center_shift = self.center
|
||||||
|
center_shift[surface_normal] = center
|
||||||
|
|
||||||
|
surface = numpy.delete(range(3), surface_normal)
|
||||||
|
|
||||||
|
xyz_min = numpy.array([self.xyz[a][0] for a in range(3)], dtype=float)[surface]
|
||||||
|
xyz_max = numpy.array([self.xyz[a][-1] for a in range(3)], dtype=float)[surface]
|
||||||
|
|
||||||
|
dxyz = numpy.array([max(self.dxyz[i]) for i in surface], dtype=float)
|
||||||
|
|
||||||
|
xyz_min -= 4 * dxyz
|
||||||
|
xyz_max += 4 * dxyz
|
||||||
|
|
||||||
|
p = numpy.array([[xyz_min[0], xyz_max[1]],
|
||||||
|
[xyz_max[0], xyz_max[1]],
|
||||||
|
[xyz_max[0], xyz_min[1]],
|
||||||
|
[xyz_min[0], xyz_min[1]]], dtype=float)
|
||||||
|
|
||||||
|
self.draw_polygon(surface_normal, center_shift, p, thickness, eps)
|
||||||
|
|
||||||
|
# TODO: TEST ME!
|
||||||
|
def draw_cuboid(self,
|
||||||
|
center: List or numpy.ndarray,
|
||||||
|
dimensions: List or numpy.ndarray,
|
||||||
|
eps: List[float or eps_callable_type] or float or eps_callable_type):
|
||||||
|
"""
|
||||||
|
Draw an axis-aligned cuboid
|
||||||
|
|
||||||
|
:param center: 3-element ndarray or list specifying the cylinder's center
|
||||||
|
:param dimensions: 3-element list or ndarray containing the x, y, and z edge-to-edge
|
||||||
|
sizes of the cuboid
|
||||||
|
:param eps: Value to draw with ('epsilon'). See draw_polygons() for details.
|
||||||
|
"""
|
||||||
|
p = numpy.array([[-dimensions[0], +dimensions[1]],
|
||||||
|
[+dimensions[0], +dimensions[1]],
|
||||||
|
[+dimensions[0], -dimensions[1]],
|
||||||
|
[-dimensions[0], -dimensions[1]]], dtype=float)
|
||||||
|
thickness = dimensions[3]
|
||||||
|
self.draw_polygon(Direction.z, center, p, thickness, eps)
|
||||||
|
|
||||||
|
def draw_cylinder(self,
|
||||||
|
surface_normal: Direction or int,
|
||||||
|
center: List or numpy.ndarray,
|
||||||
|
radius: float,
|
||||||
|
thickness: float,
|
||||||
|
num_points: int,
|
||||||
|
eps: List[float or eps_callable_type] or float or eps_callable_type):
|
||||||
|
"""
|
||||||
|
Draw an axis-aligned cylinder. Approximated by a num_points-gon
|
||||||
|
|
||||||
|
:param surface_normal: Axis normal to the plane we're drawing on. Can be a Direction or
|
||||||
|
integer in range(3)
|
||||||
|
:param center: 3-element ndarray or list specifying the cylinder's center
|
||||||
|
:param radius: cylinder radius
|
||||||
|
:param thickness: Thickness of the layer to draw
|
||||||
|
:param num_points: The circle is approximated by a polygon with num_points vertices
|
||||||
|
:param eps: Value to draw with ('epsilon'). See draw_polygons() for details.
|
||||||
|
"""
|
||||||
|
theta = numpy.linspace(0, 2*numpy.pi, num_points, endpoint=False)
|
||||||
|
x = radius * numpy.sin(theta)
|
||||||
|
y = radius * numpy.cos(theta)
|
||||||
|
polygon = hstack((x[:, newaxis], y[:, newaxis]))
|
||||||
|
self.draw_polygon(surface_normal, center, polygon, thickness, eps)
|
||||||
|
|
||||||
|
def draw_extrude_rectangle(self,
|
||||||
|
rectangle: List or numpy.ndarray,
|
||||||
|
direction: Direction or int,
|
||||||
|
polarity: int,
|
||||||
|
distance: float):
|
||||||
|
"""
|
||||||
|
Extrude a rectangle of a previously-drawn structure along an axis.
|
||||||
|
|
||||||
|
:param rectangle: 2x3 ndarray or list specifying the rectangle's corners
|
||||||
|
:param direction: Direction to extrude in. Direction enum or int in range(3)
|
||||||
|
:param polarity: +1 or -1, direction along axis to extrude in
|
||||||
|
:param distance: How far to extrude
|
||||||
|
"""
|
||||||
|
# Turn extrude_direction into its integer representation
|
||||||
|
if isinstance(direction, Direction):
|
||||||
|
direction = direction.value
|
||||||
|
if abs(direction) not in range(3):
|
||||||
|
raise GridError('Invalid extrude_direction')
|
||||||
|
|
||||||
|
s = numpy.sign(polarity)
|
||||||
|
surface = numpy.delete(range(3), direction)
|
||||||
|
|
||||||
|
rectangle = numpy.array(rectangle, dtype=float)
|
||||||
|
if s == 0:
|
||||||
|
raise GridError('0 is not a valid polarity')
|
||||||
|
if direction not in range(3):
|
||||||
|
raise GridError('Invalid direction: {}'.format(direction))
|
||||||
|
if rectangle[0, direction] != rectangle[1, direction]:
|
||||||
|
raise GridError('Rectangle entries along extrusion direction do not match.')
|
||||||
|
|
||||||
|
center = rectangle.sum(axis=0) / 2.0
|
||||||
|
center[direction] += s * distance / 2.0
|
||||||
|
|
||||||
|
dim = numpy.fabs(diff(rectangle, axis=0).T)[surface]
|
||||||
|
p = numpy.vstack((numpy.array([-1, -1, 1, 1], dtype=float) * dim[0]/2.0,
|
||||||
|
numpy.array([-1, 1, 1, -1], dtype=float) * dim[1]/2.0)).T
|
||||||
|
thickness = distance
|
||||||
|
|
||||||
|
eps_func = [None] * len(self.grids)
|
||||||
|
for i, grid in enumerate(self.grids):
|
||||||
|
z = self.pos2ind(rectangle[0, :], i, round_ind=False, check_bounds=False)[direction]
|
||||||
|
|
||||||
|
ind = [int(floor(z)) if i == direction else slice(None) for i in range(3)]
|
||||||
|
|
||||||
|
fpart = z - floor(z)
|
||||||
|
mult = [1-fpart, fpart][::s] # reverses if s negative
|
||||||
|
|
||||||
|
eps = mult[0] * grid[ind]
|
||||||
|
ind[direction] += 1
|
||||||
|
eps += mult[1] * grid[ind]
|
||||||
|
|
||||||
|
def f_eps(xs, ys, zs):
|
||||||
|
# transform from natural position to index
|
||||||
|
xyzi = numpy.array([self.pos2ind(qrs, which_shifts=i)
|
||||||
|
for qrs in zip(xs.flat, ys.flat, zs.flat)], dtype=int)
|
||||||
|
# reshape to original shape and keep only in-plane components
|
||||||
|
(qi, ri) = [numpy.reshape(xyzi[:, k], xs.shape) for k in surface]
|
||||||
|
return eps[qi, ri]
|
||||||
|
|
||||||
|
eps_func[i] = f_eps
|
||||||
|
|
||||||
|
self.draw_polygon(direction, center, p, thickness, eps_func)
|
||||||
|
|
||||||
|
def visualize_slice(self,
|
||||||
|
surface_normal: Direction or int,
|
||||||
|
center: float,
|
||||||
|
which_shifts: int=0,
|
||||||
|
sample_period: int=1):
|
||||||
|
"""
|
||||||
|
Visualize a slice of a grid.
|
||||||
|
Interpolates if given a position between two planes.
|
||||||
|
|
||||||
|
:param surface_normal: Axis normal to the plane we're displaying. Can be a Direction or
|
||||||
|
integer in range(3)
|
||||||
|
:param center: Scalar specifying position along surface_normal axis.
|
||||||
|
:param which_shifts: Which grid to display. Default is the first grid (0).
|
||||||
|
:param sample_period: Period for down-sampling the image. Default 1 (disabled)
|
||||||
|
"""
|
||||||
|
from matplotlib import pyplot
|
||||||
|
|
||||||
|
if not is_scalar(center) and numpy.isreal(center):
|
||||||
|
raise GridError('center must be a real scalar')
|
||||||
|
|
||||||
|
sp = round(sample_period)
|
||||||
|
if sp <= 0:
|
||||||
|
raise GridError('sample_period must be positive')
|
||||||
|
|
||||||
|
if not is_scalar(which_shifts) or which_shifts < 0:
|
||||||
|
raise GridError('Invalid which_shifts')
|
||||||
|
|
||||||
|
# Turn surface_normal into its integer representation
|
||||||
|
if isinstance(surface_normal, Direction):
|
||||||
|
surface_normal = surface_normal.value
|
||||||
|
if surface_normal not in range(3):
|
||||||
|
raise GridError('Invalid surface_normal direction')
|
||||||
|
|
||||||
|
surface = numpy.delete(range(3), surface_normal)
|
||||||
|
|
||||||
|
# Extract indices and weights of planes
|
||||||
|
center3 = numpy.insert([0, 0], surface_normal, (center,))
|
||||||
|
center_index = self.pos2ind(center3, which_shifts,
|
||||||
|
round_ind=False, check_bounds=False)[surface_normal]
|
||||||
|
centers = numpy.unique([floor(center_index), ceil(center_index)]).astype(int)
|
||||||
|
if len(centers) == 2:
|
||||||
|
fpart = center_index - floor(center_index)
|
||||||
|
w = [1-fpart, fpart] # longer distance -> less weight
|
||||||
|
else:
|
||||||
|
w = [1]
|
||||||
|
|
||||||
|
c_min, c_max = (self.xyz[surface_normal][i] for i in [0, -1])
|
||||||
|
if center < c_min or center > c_max:
|
||||||
|
raise GridError('Coordinate of visualized plane must be within simulation domain')
|
||||||
|
|
||||||
|
# Extract grid values from planes above and below visualized slice
|
||||||
|
eps = zeros(self.shape[surface])
|
||||||
|
for ci, weight in zip(centers, w):
|
||||||
|
s = tuple(ci if a == surface_normal else numpy.s_[::sp] for a in range(3))
|
||||||
|
eps += weight * self.grids[which_shifts][tuple(s)]
|
||||||
|
|
||||||
|
# Remove extra dimensions
|
||||||
|
eps = numpy.squeeze(eps)
|
||||||
|
|
||||||
|
surface = numpy.delete(range(3), surface_normal)
|
||||||
|
|
||||||
|
x, y = (self.shifted_exyz(which_shifts)[a] for a in surface)
|
||||||
|
xmesh, ymesh = numpy.meshgrid(x, y, indexing='ij')
|
||||||
|
x_label, y_label = ('xyz'[a] for a in surface)
|
||||||
|
|
||||||
|
pyplot.figure()
|
||||||
|
pyplot.pcolormesh(xmesh, ymesh, eps)
|
||||||
|
pyplot.colorbar()
|
||||||
|
pyplot.gca().set_aspect('equal', adjustable='box')
|
||||||
|
pyplot.xlabel(x_label)
|
||||||
|
pyplot.ylabel(y_label)
|
||||||
|
pyplot.show()
|
||||||
|
|
||||||
|
def visualize_isosurface(self,
|
||||||
|
level: float=None,
|
||||||
|
which_shifts: int=0,
|
||||||
|
sample_period: int=1,
|
||||||
|
show_edges: bool=True):
|
||||||
|
"""
|
||||||
|
Draw an isosurface plot of the device.
|
||||||
|
|
||||||
|
:param level: Value at which to find isosurface. Default (None) uses mean value in grid.
|
||||||
|
:param which_shifts: Which grid to display. Default is the first grid (0).
|
||||||
|
:param sample_period: Period for down-sampling the image. Default 1 (disabled)
|
||||||
|
:param show_edges: Whether to draw triangle edges. Default True
|
||||||
|
"""
|
||||||
|
from matplotlib import pyplot
|
||||||
|
import skimage.measure
|
||||||
|
# Claims to be unused, but needed for subplot(projection='3d')
|
||||||
|
from mpl_toolkits.mplot3d import Axes3D
|
||||||
|
|
||||||
|
# Get data from self.grids
|
||||||
|
grid = self.grids[which_shifts][::sample_period, ::sample_period, ::sample_period]
|
||||||
|
if level is None:
|
||||||
|
level = grid.mean()
|
||||||
|
|
||||||
|
# Find isosurface with marching cubes
|
||||||
|
verts, faces = skimage.measure.marching_cubes(grid, level)
|
||||||
|
|
||||||
|
# Convert vertices from index to position
|
||||||
|
pos_verts = numpy.array([self.ind2pos(verts[i, :], which_shifts, round_ind=False)
|
||||||
|
for i in range(verts.shape[0])], dtype=float)
|
||||||
|
xs, ys, zs = (pos_verts[:, a] for a in range(3))
|
||||||
|
|
||||||
|
# Draw the plot
|
||||||
|
fig = pyplot.figure()
|
||||||
|
ax = fig.add_subplot(111, projection='3d')
|
||||||
|
if show_edges:
|
||||||
|
ax.plot_trisurf(xs, ys, faces, zs)
|
||||||
|
else:
|
||||||
|
ax.plot_trisurf(xs, ys, faces, zs, edgecolor='none')
|
||||||
|
|
||||||
|
# Add a fake plot of a cube to force the axes to be equal lengths
|
||||||
|
max_range = numpy.array([xs.max() - xs.min(),
|
||||||
|
ys.max() - ys.min(),
|
||||||
|
zs.max() - zs.min()], dtype=float).max()
|
||||||
|
mg = numpy.mgrid[-1:2:2, -1:2:2, -1:2:2]
|
||||||
|
xbs = 0.5 * max_range * mg[0].flatten() + 0.5 * (xs.max() + xs.min())
|
||||||
|
ybs = 0.5 * max_range * mg[1].flatten() + 0.5 * (ys.max() + ys.min())
|
||||||
|
zbs = 0.5 * max_range * mg[2].flatten() + 0.5 * (zs.max() + zs.min())
|
||||||
|
# Comment or uncomment following both lines to test the fake bounding box:
|
||||||
|
for xb, yb, zb in zip(xbs, ybs, zbs):
|
||||||
|
ax.plot([xb], [yb], [zb], 'w')
|
||||||
|
|
||||||
|
pyplot.show()
|
13
setup.py
Normal file
13
setup.py
Normal file
@ -0,0 +1,13 @@
|
|||||||
|
#!/usr/bin/env python
|
||||||
|
|
||||||
|
from distutils.core import setup
|
||||||
|
|
||||||
|
setup(name='masque',
|
||||||
|
version='0.1',
|
||||||
|
description='Lithography mask library',
|
||||||
|
author='Jan Petykiewicz',
|
||||||
|
author_email='anewusername@gmail.com',
|
||||||
|
url='https://mpxd.net/gogs/jan/masque',
|
||||||
|
packages=['masque'],
|
||||||
|
)
|
||||||
|
|
Loading…
Reference in New Issue
Block a user