refactor to avoid class-scoped imports
This commit is contained in:
parent
f84a75f35a
commit
8c33a39c02
198
gridlock/base.py
Normal file
198
gridlock/base.py
Normal file
@ -0,0 +1,198 @@
|
||||
from typing import ClassVar, Self, Protocol
|
||||
from collections.abc import Callable, Sequence
|
||||
|
||||
import numpy
|
||||
from numpy.typing import NDArray, ArrayLike
|
||||
|
||||
from . import GridError
|
||||
|
||||
|
||||
class GridBase(Protocol):
|
||||
exyz: list[NDArray]
|
||||
"""Cell edges. Monotonically increasing without duplicates."""
|
||||
|
||||
periodic: list[bool]
|
||||
"""For each axis, determines how far the rightmost boundary gets shifted. """
|
||||
|
||||
shifts: NDArray
|
||||
"""Offsets `[[x0, y0, z0], [x1, y1, z1], ...]` for grid `0,1,...`"""
|
||||
|
||||
@property
|
||||
def dxyz(self) -> list[NDArray]:
|
||||
"""
|
||||
Cell sizes for each axis, no shifts applied
|
||||
|
||||
Returns:
|
||||
List of 3 ndarrays of cell sizes
|
||||
"""
|
||||
return [numpy.diff(ee) for ee in self.exyz]
|
||||
|
||||
@property
|
||||
def xyz(self) -> list[NDArray]:
|
||||
"""
|
||||
Cell centers for each axis, no shifts applied
|
||||
|
||||
Returns:
|
||||
List of 3 ndarrays of cell edges
|
||||
"""
|
||||
return [self.exyz[a][:-1] + self.dxyz[a] / 2.0 for a in range(3)]
|
||||
|
||||
@property
|
||||
def shape(self) -> NDArray[numpy.int_]:
|
||||
"""
|
||||
The number of cells in x, y, and z
|
||||
|
||||
Returns:
|
||||
ndarray of [x_centers.size, y_centers.size, z_centers.size]
|
||||
"""
|
||||
return numpy.array([coord.size - 1 for coord in self.exyz], dtype=int)
|
||||
|
||||
@property
|
||||
def num_grids(self) -> int:
|
||||
"""
|
||||
The number of grids (number of shifts)
|
||||
"""
|
||||
return self.shifts.shape[0]
|
||||
|
||||
@property
|
||||
def cell_data_shape(self):
|
||||
"""
|
||||
The shape of the cell_data ndarray (num_grids, *self.shape).
|
||||
"""
|
||||
return numpy.hstack((self.num_grids, self.shape))
|
||||
|
||||
@property
|
||||
def dxyz_with_ghost(self) -> list[NDArray]:
|
||||
"""
|
||||
Gives dxyz with an additional 'ghost' cell at the end, whose value depends
|
||||
on whether or not the axis has periodic boundary conditions. See main description
|
||||
above to learn why this is necessary.
|
||||
|
||||
If periodic, final edge shifts same amount as first
|
||||
Otherwise, final edge shifts same amount as second-to-last
|
||||
|
||||
Returns:
|
||||
list of [dxs, dys, dzs] with each element same length as elements of `self.xyz`
|
||||
"""
|
||||
el = [0 if p else -1 for p in self.periodic]
|
||||
return [numpy.hstack((self.dxyz[a], self.dxyz[a][e])) for a, e in zip(range(3), el, strict=True)]
|
||||
|
||||
@property
|
||||
def center(self) -> NDArray[numpy.float64]:
|
||||
"""
|
||||
Center position of the entire grid, no shifts applied
|
||||
|
||||
Returns:
|
||||
ndarray of [x_center, y_center, z_center]
|
||||
"""
|
||||
# center is just average of first and last xyz, which is just the average of the
|
||||
# first two and last two exyz
|
||||
centers = [(self.exyz[a][:2] + self.exyz[a][-2:]).sum() / 4.0 for a in range(3)]
|
||||
return numpy.array(centers, dtype=float)
|
||||
|
||||
@property
|
||||
def dxyz_limits(self) -> tuple[NDArray, NDArray]:
|
||||
"""
|
||||
Returns the minimum and maximum cell size for each axis, as a tuple of two 3-element
|
||||
ndarrays. No shifts are applied, so these are extreme bounds on these values (as a
|
||||
weighted average is performed when shifting).
|
||||
|
||||
Returns:
|
||||
Tuple of 2 ndarrays, `d_min=[min(dx), min(dy), min(dz)]` and `d_max=[...]`
|
||||
"""
|
||||
d_min = numpy.array([min(self.dxyz[a]) for a in range(3)], dtype=float)
|
||||
d_max = numpy.array([max(self.dxyz[a]) for a in range(3)], dtype=float)
|
||||
return d_min, d_max
|
||||
|
||||
def shifted_exyz(self, which_shifts: int | None) -> list[NDArray]:
|
||||
"""
|
||||
Returns edges for which_shifts.
|
||||
|
||||
Args:
|
||||
which_shifts: Which grid (which shifts) to use, or `None` for unshifted
|
||||
|
||||
Returns:
|
||||
List of 3 ndarrays of cell edges
|
||||
"""
|
||||
if which_shifts is None:
|
||||
return self.exyz
|
||||
dxyz = self.dxyz_with_ghost
|
||||
shifts = self.shifts[which_shifts, :]
|
||||
|
||||
# If shift is negative, use left cell's dx to determine shift
|
||||
for a in range(3):
|
||||
if shifts[a] < 0:
|
||||
dxyz[a] = numpy.roll(dxyz[a], 1)
|
||||
|
||||
return [self.exyz[a] + dxyz[a] * shifts[a] for a in range(3)]
|
||||
|
||||
def shifted_dxyz(self, which_shifts: int | None) -> list[NDArray]:
|
||||
"""
|
||||
Returns cell sizes for `which_shifts`.
|
||||
|
||||
Args:
|
||||
which_shifts: Which grid (which shifts) to use, or `None` for unshifted
|
||||
|
||||
Returns:
|
||||
List of 3 ndarrays of cell sizes
|
||||
"""
|
||||
if which_shifts is None:
|
||||
return self.dxyz
|
||||
shifts = self.shifts[which_shifts, :]
|
||||
dxyz = self.dxyz_with_ghost
|
||||
|
||||
# If shift is negative, use left cell's dx to determine size
|
||||
sdxyz = []
|
||||
for a in range(3):
|
||||
if shifts[a] < 0:
|
||||
roll_dxyz = numpy.roll(dxyz[a], 1)
|
||||
abs_shift = numpy.abs(shifts[a])
|
||||
sdxyz.append(roll_dxyz[:-1] * abs_shift + roll_dxyz[1:] * (1 - abs_shift))
|
||||
else:
|
||||
sdxyz.append(dxyz[a][:-1] * (1 - shifts[a]) + dxyz[a][1:] * shifts[a])
|
||||
|
||||
return sdxyz
|
||||
|
||||
def shifted_xyz(self, which_shifts: int | None) -> list[NDArray[numpy.float64]]:
|
||||
"""
|
||||
Returns cell centers for `which_shifts`.
|
||||
|
||||
Args:
|
||||
which_shifts: Which grid (which shifts) to use, or `None` for unshifted
|
||||
|
||||
Returns:
|
||||
List of 3 ndarrays of cell centers
|
||||
"""
|
||||
if which_shifts is None:
|
||||
return self.xyz
|
||||
exyz = self.shifted_exyz(which_shifts)
|
||||
dxyz = self.shifted_dxyz(which_shifts)
|
||||
return [exyz[a][:-1] + dxyz[a] / 2.0 for a in range(3)]
|
||||
|
||||
def autoshifted_dxyz(self) -> list[NDArray[numpy.float64]]:
|
||||
"""
|
||||
Return cell widths, with each dimension shifted by the corresponding shifts.
|
||||
|
||||
Returns:
|
||||
`[grid.shifted_dxyz(which_shifts=a)[a] for a in range(3)]`
|
||||
"""
|
||||
if self.num_grids != 3:
|
||||
raise GridError('Autoshifting requires exactly 3 grids')
|
||||
return [self.shifted_dxyz(which_shifts=a)[a] for a in range(3)]
|
||||
|
||||
def allocate(self, fill_value: float | None = 1.0, dtype=numpy.float32) -> NDArray:
|
||||
"""
|
||||
Allocate an ndarray for storing grid data.
|
||||
|
||||
Args:
|
||||
fill_value: Value to initialize the grid to. If None, an
|
||||
uninitialized array is returned.
|
||||
dtype: Numpy dtype for the array. Default is `numpy.float32`.
|
||||
|
||||
Returns:
|
||||
The allocated array
|
||||
"""
|
||||
if fill_value is None:
|
||||
return numpy.empty(self.cell_data_shape, dtype=dtype)
|
||||
else:
|
||||
return numpy.full(self.cell_data_shape, fill_value, dtype=dtype)
|
681
gridlock/draw.py
681
gridlock/draw.py
@ -1,13 +1,16 @@
|
||||
"""
|
||||
Drawing-related methods for Grid class
|
||||
"""
|
||||
from typing import Union, Sequence, Callable
|
||||
from typing import Union
|
||||
from collections.abc import Sequence, Callable
|
||||
|
||||
import numpy
|
||||
from numpy.typing import NDArray, ArrayLike
|
||||
from float_raster import raster
|
||||
|
||||
from . import GridError
|
||||
from .base import GridBase
|
||||
from .position import GridPosMixin
|
||||
|
||||
|
||||
# NOTE: Maybe it would make sense to create a GridDrawer class
|
||||
@ -20,372 +23,374 @@ foreground_callable_t = Callable[[NDArray, NDArray, NDArray], NDArray]
|
||||
foreground_t = Union[float, foreground_callable_t]
|
||||
|
||||
|
||||
def draw_polygons(
|
||||
self,
|
||||
cell_data: NDArray,
|
||||
surface_normal: int,
|
||||
center: ArrayLike,
|
||||
polygons: Sequence[NDArray],
|
||||
thickness: float,
|
||||
foreground: Sequence[foreground_t] | foreground_t,
|
||||
) -> None:
|
||||
"""
|
||||
Draw polygons on an axis-aligned plane.
|
||||
class GridDrawMixin(GridPosMixin):
|
||||
def draw_polygons(
|
||||
self,
|
||||
cell_data: NDArray,
|
||||
surface_normal: int,
|
||||
center: ArrayLike,
|
||||
polygons: Sequence[ArrayLike],
|
||||
thickness: float,
|
||||
foreground: Sequence[foreground_t] | foreground_t,
|
||||
) -> None:
|
||||
"""
|
||||
Draw polygons on an axis-aligned plane.
|
||||
|
||||
Args:
|
||||
cell_data: Cell data to modify (e.g. created by `Grid.allocate()`)
|
||||
surface_normal: Axis normal to the plane we're drawing on. Integer in `range(3)`.
|
||||
center: 3-element ndarray or list specifying an offset applied to all the polygons
|
||||
polygons: List of Nx2 or Nx3 ndarrays, each specifying the vertices of a polygon
|
||||
(non-closed, clockwise). If Nx3, the `surface_normal` coordinate is ignored. Each
|
||||
polygon must have at least 3 vertices.
|
||||
thickness: Thickness of the layer to draw
|
||||
foreground: Value to draw with ('brush color'). Can be scalar, callable, or a list
|
||||
of any of these (1 per grid). Callable values should take an ndarray the shape of the
|
||||
grid and return an ndarray of equal shape containing the foreground value at the given x, y,
|
||||
and z (natural, not grid coordinates).
|
||||
Args:
|
||||
cell_data: Cell data to modify (e.g. created by `Grid.allocate()`)
|
||||
surface_normal: Axis normal to the plane we're drawing on. Integer in `range(3)`.
|
||||
center: 3-element ndarray or list specifying an offset applied to all the polygons
|
||||
polygons: List of Nx2 or Nx3 ndarrays, each specifying the vertices of a polygon
|
||||
(non-closed, clockwise). If Nx3, the `surface_normal` coordinate is ignored. Each
|
||||
polygon must have at least 3 vertices.
|
||||
thickness: Thickness of the layer to draw
|
||||
foreground: Value to draw with ('brush color'). Can be scalar, callable, or a list
|
||||
of any of these (1 per grid). Callable values should take an ndarray the shape of the
|
||||
grid and return an ndarray of equal shape containing the foreground value at the given x, y,
|
||||
and z (natural, not grid coordinates).
|
||||
|
||||
Raises:
|
||||
GridError
|
||||
"""
|
||||
if surface_normal not in range(3):
|
||||
raise GridError('Invalid surface_normal direction')
|
||||
|
||||
center = numpy.squeeze(center)
|
||||
|
||||
# Check polygons, and remove redundant coordinates
|
||||
surface = numpy.delete(range(3), surface_normal)
|
||||
|
||||
for i, polygon in enumerate(polygons):
|
||||
malformed = f'Malformed polygon: ({i})'
|
||||
if polygon.shape[1] not in (2, 3):
|
||||
raise GridError(malformed + 'must be a Nx2 or Nx3 ndarray')
|
||||
if polygon.shape[1] == 3:
|
||||
polygon = polygon[surface, :]
|
||||
|
||||
if not polygon.shape[0] > 2:
|
||||
raise GridError(malformed + 'must consist of more than 2 points')
|
||||
if polygon.ndim > 2 and not numpy.unique(polygon[:, surface_normal]).size == 1:
|
||||
raise GridError(malformed + 'must be in plane with surface normal '
|
||||
+ 'xyz'[surface_normal])
|
||||
|
||||
# Broadcast foreground where necessary
|
||||
foregrounds: Sequence[foreground_callable_t] | Sequence[float]
|
||||
if numpy.size(foreground) == 1: # type: ignore
|
||||
foregrounds = [foreground] * len(cell_data) # type: ignore
|
||||
elif isinstance(foreground, numpy.ndarray):
|
||||
raise GridError('ndarray not supported for foreground')
|
||||
else:
|
||||
foregrounds = foreground # type: ignore
|
||||
|
||||
# ## Compute sub-domain of the grid occupied by polygons
|
||||
# 1) Compute outer bounds (bd) of polygons
|
||||
bd_2d_min = numpy.array([0, 0])
|
||||
bd_2d_max = numpy.array([0, 0])
|
||||
for polygon in polygons:
|
||||
bd_2d_min = numpy.minimum(bd_2d_min, polygon.min(axis=0))
|
||||
bd_2d_max = numpy.maximum(bd_2d_max, polygon.max(axis=0))
|
||||
bd_min = numpy.insert(bd_2d_min, surface_normal, -thickness / 2.0) + center
|
||||
bd_max = numpy.insert(bd_2d_max, surface_normal, +thickness / 2.0) + center
|
||||
|
||||
# 2) Find indices (bdi) just outside bd elements
|
||||
buf = 2 # size of safety buffer
|
||||
# Use s_min and s_max with unshifted pos2ind to get absolute limits on
|
||||
# the indices the polygons might affect
|
||||
s_min = self.shifts.min(axis=0)
|
||||
s_max = self.shifts.max(axis=0)
|
||||
bdi_min = self.pos2ind(bd_min + s_min, None, round_ind=False, check_bounds=False) - buf
|
||||
bdi_max = self.pos2ind(bd_max + s_max, None, round_ind=False, check_bounds=False) + buf
|
||||
bdi_min = numpy.maximum(numpy.floor(bdi_min), 0).astype(int)
|
||||
bdi_max = numpy.minimum(numpy.ceil(bdi_max), self.shape - 1).astype(int)
|
||||
|
||||
# 3) Adjust polygons for center
|
||||
polygons = [poly + center[surface] for poly in polygons]
|
||||
|
||||
# ## Generate weighing function
|
||||
def to_3d(vector: NDArray, val: float = 0.0) -> NDArray[numpy.float64]:
|
||||
v_2d = numpy.array(vector, dtype=float)
|
||||
return numpy.insert(v_2d, surface_normal, (val,))
|
||||
|
||||
# iterate over grids
|
||||
for i, _ in enumerate(cell_data):
|
||||
# ## Evaluate or expand foregrounds[i]
|
||||
foregrounds_i = foregrounds[i]
|
||||
if callable(foregrounds_i):
|
||||
# meshgrid over the (shifted) domain
|
||||
domain = [self.shifted_xyz(i)[k][bdi_min[k]:bdi_max[k] + 1] for k in range(3)]
|
||||
(x0, y0, z0) = numpy.meshgrid(*domain, indexing='ij')
|
||||
|
||||
# evaluate on the meshgrid
|
||||
foreground_val = foregrounds_i(x0, y0, z0)
|
||||
if not numpy.isfinite(foreground_val).all():
|
||||
raise GridError(f'Non-finite values in foreground[{i}]')
|
||||
elif numpy.size(foregrounds_i) != 1:
|
||||
raise GridError(f'Unsupported foreground[{i}]: {type(foregrounds_i)}')
|
||||
else:
|
||||
# foreground[i] is scalar non-callable
|
||||
foreground_val = foregrounds_i
|
||||
|
||||
w_xy = numpy.zeros((bdi_max - bdi_min + 1)[surface].astype(int))
|
||||
|
||||
# Draw each polygon separately
|
||||
for polygon in polygons:
|
||||
|
||||
# Get the boundaries of the polygon
|
||||
pbd_min = polygon.min(axis=0)
|
||||
pbd_max = polygon.max(axis=0)
|
||||
|
||||
# Find indices in w_xy just outside polygon
|
||||
# using per-grid xy-weights (self.shifted_xyz())
|
||||
corner_min = self.pos2ind(to_3d(pbd_min), i,
|
||||
check_bounds=False)[surface].astype(int)
|
||||
corner_max = self.pos2ind(to_3d(pbd_max), i,
|
||||
check_bounds=False)[surface].astype(int)
|
||||
|
||||
# Find indices in w_xy which are modified by polygon
|
||||
# First for the edge coordinates (+1 since we're indexing edges)
|
||||
edge_slices = [numpy.s_[i:f + 2] for i, f in zip(corner_min, corner_max, strict=True)]
|
||||
# Then for the pixel centers (-bdi_min since we're
|
||||
# calculating weights within a subspace)
|
||||
centers_slice = tuple(numpy.s_[i:f + 1] for i, f in zip(corner_min - bdi_min[surface],
|
||||
corner_max - bdi_min[surface], strict=True))
|
||||
|
||||
aa_x, aa_y = (self.shifted_exyz(i)[a][s] for a, s in zip(surface, edge_slices, strict=True))
|
||||
w_xy[centers_slice] += raster(polygon.T, aa_x, aa_y)
|
||||
|
||||
# Clamp overlapping polygons to 1
|
||||
w_xy = numpy.minimum(w_xy, 1.0)
|
||||
|
||||
# 2) Generate weights in z-direction
|
||||
w_z = numpy.zeros(((bdi_max - bdi_min + 1)[surface_normal], ))
|
||||
|
||||
def get_zi(offset, i=i, w_z=w_z):
|
||||
edges = self.shifted_exyz(i)[surface_normal]
|
||||
point = center[surface_normal] + offset
|
||||
grid_coord = numpy.digitize(point, edges) - 1
|
||||
w_coord = grid_coord - bdi_min[surface_normal]
|
||||
|
||||
if w_coord < 0:
|
||||
w_coord = 0
|
||||
f = 0
|
||||
elif w_coord >= w_z.size:
|
||||
w_coord = w_z.size - 1
|
||||
f = 1
|
||||
else:
|
||||
dz = self.shifted_dxyz(i)[surface_normal][grid_coord]
|
||||
f = (point - edges[grid_coord]) / dz
|
||||
return f, w_coord
|
||||
|
||||
zi_top_f, zi_top = get_zi(+thickness / 2.0)
|
||||
zi_bot_f, zi_bot = get_zi(-thickness / 2.0)
|
||||
|
||||
w_z[zi_bot + 1:zi_top] = 1
|
||||
|
||||
if zi_bot < zi_top:
|
||||
w_z[zi_top] = zi_top_f
|
||||
w_z[zi_bot] = 1 - zi_bot_f
|
||||
else:
|
||||
w_z[zi_bot] = zi_top_f - zi_bot_f
|
||||
|
||||
# 3) Generate total weight function
|
||||
w = (w_xy[:, :, None] * w_z).transpose(numpy.insert([0, 1], surface_normal, (2,)))
|
||||
|
||||
# ## Modify the grid
|
||||
g_slice = (i,) + tuple(numpy.s_[bdi_min[a]:bdi_max[a] + 1] for a in range(3))
|
||||
cell_data[g_slice] = (1 - w) * cell_data[g_slice] + w * foreground_val
|
||||
|
||||
|
||||
def draw_polygon(
|
||||
self,
|
||||
cell_data: NDArray,
|
||||
surface_normal: int,
|
||||
center: ArrayLike,
|
||||
polygon: ArrayLike,
|
||||
thickness: float,
|
||||
foreground: Sequence[foreground_t] | foreground_t,
|
||||
) -> None:
|
||||
"""
|
||||
Draw a polygon on an axis-aligned plane.
|
||||
|
||||
Args:
|
||||
cell_data: Cell data to modify (e.g. created by `Grid.allocate()`)
|
||||
surface_normal: Axis normal to the plane we're drawing on. Integer in `range(3)`.
|
||||
center: 3-element ndarray or list specifying an offset applied to the polygon
|
||||
polygon: Nx2 or Nx3 ndarray specifying the vertices of a polygon (non-closed,
|
||||
clockwise). If Nx3, the `surface_normal` coordinate is ignored. Must have at
|
||||
least 3 vertices.
|
||||
thickness: Thickness of the layer to draw
|
||||
foreground: Value to draw with ('brush color'). See `draw_polygons()` for details.
|
||||
"""
|
||||
self.draw_polygons(cell_data, surface_normal, center, [polygon], thickness, foreground)
|
||||
|
||||
|
||||
def draw_slab(
|
||||
self,
|
||||
cell_data: NDArray,
|
||||
surface_normal: int,
|
||||
center: ArrayLike,
|
||||
thickness: float,
|
||||
foreground: Sequence[foreground_t] | foreground_t,
|
||||
) -> None:
|
||||
"""
|
||||
Draw an axis-aligned infinite slab.
|
||||
|
||||
Args:
|
||||
cell_data: Cell data to modify (e.g. created by `Grid.allocate()`)
|
||||
surface_normal: Axis normal to the plane we're drawing on. Integer in `range(3)`.
|
||||
center: `surface_normal` coordinate value at the center of the slab
|
||||
thickness: Thickness of the layer to draw
|
||||
foreground: Value to draw with ('brush color'). See `draw_polygons()` for details.
|
||||
"""
|
||||
# Turn surface_normal into its integer representation
|
||||
if surface_normal not in range(3):
|
||||
raise GridError('Invalid surface_normal direction')
|
||||
|
||||
if numpy.size(center) != 1:
|
||||
Raises:
|
||||
GridError
|
||||
"""
|
||||
if surface_normal not in range(3):
|
||||
raise GridError('Invalid surface_normal direction')
|
||||
center = numpy.squeeze(center)
|
||||
if len(center) == 3:
|
||||
center = center[surface_normal]
|
||||
poly_list = [numpy.array(poly, copy=False) for poly in polygons]
|
||||
|
||||
# Check polygons, and remove redundant coordinates
|
||||
surface = numpy.delete(range(3), surface_normal)
|
||||
|
||||
for i, polygon in enumerate(poly_list):
|
||||
malformed = f'Malformed polygon: ({i})'
|
||||
if polygon.shape[1] not in (2, 3):
|
||||
raise GridError(malformed + 'must be a Nx2 or Nx3 ndarray')
|
||||
if polygon.shape[1] == 3:
|
||||
polygon = polygon[surface, :]
|
||||
|
||||
if not polygon.shape[0] > 2:
|
||||
raise GridError(malformed + 'must consist of more than 2 points')
|
||||
if polygon.ndim > 2 and not numpy.unique(polygon[:, surface_normal]).size == 1:
|
||||
raise GridError(malformed + 'must be in plane with surface normal '
|
||||
+ 'xyz'[surface_normal])
|
||||
|
||||
# Broadcast foreground where necessary
|
||||
foregrounds: Sequence[foreground_callable_t] | Sequence[float]
|
||||
if numpy.size(foreground) == 1: # type: ignore
|
||||
foregrounds = [foreground] * len(cell_data) # type: ignore
|
||||
elif isinstance(foreground, numpy.ndarray):
|
||||
raise GridError('ndarray not supported for foreground')
|
||||
else:
|
||||
raise GridError(f'Bad center: {center}')
|
||||
foregrounds = foreground # type: ignore
|
||||
|
||||
# Find center of slab
|
||||
center_shift = self.center
|
||||
center_shift[surface_normal] = center
|
||||
# ## Compute sub-domain of the grid occupied by polygons
|
||||
# 1) Compute outer bounds (bd) of polygons
|
||||
bd_2d_min = numpy.array([0, 0])
|
||||
bd_2d_max = numpy.array([0, 0])
|
||||
for polygon in poly_list:
|
||||
bd_2d_min = numpy.minimum(bd_2d_min, polygon.min(axis=0))
|
||||
bd_2d_max = numpy.maximum(bd_2d_max, polygon.max(axis=0))
|
||||
bd_min = numpy.insert(bd_2d_min, surface_normal, -thickness / 2.0) + center
|
||||
bd_max = numpy.insert(bd_2d_max, surface_normal, +thickness / 2.0) + center
|
||||
|
||||
surface = numpy.delete(range(3), surface_normal)
|
||||
# 2) Find indices (bdi) just outside bd elements
|
||||
buf = 2 # size of safety buffer
|
||||
# Use s_min and s_max with unshifted pos2ind to get absolute limits on
|
||||
# the indices the polygons might affect
|
||||
s_min = self.shifts.min(axis=0)
|
||||
s_max = self.shifts.max(axis=0)
|
||||
bdi_min = self.pos2ind(bd_min + s_min, None, round_ind=False, check_bounds=False) - buf
|
||||
bdi_max = self.pos2ind(bd_max + s_max, None, round_ind=False, check_bounds=False) + buf
|
||||
bdi_min = numpy.maximum(numpy.floor(bdi_min), 0).astype(int)
|
||||
bdi_max = numpy.minimum(numpy.ceil(bdi_max), self.shape - 1).astype(int)
|
||||
|
||||
xyz_min = numpy.array([self.xyz[a][0] for a in range(3)], dtype=float)[surface]
|
||||
xyz_max = numpy.array([self.xyz[a][-1] for a in range(3)], dtype=float)[surface]
|
||||
# 3) Adjust polygons for center
|
||||
poly_list = [poly + center[surface] for poly in poly_list]
|
||||
|
||||
dxyz = numpy.array([max(self.dxyz[i]) for i in surface], dtype=float)
|
||||
# ## Generate weighing function
|
||||
def to_3d(vector: NDArray, val: float = 0.0) -> NDArray[numpy.float64]:
|
||||
v_2d = numpy.array(vector, dtype=float)
|
||||
return numpy.insert(v_2d, surface_normal, (val,))
|
||||
|
||||
xyz_min -= 4 * dxyz
|
||||
xyz_max += 4 * dxyz
|
||||
# iterate over grids
|
||||
foreground_val: NDArray | float
|
||||
for i, _ in enumerate(cell_data):
|
||||
# ## Evaluate or expand foregrounds[i]
|
||||
foregrounds_i = foregrounds[i]
|
||||
if callable(foregrounds_i):
|
||||
# meshgrid over the (shifted) domain
|
||||
domain = [self.shifted_xyz(i)[k][bdi_min[k]:bdi_max[k] + 1] for k in range(3)]
|
||||
(x0, y0, z0) = numpy.meshgrid(*domain, indexing='ij')
|
||||
|
||||
p = numpy.array([[xyz_min[0], xyz_max[1]],
|
||||
[xyz_max[0], xyz_max[1]],
|
||||
[xyz_max[0], xyz_min[1]],
|
||||
[xyz_min[0], xyz_min[1]]], dtype=float)
|
||||
# evaluate on the meshgrid
|
||||
foreground_val = foregrounds_i(x0, y0, z0)
|
||||
if not numpy.isfinite(foreground_val).all():
|
||||
raise GridError(f'Non-finite values in foreground[{i}]')
|
||||
elif numpy.size(foregrounds_i) != 1:
|
||||
raise GridError(f'Unsupported foreground[{i}]: {type(foregrounds_i)}')
|
||||
else:
|
||||
# foreground[i] is scalar non-callable
|
||||
foreground_val = foregrounds_i
|
||||
|
||||
self.draw_polygon(cell_data, surface_normal, center_shift, p, thickness, foreground)
|
||||
w_xy = numpy.zeros((bdi_max - bdi_min + 1)[surface].astype(int))
|
||||
|
||||
# Draw each polygon separately
|
||||
for polygon in poly_list:
|
||||
|
||||
# Get the boundaries of the polygon
|
||||
pbd_min = polygon.min(axis=0)
|
||||
pbd_max = polygon.max(axis=0)
|
||||
|
||||
# Find indices in w_xy just outside polygon
|
||||
# using per-grid xy-weights (self.shifted_xyz())
|
||||
corner_min = self.pos2ind(to_3d(pbd_min), i,
|
||||
check_bounds=False)[surface].astype(int)
|
||||
corner_max = self.pos2ind(to_3d(pbd_max), i,
|
||||
check_bounds=False)[surface].astype(int)
|
||||
|
||||
# Find indices in w_xy which are modified by polygon
|
||||
# First for the edge coordinates (+1 since we're indexing edges)
|
||||
edge_slices = [numpy.s_[i:f + 2] for i, f in zip(corner_min, corner_max, strict=True)]
|
||||
# Then for the pixel centers (-bdi_min since we're
|
||||
# calculating weights within a subspace)
|
||||
centers_slice = tuple(numpy.s_[i:f + 1] for i, f in zip(corner_min - bdi_min[surface],
|
||||
corner_max - bdi_min[surface], strict=True))
|
||||
|
||||
aa_x, aa_y = (self.shifted_exyz(i)[a][s] for a, s in zip(surface, edge_slices, strict=True))
|
||||
w_xy[centers_slice] += raster(polygon.T, aa_x, aa_y)
|
||||
|
||||
# Clamp overlapping polygons to 1
|
||||
w_xy = numpy.minimum(w_xy, 1.0)
|
||||
|
||||
# 2) Generate weights in z-direction
|
||||
w_z = numpy.zeros(((bdi_max - bdi_min + 1)[surface_normal], ))
|
||||
|
||||
def get_zi(offset, i=i, w_z=w_z):
|
||||
edges = self.shifted_exyz(i)[surface_normal]
|
||||
point = center[surface_normal] + offset
|
||||
grid_coord = numpy.digitize(point, edges) - 1
|
||||
w_coord = grid_coord - bdi_min[surface_normal]
|
||||
|
||||
if w_coord < 0:
|
||||
w_coord = 0
|
||||
f = 0
|
||||
elif w_coord >= w_z.size:
|
||||
w_coord = w_z.size - 1
|
||||
f = 1
|
||||
else:
|
||||
dz = self.shifted_dxyz(i)[surface_normal][grid_coord]
|
||||
f = (point - edges[grid_coord]) / dz
|
||||
return f, w_coord
|
||||
|
||||
zi_top_f, zi_top = get_zi(+thickness / 2.0)
|
||||
zi_bot_f, zi_bot = get_zi(-thickness / 2.0)
|
||||
|
||||
w_z[zi_bot + 1:zi_top] = 1
|
||||
|
||||
if zi_bot < zi_top:
|
||||
w_z[zi_top] = zi_top_f
|
||||
w_z[zi_bot] = 1 - zi_bot_f
|
||||
else:
|
||||
w_z[zi_bot] = zi_top_f - zi_bot_f
|
||||
|
||||
# 3) Generate total weight function
|
||||
w = (w_xy[:, :, None] * w_z).transpose(numpy.insert([0, 1], surface_normal, (2,)))
|
||||
|
||||
# ## Modify the grid
|
||||
g_slice = (i,) + tuple(numpy.s_[bdi_min[a]:bdi_max[a] + 1] for a in range(3))
|
||||
cell_data[g_slice] = (1 - w) * cell_data[g_slice] + w * foreground_val
|
||||
|
||||
|
||||
def draw_cuboid(
|
||||
self,
|
||||
cell_data: NDArray,
|
||||
center: ArrayLike,
|
||||
dimensions: ArrayLike,
|
||||
foreground: Sequence[foreground_t] | foreground_t,
|
||||
) -> None:
|
||||
"""
|
||||
Draw an axis-aligned cuboid
|
||||
def draw_polygon(
|
||||
self,
|
||||
cell_data: NDArray,
|
||||
surface_normal: int,
|
||||
center: ArrayLike,
|
||||
polygon: ArrayLike,
|
||||
thickness: float,
|
||||
foreground: Sequence[foreground_t] | foreground_t,
|
||||
) -> None:
|
||||
"""
|
||||
Draw a polygon on an axis-aligned plane.
|
||||
|
||||
Args:
|
||||
cell_data: Cell data to modify (e.g. created by `Grid.allocate()`)
|
||||
center: 3-element ndarray or list specifying the cuboid's center
|
||||
dimensions: 3-element list or ndarray containing the x, y, and z edge-to-edge
|
||||
sizes of the cuboid
|
||||
foreground: Value to draw with ('brush color'). See `draw_polygons()` for details.
|
||||
"""
|
||||
dimensions = numpy.array(dimensions, copy=False)
|
||||
p = numpy.array([[-dimensions[0], +dimensions[1]],
|
||||
[+dimensions[0], +dimensions[1]],
|
||||
[+dimensions[0], -dimensions[1]],
|
||||
[-dimensions[0], -dimensions[1]]], dtype=float) / 2.0
|
||||
thickness = dimensions[2]
|
||||
self.draw_polygon(cell_data, 2, center, p, thickness, foreground)
|
||||
Args:
|
||||
cell_data: Cell data to modify (e.g. created by `Grid.allocate()`)
|
||||
surface_normal: Axis normal to the plane we're drawing on. Integer in `range(3)`.
|
||||
center: 3-element ndarray or list specifying an offset applied to the polygon
|
||||
polygon: Nx2 or Nx3 ndarray specifying the vertices of a polygon (non-closed,
|
||||
clockwise). If Nx3, the `surface_normal` coordinate is ignored. Must have at
|
||||
least 3 vertices.
|
||||
thickness: Thickness of the layer to draw
|
||||
foreground: Value to draw with ('brush color'). See `draw_polygons()` for details.
|
||||
"""
|
||||
self.draw_polygons(cell_data, surface_normal, center, [polygon], thickness, foreground)
|
||||
|
||||
|
||||
def draw_cylinder(
|
||||
self,
|
||||
cell_data: NDArray,
|
||||
surface_normal: int,
|
||||
center: ArrayLike,
|
||||
radius: float,
|
||||
thickness: float,
|
||||
num_points: int,
|
||||
foreground: Sequence[foreground_t] | foreground_t,
|
||||
) -> None:
|
||||
"""
|
||||
Draw an axis-aligned cylinder. Approximated by a num_points-gon
|
||||
def draw_slab(
|
||||
self,
|
||||
cell_data: NDArray,
|
||||
surface_normal: int,
|
||||
center: ArrayLike,
|
||||
thickness: float,
|
||||
foreground: Sequence[foreground_t] | foreground_t,
|
||||
) -> None:
|
||||
"""
|
||||
Draw an axis-aligned infinite slab.
|
||||
|
||||
Args:
|
||||
cell_data: Cell data to modify (e.g. created by `Grid.allocate()`)
|
||||
surface_normal: Axis normal to the plane we're drawing on. Integer in `range(3)`.
|
||||
center: 3-element ndarray or list specifying the cylinder's center
|
||||
radius: cylinder radius
|
||||
thickness: Thickness of the layer to draw
|
||||
num_points: The circle is approximated by a polygon with `num_points` vertices
|
||||
foreground: Value to draw with ('brush color'). See `draw_polygons()` for details.
|
||||
"""
|
||||
theta = numpy.linspace(0, 2 * numpy.pi, num_points, endpoint=False)
|
||||
x = radius * numpy.sin(theta)
|
||||
y = radius * numpy.cos(theta)
|
||||
polygon = numpy.hstack((x[:, None], y[:, None]))
|
||||
self.draw_polygon(cell_data, surface_normal, center, polygon, thickness, foreground)
|
||||
Args:
|
||||
cell_data: Cell data to modify (e.g. created by `Grid.allocate()`)
|
||||
surface_normal: Axis normal to the plane we're drawing on. Integer in `range(3)`.
|
||||
center: `surface_normal` coordinate value at the center of the slab
|
||||
thickness: Thickness of the layer to draw
|
||||
foreground: Value to draw with ('brush color'). See `draw_polygons()` for details.
|
||||
"""
|
||||
# Turn surface_normal into its integer representation
|
||||
if surface_normal not in range(3):
|
||||
raise GridError('Invalid surface_normal direction')
|
||||
|
||||
if numpy.size(center) != 1:
|
||||
center = numpy.squeeze(center)
|
||||
if len(center) == 3:
|
||||
center = center[surface_normal]
|
||||
else:
|
||||
raise GridError(f'Bad center: {center}')
|
||||
|
||||
# Find center of slab
|
||||
center_shift = self.center
|
||||
center_shift[surface_normal] = center
|
||||
|
||||
surface = numpy.delete(range(3), surface_normal)
|
||||
|
||||
xyz_min = numpy.array([self.xyz[a][0] for a in range(3)], dtype=float)[surface]
|
||||
xyz_max = numpy.array([self.xyz[a][-1] for a in range(3)], dtype=float)[surface]
|
||||
|
||||
dxyz = numpy.array([max(self.dxyz[i]) for i in surface], dtype=float)
|
||||
|
||||
xyz_min -= 4 * dxyz
|
||||
xyz_max += 4 * dxyz
|
||||
|
||||
p = numpy.array([[xyz_min[0], xyz_max[1]],
|
||||
[xyz_max[0], xyz_max[1]],
|
||||
[xyz_max[0], xyz_min[1]],
|
||||
[xyz_min[0], xyz_min[1]]], dtype=float)
|
||||
|
||||
self.draw_polygon(cell_data, surface_normal, center_shift, p, thickness, foreground)
|
||||
|
||||
|
||||
def draw_extrude_rectangle(
|
||||
self,
|
||||
cell_data: NDArray,
|
||||
rectangle: ArrayLike,
|
||||
direction: int,
|
||||
polarity: int,
|
||||
distance: float,
|
||||
) -> None:
|
||||
"""
|
||||
Extrude a rectangle of a previously-drawn structure along an axis.
|
||||
def draw_cuboid(
|
||||
self,
|
||||
cell_data: NDArray,
|
||||
center: ArrayLike,
|
||||
dimensions: ArrayLike,
|
||||
foreground: Sequence[foreground_t] | foreground_t,
|
||||
) -> None:
|
||||
"""
|
||||
Draw an axis-aligned cuboid
|
||||
|
||||
Args:
|
||||
cell_data: Cell data to modify (e.g. created by `Grid.allocate()`)
|
||||
rectangle: 2x3 ndarray or list specifying the rectangle's corners
|
||||
direction: Direction to extrude in. Integer in `range(3)`.
|
||||
polarity: +1 or -1, direction along axis to extrude in
|
||||
distance: How far to extrude
|
||||
"""
|
||||
s = numpy.sign(polarity)
|
||||
Args:
|
||||
cell_data: Cell data to modify (e.g. created by `Grid.allocate()`)
|
||||
center: 3-element ndarray or list specifying the cuboid's center
|
||||
dimensions: 3-element list or ndarray containing the x, y, and z edge-to-edge
|
||||
sizes of the cuboid
|
||||
foreground: Value to draw with ('brush color'). See `draw_polygons()` for details.
|
||||
"""
|
||||
dimensions = numpy.array(dimensions, copy=False)
|
||||
p = numpy.array([[-dimensions[0], +dimensions[1]],
|
||||
[+dimensions[0], +dimensions[1]],
|
||||
[+dimensions[0], -dimensions[1]],
|
||||
[-dimensions[0], -dimensions[1]]], dtype=float) / 2.0
|
||||
thickness = dimensions[2]
|
||||
self.draw_polygon(cell_data, 2, center, p, thickness, foreground)
|
||||
|
||||
rectangle = numpy.array(rectangle, dtype=float)
|
||||
if s == 0:
|
||||
raise GridError('0 is not a valid polarity')
|
||||
if direction not in range(3):
|
||||
raise GridError(f'Invalid direction: {direction}')
|
||||
if rectangle[0, direction] != rectangle[1, direction]:
|
||||
raise GridError('Rectangle entries along extrusion direction do not match.')
|
||||
|
||||
center = rectangle.sum(axis=0) / 2.0
|
||||
center[direction] += s * distance / 2.0
|
||||
def draw_cylinder(
|
||||
self,
|
||||
cell_data: NDArray,
|
||||
surface_normal: int,
|
||||
center: ArrayLike,
|
||||
radius: float,
|
||||
thickness: float,
|
||||
num_points: int,
|
||||
foreground: Sequence[foreground_t] | foreground_t,
|
||||
) -> None:
|
||||
"""
|
||||
Draw an axis-aligned cylinder. Approximated by a num_points-gon
|
||||
|
||||
surface = numpy.delete(range(3), direction)
|
||||
Args:
|
||||
cell_data: Cell data to modify (e.g. created by `Grid.allocate()`)
|
||||
surface_normal: Axis normal to the plane we're drawing on. Integer in `range(3)`.
|
||||
center: 3-element ndarray or list specifying the cylinder's center
|
||||
radius: cylinder radius
|
||||
thickness: Thickness of the layer to draw
|
||||
num_points: The circle is approximated by a polygon with `num_points` vertices
|
||||
foreground: Value to draw with ('brush color'). See `draw_polygons()` for details.
|
||||
"""
|
||||
theta = numpy.linspace(0, 2 * numpy.pi, num_points, endpoint=False)
|
||||
x = radius * numpy.sin(theta)
|
||||
y = radius * numpy.cos(theta)
|
||||
polygon = numpy.hstack((x[:, None], y[:, None]))
|
||||
self.draw_polygon(cell_data, surface_normal, center, polygon, thickness, foreground)
|
||||
|
||||
dim = numpy.fabs(numpy.diff(rectangle, axis=0).T)[surface]
|
||||
p = numpy.vstack((numpy.array([-1, -1, 1, 1], dtype=float) * dim[0] * 0.5,
|
||||
numpy.array([-1, 1, 1, -1], dtype=float) * dim[1] * 0.5)).T
|
||||
thickness = distance
|
||||
|
||||
foreground_func = []
|
||||
for i, grid in enumerate(cell_data):
|
||||
z = self.pos2ind(rectangle[0, :], i, round_ind=False, check_bounds=False)[direction]
|
||||
def draw_extrude_rectangle(
|
||||
self,
|
||||
cell_data: NDArray,
|
||||
rectangle: ArrayLike,
|
||||
direction: int,
|
||||
polarity: int,
|
||||
distance: float,
|
||||
) -> None:
|
||||
"""
|
||||
Extrude a rectangle of a previously-drawn structure along an axis.
|
||||
|
||||
ind = [int(numpy.floor(z)) if i == direction else slice(None) for i in range(3)]
|
||||
Args:
|
||||
cell_data: Cell data to modify (e.g. created by `Grid.allocate()`)
|
||||
rectangle: 2x3 ndarray or list specifying the rectangle's corners
|
||||
direction: Direction to extrude in. Integer in `range(3)`.
|
||||
polarity: +1 or -1, direction along axis to extrude in
|
||||
distance: How far to extrude
|
||||
"""
|
||||
s = numpy.sign(polarity)
|
||||
|
||||
fpart = z - numpy.floor(z)
|
||||
mult = [1 - fpart, fpart][::s] # reverses if s negative
|
||||
rectangle = numpy.array(rectangle, dtype=float)
|
||||
if s == 0:
|
||||
raise GridError('0 is not a valid polarity')
|
||||
if direction not in range(3):
|
||||
raise GridError(f'Invalid direction: {direction}')
|
||||
if rectangle[0, direction] != rectangle[1, direction]:
|
||||
raise GridError('Rectangle entries along extrusion direction do not match.')
|
||||
|
||||
foreground = mult[0] * grid[tuple(ind)]
|
||||
ind[direction] += 1 # type: ignore #(known safe)
|
||||
foreground += mult[1] * grid[tuple(ind)]
|
||||
center = rectangle.sum(axis=0) / 2.0
|
||||
center[direction] += s * distance / 2.0
|
||||
|
||||
def f_foreground(xs, ys, zs, i=i, foreground=foreground) -> NDArray[numpy.int_]:
|
||||
# transform from natural position to index
|
||||
xyzi = numpy.array([self.pos2ind(qrs, which_shifts=i)
|
||||
for qrs in zip(xs.flat, ys.flat, zs.flat, strict=True)], dtype=int)
|
||||
# reshape to original shape and keep only in-plane components
|
||||
qi, ri = (numpy.reshape(xyzi[:, k], xs.shape) for k in surface)
|
||||
return foreground[qi, ri]
|
||||
surface = numpy.delete(range(3), direction)
|
||||
|
||||
foreground_func.append(f_foreground)
|
||||
dim = numpy.fabs(numpy.diff(rectangle, axis=0).T)[surface]
|
||||
p = numpy.vstack((numpy.array([-1, -1, 1, 1], dtype=float) * dim[0] * 0.5,
|
||||
numpy.array([-1, 1, 1, -1], dtype=float) * dim[1] * 0.5)).T
|
||||
thickness = distance
|
||||
|
||||
self.draw_polygon(cell_data, direction, center, p, thickness, foreground_func)
|
||||
foreground_func = []
|
||||
for i, grid in enumerate(cell_data):
|
||||
z = self.pos2ind(rectangle[0, :], i, round_ind=False, check_bounds=False)[direction]
|
||||
|
||||
ind = [int(numpy.floor(z)) if i == direction else slice(None) for i in range(3)]
|
||||
|
||||
fpart = z - numpy.floor(z)
|
||||
mult = [1 - fpart, fpart][::s] # reverses if s negative
|
||||
|
||||
foreground = mult[0] * grid[tuple(ind)]
|
||||
ind[direction] += 1 # type: ignore #(known safe)
|
||||
foreground += mult[1] * grid[tuple(ind)]
|
||||
|
||||
def f_foreground(xs, ys, zs, i=i, foreground=foreground) -> NDArray[numpy.int_]:
|
||||
# transform from natural position to index
|
||||
xyzi = numpy.array([self.pos2ind(qrs, which_shifts=i)
|
||||
for qrs in zip(xs.flat, ys.flat, zs.flat, strict=True)], dtype=int)
|
||||
# reshape to original shape and keep only in-plane components
|
||||
qi, ri = (numpy.reshape(xyzi[:, k], xs.shape) for k in surface)
|
||||
return foreground[qi, ri]
|
||||
|
||||
foreground_func.append(f_foreground)
|
||||
|
||||
self.draw_polygon(cell_data, direction, center, p, thickness, foreground_func)
|
||||
|
||||
|
201
gridlock/grid.py
201
gridlock/grid.py
@ -1,4 +1,5 @@
|
||||
from typing import Callable, Sequence, ClassVar, Self
|
||||
from typing import ClassVar, Self
|
||||
from collections.abc import Callable, Sequence
|
||||
|
||||
import numpy
|
||||
from numpy.typing import NDArray, ArrayLike
|
||||
@ -8,12 +9,16 @@ import warnings
|
||||
import copy
|
||||
|
||||
from . import GridError
|
||||
from .base import GridBase
|
||||
from .draw import GridDrawMixin
|
||||
from .read import GridReadMixin
|
||||
from .position import GridPosMixin
|
||||
|
||||
|
||||
foreground_callable_type = Callable[[NDArray, NDArray, NDArray], NDArray]
|
||||
|
||||
|
||||
class Grid:
|
||||
class Grid(GridDrawMixin, GridReadMixin, GridPosMixin):
|
||||
"""
|
||||
Simulation grid metadata for finite-difference simulations.
|
||||
|
||||
@ -70,193 +75,6 @@ class Grid:
|
||||
], dtype=float)
|
||||
"""Default shifts for Yee grid H-field"""
|
||||
|
||||
from .draw import (
|
||||
draw_polygons, draw_polygon, draw_slab, draw_cuboid,
|
||||
draw_cylinder, draw_extrude_rectangle,
|
||||
)
|
||||
from .read import get_slice, visualize_slice, visualize_isosurface
|
||||
from .position import ind2pos, pos2ind
|
||||
|
||||
@property
|
||||
def dxyz(self) -> list[NDArray]:
|
||||
"""
|
||||
Cell sizes for each axis, no shifts applied
|
||||
|
||||
Returns:
|
||||
List of 3 ndarrays of cell sizes
|
||||
"""
|
||||
return [numpy.diff(ee) for ee in self.exyz]
|
||||
|
||||
@property
|
||||
def xyz(self) -> list[NDArray]:
|
||||
"""
|
||||
Cell centers for each axis, no shifts applied
|
||||
|
||||
Returns:
|
||||
List of 3 ndarrays of cell edges
|
||||
"""
|
||||
return [self.exyz[a][:-1] + self.dxyz[a] / 2.0 for a in range(3)]
|
||||
|
||||
@property
|
||||
def shape(self) -> NDArray[numpy.int_]:
|
||||
"""
|
||||
The number of cells in x, y, and z
|
||||
|
||||
Returns:
|
||||
ndarray of [x_centers.size, y_centers.size, z_centers.size]
|
||||
"""
|
||||
return numpy.array([coord.size - 1 for coord in self.exyz], dtype=int)
|
||||
|
||||
@property
|
||||
def num_grids(self) -> int:
|
||||
"""
|
||||
The number of grids (number of shifts)
|
||||
"""
|
||||
return self.shifts.shape[0]
|
||||
|
||||
@property
|
||||
def cell_data_shape(self):
|
||||
"""
|
||||
The shape of the cell_data ndarray (num_grids, *self.shape).
|
||||
"""
|
||||
return numpy.hstack((self.num_grids, self.shape))
|
||||
|
||||
@property
|
||||
def dxyz_with_ghost(self) -> list[NDArray]:
|
||||
"""
|
||||
Gives dxyz with an additional 'ghost' cell at the end, whose value depends
|
||||
on whether or not the axis has periodic boundary conditions. See main description
|
||||
above to learn why this is necessary.
|
||||
|
||||
If periodic, final edge shifts same amount as first
|
||||
Otherwise, final edge shifts same amount as second-to-last
|
||||
|
||||
Returns:
|
||||
list of [dxs, dys, dzs] with each element same length as elements of `self.xyz`
|
||||
"""
|
||||
el = [0 if p else -1 for p in self.periodic]
|
||||
return [numpy.hstack((self.dxyz[a], self.dxyz[a][e])) for a, e in zip(range(3), el, strict=True)]
|
||||
|
||||
@property
|
||||
def center(self) -> NDArray[numpy.float64]:
|
||||
"""
|
||||
Center position of the entire grid, no shifts applied
|
||||
|
||||
Returns:
|
||||
ndarray of [x_center, y_center, z_center]
|
||||
"""
|
||||
# center is just average of first and last xyz, which is just the average of the
|
||||
# first two and last two exyz
|
||||
centers = [(self.exyz[a][:2] + self.exyz[a][-2:]).sum() / 4.0 for a in range(3)]
|
||||
return numpy.array(centers, dtype=float)
|
||||
|
||||
@property
|
||||
def dxyz_limits(self) -> tuple[NDArray, NDArray]:
|
||||
"""
|
||||
Returns the minimum and maximum cell size for each axis, as a tuple of two 3-element
|
||||
ndarrays. No shifts are applied, so these are extreme bounds on these values (as a
|
||||
weighted average is performed when shifting).
|
||||
|
||||
Returns:
|
||||
Tuple of 2 ndarrays, `d_min=[min(dx), min(dy), min(dz)]` and `d_max=[...]`
|
||||
"""
|
||||
d_min = numpy.array([min(self.dxyz[a]) for a in range(3)], dtype=float)
|
||||
d_max = numpy.array([max(self.dxyz[a]) for a in range(3)], dtype=float)
|
||||
return d_min, d_max
|
||||
|
||||
def shifted_exyz(self, which_shifts: int | None) -> list[NDArray]:
|
||||
"""
|
||||
Returns edges for which_shifts.
|
||||
|
||||
Args:
|
||||
which_shifts: Which grid (which shifts) to use, or `None` for unshifted
|
||||
|
||||
Returns:
|
||||
List of 3 ndarrays of cell edges
|
||||
"""
|
||||
if which_shifts is None:
|
||||
return self.exyz
|
||||
dxyz = self.dxyz_with_ghost
|
||||
shifts = self.shifts[which_shifts, :]
|
||||
|
||||
# If shift is negative, use left cell's dx to determine shift
|
||||
for a in range(3):
|
||||
if shifts[a] < 0:
|
||||
dxyz[a] = numpy.roll(dxyz[a], 1)
|
||||
|
||||
return [self.exyz[a] + dxyz[a] * shifts[a] for a in range(3)]
|
||||
|
||||
def shifted_dxyz(self, which_shifts: int | None) -> list[NDArray]:
|
||||
"""
|
||||
Returns cell sizes for `which_shifts`.
|
||||
|
||||
Args:
|
||||
which_shifts: Which grid (which shifts) to use, or `None` for unshifted
|
||||
|
||||
Returns:
|
||||
List of 3 ndarrays of cell sizes
|
||||
"""
|
||||
if which_shifts is None:
|
||||
return self.dxyz
|
||||
shifts = self.shifts[which_shifts, :]
|
||||
dxyz = self.dxyz_with_ghost
|
||||
|
||||
# If shift is negative, use left cell's dx to determine size
|
||||
sdxyz = []
|
||||
for a in range(3):
|
||||
if shifts[a] < 0:
|
||||
roll_dxyz = numpy.roll(dxyz[a], 1)
|
||||
abs_shift = numpy.abs(shifts[a])
|
||||
sdxyz.append(roll_dxyz[:-1] * abs_shift + roll_dxyz[1:] * (1 - abs_shift))
|
||||
else:
|
||||
sdxyz.append(dxyz[a][:-1] * (1 - shifts[a]) + dxyz[a][1:] * shifts[a])
|
||||
|
||||
return sdxyz
|
||||
|
||||
def shifted_xyz(self, which_shifts: int | None) -> list[NDArray[numpy.float64]]:
|
||||
"""
|
||||
Returns cell centers for `which_shifts`.
|
||||
|
||||
Args:
|
||||
which_shifts: Which grid (which shifts) to use, or `None` for unshifted
|
||||
|
||||
Returns:
|
||||
List of 3 ndarrays of cell centers
|
||||
"""
|
||||
if which_shifts is None:
|
||||
return self.xyz
|
||||
exyz = self.shifted_exyz(which_shifts)
|
||||
dxyz = self.shifted_dxyz(which_shifts)
|
||||
return [exyz[a][:-1] + dxyz[a] / 2.0 for a in range(3)]
|
||||
|
||||
def autoshifted_dxyz(self) -> list[NDArray[numpy.float64]]:
|
||||
"""
|
||||
Return cell widths, with each dimension shifted by the corresponding shifts.
|
||||
|
||||
Returns:
|
||||
`[grid.shifted_dxyz(which_shifts=a)[a] for a in range(3)]`
|
||||
"""
|
||||
if self.num_grids != 3:
|
||||
raise GridError('Autoshifting requires exactly 3 grids')
|
||||
return [self.shifted_dxyz(which_shifts=a)[a] for a in range(3)]
|
||||
|
||||
def allocate(self, fill_value: float | None = 1.0, dtype=numpy.float32) -> NDArray:
|
||||
"""
|
||||
Allocate an ndarray for storing grid data.
|
||||
|
||||
Args:
|
||||
fill_value: Value to initialize the grid to. If None, an
|
||||
uninitialized array is returned.
|
||||
dtype: Numpy dtype for the array. Default is `numpy.float32`.
|
||||
|
||||
Returns:
|
||||
The allocated array
|
||||
"""
|
||||
if fill_value is None:
|
||||
return numpy.empty(self.cell_data_shape, dtype=dtype)
|
||||
else:
|
||||
return numpy.full(self.cell_data_shape, fill_value, dtype=dtype)
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
pixel_edge_coordinates: Sequence[ArrayLike],
|
||||
@ -277,11 +95,12 @@ class Grid:
|
||||
Raises:
|
||||
`GridError` on invalid input
|
||||
"""
|
||||
self.exyz = [numpy.unique(pixel_edge_coordinates[i]) for i in range(3)]
|
||||
edge_arrs = [numpy.array(cc, copy=False) for cc in pixel_edge_coordinates]
|
||||
self.exyz = [numpy.unique(edges) for edges in edge_arrs]
|
||||
self.shifts = numpy.array(shifts, dtype=float)
|
||||
|
||||
for i in range(3):
|
||||
if len(self.exyz[i]) != len(pixel_edge_coordinates[i]):
|
||||
if self.exyz[i].size != edge_arrs[i].size:
|
||||
warnings.warn(f'Dimension {i} had duplicate edge coordinates', stacklevel=2)
|
||||
|
||||
if isinstance(periodic, bool):
|
||||
|
@ -5,112 +5,114 @@ import numpy
|
||||
from numpy.typing import NDArray, ArrayLike
|
||||
|
||||
from . import GridError
|
||||
from .base import GridBase
|
||||
|
||||
|
||||
def ind2pos(
|
||||
self,
|
||||
ind: NDArray,
|
||||
which_shifts: int | None = None,
|
||||
round_ind: bool = True,
|
||||
check_bounds: bool = True
|
||||
) -> NDArray[numpy.float64]:
|
||||
"""
|
||||
Returns the natural position corresponding to the specified cell center indices.
|
||||
The resulting position is clipped to the bounds of the grid
|
||||
(to cell centers if `round_ind=True`, or cell outer edges if `round_ind=False`)
|
||||
class GridPosMixin(GridBase):
|
||||
def ind2pos(
|
||||
self,
|
||||
ind: NDArray,
|
||||
which_shifts: int | None = None,
|
||||
round_ind: bool = True,
|
||||
check_bounds: bool = True
|
||||
) -> NDArray[numpy.float64]:
|
||||
"""
|
||||
Returns the natural position corresponding to the specified cell center indices.
|
||||
The resulting position is clipped to the bounds of the grid
|
||||
(to cell centers if `round_ind=True`, or cell outer edges if `round_ind=False`)
|
||||
|
||||
Args:
|
||||
ind: Indices of the position. Can be fractional. (3-element ndarray or list)
|
||||
which_shifts: which grid number (`shifts`) to use
|
||||
round_ind: Whether to round ind to the nearest integer position before indexing
|
||||
(default `True`)
|
||||
check_bounds: Whether to raise an `GridError` if the provided ind is outside of
|
||||
the grid, as defined above (centers if `round_ind`, else edges) (default `True`)
|
||||
Args:
|
||||
ind: Indices of the position. Can be fractional. (3-element ndarray or list)
|
||||
which_shifts: which grid number (`shifts`) to use
|
||||
round_ind: Whether to round ind to the nearest integer position before indexing
|
||||
(default `True`)
|
||||
check_bounds: Whether to raise an `GridError` if the provided ind is outside of
|
||||
the grid, as defined above (centers if `round_ind`, else edges) (default `True`)
|
||||
|
||||
Returns:
|
||||
3-element ndarray specifying the natural position
|
||||
Returns:
|
||||
3-element ndarray specifying the natural position
|
||||
|
||||
Raises:
|
||||
`GridError` if invalid `which_shifts`
|
||||
`GridError` if `check_bounds` and out of bounds
|
||||
"""
|
||||
if which_shifts is not None and which_shifts >= self.shifts.shape[0]:
|
||||
raise GridError('Invalid shifts')
|
||||
ind = numpy.array(ind, dtype=float)
|
||||
Raises:
|
||||
`GridError` if invalid `which_shifts`
|
||||
`GridError` if `check_bounds` and out of bounds
|
||||
"""
|
||||
if which_shifts is not None and which_shifts >= self.shifts.shape[0]:
|
||||
raise GridError('Invalid shifts')
|
||||
ind = numpy.array(ind, dtype=float)
|
||||
|
||||
if check_bounds:
|
||||
if round_ind:
|
||||
low_bound = 0.0
|
||||
high_bound = -1.0
|
||||
else:
|
||||
low_bound = -0.5
|
||||
high_bound = -0.5
|
||||
if (ind < low_bound).any() or (ind > self.shape - high_bound).any():
|
||||
raise GridError(f'Position outside of grid: {ind}')
|
||||
|
||||
if check_bounds:
|
||||
if round_ind:
|
||||
low_bound = 0.0
|
||||
high_bound = -1.0
|
||||
rind = numpy.clip(numpy.round(ind).astype(int), 0, self.shape - 1)
|
||||
sxyz = self.shifted_xyz(which_shifts)
|
||||
position = [sxyz[a][rind[a]].astype(int) for a in range(3)]
|
||||
else:
|
||||
low_bound = -0.5
|
||||
high_bound = -0.5
|
||||
if (ind < low_bound).any() or (ind > self.shape - high_bound).any():
|
||||
raise GridError(f'Position outside of grid: {ind}')
|
||||
sexyz = self.shifted_exyz(which_shifts)
|
||||
position = [numpy.interp(ind[a], numpy.arange(sexyz[a].size) - 0.5, sexyz[a])
|
||||
for a in range(3)]
|
||||
return numpy.array(position, dtype=float)
|
||||
|
||||
|
||||
def pos2ind(
|
||||
self,
|
||||
r: ArrayLike,
|
||||
which_shifts: int | None,
|
||||
round_ind: bool = True,
|
||||
check_bounds: bool = True
|
||||
) -> NDArray[numpy.float64]:
|
||||
"""
|
||||
Returns the cell-center indices corresponding to the specified natural position.
|
||||
The resulting position is clipped to within the outer centers of the grid.
|
||||
|
||||
Args:
|
||||
r: Natural position that we will convert into indices (3-element ndarray or list)
|
||||
which_shifts: which grid number (`shifts`) to use
|
||||
round_ind: Whether to round the returned indices to the nearest integers.
|
||||
check_bounds: Whether to throw an `GridError` if `r` is outside the grid edges
|
||||
|
||||
Returns:
|
||||
3-element ndarray specifying the indices
|
||||
|
||||
Raises:
|
||||
`GridError` if invalid `which_shifts`
|
||||
`GridError` if `check_bounds` and out of bounds
|
||||
"""
|
||||
r = numpy.squeeze(r)
|
||||
if r.size != 3:
|
||||
raise GridError(f'r must be 3-element vector: {r}')
|
||||
|
||||
if (which_shifts is not None) and (which_shifts >= self.shifts.shape[0]):
|
||||
raise GridError(f'Invalid which_shifts: {which_shifts}')
|
||||
|
||||
if round_ind:
|
||||
rind = numpy.clip(numpy.round(ind).astype(int), 0, self.shape - 1)
|
||||
sxyz = self.shifted_xyz(which_shifts)
|
||||
position = [sxyz[a][rind[a]].astype(int) for a in range(3)]
|
||||
else:
|
||||
sexyz = self.shifted_exyz(which_shifts)
|
||||
position = [numpy.interp(ind[a], numpy.arange(sexyz[a].size) - 0.5, sexyz[a])
|
||||
for a in range(3)]
|
||||
return numpy.array(position, dtype=float)
|
||||
|
||||
if check_bounds:
|
||||
for a in range(3):
|
||||
if self.shape[a] > 1 and (r[a] < sexyz[a][0] or r[a] > sexyz[a][-1]):
|
||||
raise GridError(f'Position[{a}] outside of grid!')
|
||||
|
||||
def pos2ind(
|
||||
self,
|
||||
r: ArrayLike,
|
||||
which_shifts: int | None,
|
||||
round_ind: bool = True,
|
||||
check_bounds: bool = True
|
||||
) -> NDArray[numpy.float64]:
|
||||
"""
|
||||
Returns the cell-center indices corresponding to the specified natural position.
|
||||
The resulting position is clipped to within the outer centers of the grid.
|
||||
|
||||
Args:
|
||||
r: Natural position that we will convert into indices (3-element ndarray or list)
|
||||
which_shifts: which grid number (`shifts`) to use
|
||||
round_ind: Whether to round the returned indices to the nearest integers.
|
||||
check_bounds: Whether to throw an `GridError` if `r` is outside the grid edges
|
||||
|
||||
Returns:
|
||||
3-element ndarray specifying the indices
|
||||
|
||||
Raises:
|
||||
`GridError` if invalid `which_shifts`
|
||||
`GridError` if `check_bounds` and out of bounds
|
||||
"""
|
||||
r = numpy.squeeze(r)
|
||||
if r.size != 3:
|
||||
raise GridError(f'r must be 3-element vector: {r}')
|
||||
|
||||
if (which_shifts is not None) and (which_shifts >= self.shifts.shape[0]):
|
||||
raise GridError(f'Invalid which_shifts: {which_shifts}')
|
||||
|
||||
sexyz = self.shifted_exyz(which_shifts)
|
||||
|
||||
if check_bounds:
|
||||
grid_pos = numpy.zeros((3,))
|
||||
for a in range(3):
|
||||
if self.shape[a] > 1 and (r[a] < sexyz[a][0] or r[a] > sexyz[a][-1]):
|
||||
raise GridError(f'Position[{a}] outside of grid!')
|
||||
xi = numpy.digitize(r[a], sexyz[a]) - 1 # Figure out which cell we're in
|
||||
xi_clipped = numpy.clip(xi, 0, sexyz[a].size - 2) # Clip back into grid bounds
|
||||
|
||||
grid_pos = numpy.zeros((3,))
|
||||
for a in range(3):
|
||||
xi = numpy.digitize(r[a], sexyz[a]) - 1 # Figure out which cell we're in
|
||||
xi_clipped = numpy.clip(xi, 0, sexyz[a].size - 2) # Clip back into grid bounds
|
||||
# No need to interpolate if round_ind is true or we were outside the grid
|
||||
if round_ind or xi != xi_clipped:
|
||||
grid_pos[a] = xi_clipped
|
||||
else:
|
||||
# Interpolate
|
||||
x = self.shifted_xyz(which_shifts)[a][xi]
|
||||
dx = self.shifted_dxyz(which_shifts)[a][xi]
|
||||
f = (r[a] - x) / dx
|
||||
|
||||
# No need to interpolate if round_ind is true or we were outside the grid
|
||||
if round_ind or xi != xi_clipped:
|
||||
grid_pos[a] = xi_clipped
|
||||
else:
|
||||
# Interpolate
|
||||
x = self.shifted_xyz(which_shifts)[a][xi]
|
||||
dx = self.shifted_dxyz(which_shifts)[a][xi]
|
||||
f = (r[a] - x) / dx
|
||||
|
||||
# Clip to centers
|
||||
grid_pos[a] = numpy.clip(xi + f, 0, self.shape[a] - 1)
|
||||
return grid_pos
|
||||
# Clip to centers
|
||||
grid_pos[a] = numpy.clip(xi + f, 0, self.shape[a] - 1)
|
||||
return grid_pos
|
||||
|
305
gridlock/read.py
305
gridlock/read.py
@ -7,6 +7,8 @@ import numpy
|
||||
from numpy.typing import NDArray
|
||||
|
||||
from . import GridError
|
||||
from .base import GridBase
|
||||
from .position import GridPosMixin
|
||||
|
||||
if TYPE_CHECKING:
|
||||
import matplotlib.axes
|
||||
@ -18,186 +20,187 @@ if TYPE_CHECKING:
|
||||
# .visualize_isosurface uses mpl_toolkits.mplot3d
|
||||
|
||||
|
||||
def get_slice(
|
||||
self,
|
||||
cell_data: NDArray,
|
||||
surface_normal: int,
|
||||
center: float,
|
||||
which_shifts: int = 0,
|
||||
sample_period: int = 1
|
||||
) -> NDArray:
|
||||
"""
|
||||
Retrieve a slice of a grid.
|
||||
Interpolates if given a position between two planes.
|
||||
class GridReadMixin(GridPosMixin):
|
||||
def get_slice(
|
||||
self,
|
||||
cell_data: NDArray,
|
||||
surface_normal: int,
|
||||
center: float,
|
||||
which_shifts: int = 0,
|
||||
sample_period: int = 1
|
||||
) -> NDArray:
|
||||
"""
|
||||
Retrieve a slice of a grid.
|
||||
Interpolates if given a position between two planes.
|
||||
|
||||
Args:
|
||||
cell_data: Cell data to slice
|
||||
surface_normal: Axis normal to the plane we're displaying. Integer in `range(3)`.
|
||||
center: Scalar specifying position along surface_normal axis.
|
||||
which_shifts: Which grid to display. Default is the first grid (0).
|
||||
sample_period: Period for down-sampling the image. Default 1 (disabled)
|
||||
Args:
|
||||
cell_data: Cell data to slice
|
||||
surface_normal: Axis normal to the plane we're displaying. Integer in `range(3)`.
|
||||
center: Scalar specifying position along surface_normal axis.
|
||||
which_shifts: Which grid to display. Default is the first grid (0).
|
||||
sample_period: Period for down-sampling the image. Default 1 (disabled)
|
||||
|
||||
Returns:
|
||||
Array containing the portion of the grid.
|
||||
"""
|
||||
if numpy.size(center) != 1 or not numpy.isreal(center):
|
||||
raise GridError('center must be a real scalar')
|
||||
Returns:
|
||||
Array containing the portion of the grid.
|
||||
"""
|
||||
if numpy.size(center) != 1 or not numpy.isreal(center):
|
||||
raise GridError('center must be a real scalar')
|
||||
|
||||
sp = round(sample_period)
|
||||
if sp <= 0:
|
||||
raise GridError('sample_period must be positive')
|
||||
sp = round(sample_period)
|
||||
if sp <= 0:
|
||||
raise GridError('sample_period must be positive')
|
||||
|
||||
if numpy.size(which_shifts) != 1 or which_shifts < 0:
|
||||
raise GridError('Invalid which_shifts')
|
||||
if numpy.size(which_shifts) != 1 or which_shifts < 0:
|
||||
raise GridError('Invalid which_shifts')
|
||||
|
||||
if surface_normal not in range(3):
|
||||
raise GridError('Invalid surface_normal direction')
|
||||
if surface_normal not in range(3):
|
||||
raise GridError('Invalid surface_normal direction')
|
||||
|
||||
surface = numpy.delete(range(3), surface_normal)
|
||||
surface = numpy.delete(range(3), surface_normal)
|
||||
|
||||
# Extract indices and weights of planes
|
||||
center3 = numpy.insert([0, 0], surface_normal, (center,))
|
||||
center_index = self.pos2ind(center3, which_shifts,
|
||||
round_ind=False, check_bounds=False)[surface_normal]
|
||||
centers = numpy.unique([numpy.floor(center_index), numpy.ceil(center_index)]).astype(int)
|
||||
if len(centers) == 2:
|
||||
fpart = center_index - numpy.floor(center_index)
|
||||
w = [1 - fpart, fpart] # longer distance -> less weight
|
||||
else:
|
||||
w = [1]
|
||||
# Extract indices and weights of planes
|
||||
center3 = numpy.insert([0, 0], surface_normal, (center,))
|
||||
center_index = self.pos2ind(center3, which_shifts,
|
||||
round_ind=False, check_bounds=False)[surface_normal]
|
||||
centers = numpy.unique([numpy.floor(center_index), numpy.ceil(center_index)]).astype(int)
|
||||
if len(centers) == 2:
|
||||
fpart = center_index - numpy.floor(center_index)
|
||||
w = [1 - fpart, fpart] # longer distance -> less weight
|
||||
else:
|
||||
w = [1]
|
||||
|
||||
c_min, c_max = (self.xyz[surface_normal][i] for i in [0, -1])
|
||||
if center < c_min or center > c_max:
|
||||
raise GridError('Coordinate of selected plane must be within simulation domain')
|
||||
c_min, c_max = (self.xyz[surface_normal][i] for i in [0, -1])
|
||||
if center < c_min or center > c_max:
|
||||
raise GridError('Coordinate of selected plane must be within simulation domain')
|
||||
|
||||
# Extract grid values from planes above and below visualized slice
|
||||
sliced_grid = numpy.zeros(self.shape[surface])
|
||||
for ci, weight in zip(centers, w, strict=True):
|
||||
s = tuple(ci if a == surface_normal else numpy.s_[::sp] for a in range(3))
|
||||
sliced_grid += weight * cell_data[which_shifts][tuple(s)]
|
||||
# Extract grid values from planes above and below visualized slice
|
||||
sliced_grid = numpy.zeros(self.shape[surface])
|
||||
for ci, weight in zip(centers, w, strict=True):
|
||||
s = tuple(ci if a == surface_normal else numpy.s_[::sp] for a in range(3))
|
||||
sliced_grid += weight * cell_data[which_shifts][tuple(s)]
|
||||
|
||||
# Remove extra dimensions
|
||||
sliced_grid = numpy.squeeze(sliced_grid)
|
||||
# Remove extra dimensions
|
||||
sliced_grid = numpy.squeeze(sliced_grid)
|
||||
|
||||
return sliced_grid
|
||||
return sliced_grid
|
||||
|
||||
|
||||
def visualize_slice(
|
||||
self,
|
||||
cell_data: NDArray,
|
||||
surface_normal: int,
|
||||
center: float,
|
||||
which_shifts: int = 0,
|
||||
sample_period: int = 1,
|
||||
finalize: bool = True,
|
||||
pcolormesh_args: dict[str, Any] | None = None,
|
||||
) -> tuple['matplotlib.axes.Axes', 'matplotlib.figure.Figure']:
|
||||
"""
|
||||
Visualize a slice of a grid.
|
||||
Interpolates if given a position between two planes.
|
||||
def visualize_slice(
|
||||
self,
|
||||
cell_data: NDArray,
|
||||
surface_normal: int,
|
||||
center: float,
|
||||
which_shifts: int = 0,
|
||||
sample_period: int = 1,
|
||||
finalize: bool = True,
|
||||
pcolormesh_args: dict[str, Any] | None = None,
|
||||
) -> tuple['matplotlib.axes.Axes', 'matplotlib.figure.Figure']:
|
||||
"""
|
||||
Visualize a slice of a grid.
|
||||
Interpolates if given a position between two planes.
|
||||
|
||||
Args:
|
||||
surface_normal: Axis normal to the plane we're displaying. Integer in `range(3)`.
|
||||
center: Scalar specifying position along surface_normal axis.
|
||||
which_shifts: Which grid to display. Default is the first grid (0).
|
||||
sample_period: Period for down-sampling the image. Default 1 (disabled)
|
||||
finalize: Whether to call `pyplot.show()` after constructing the plot. Default `True`
|
||||
Args:
|
||||
surface_normal: Axis normal to the plane we're displaying. Integer in `range(3)`.
|
||||
center: Scalar specifying position along surface_normal axis.
|
||||
which_shifts: Which grid to display. Default is the first grid (0).
|
||||
sample_period: Period for down-sampling the image. Default 1 (disabled)
|
||||
finalize: Whether to call `pyplot.show()` after constructing the plot. Default `True`
|
||||
|
||||
Returns:
|
||||
(Figure, Axes)
|
||||
"""
|
||||
from matplotlib import pyplot
|
||||
Returns:
|
||||
(Figure, Axes)
|
||||
"""
|
||||
from matplotlib import pyplot
|
||||
|
||||
if pcolormesh_args is None:
|
||||
pcolormesh_args = {}
|
||||
if pcolormesh_args is None:
|
||||
pcolormesh_args = {}
|
||||
|
||||
grid_slice = self.get_slice(cell_data=cell_data,
|
||||
surface_normal=surface_normal,
|
||||
center=center,
|
||||
which_shifts=which_shifts,
|
||||
sample_period=sample_period)
|
||||
grid_slice = self.get_slice(cell_data=cell_data,
|
||||
surface_normal=surface_normal,
|
||||
center=center,
|
||||
which_shifts=which_shifts,
|
||||
sample_period=sample_period)
|
||||
|
||||
surface = numpy.delete(range(3), surface_normal)
|
||||
surface = numpy.delete(range(3), surface_normal)
|
||||
|
||||
x, y = (self.shifted_exyz(which_shifts)[a] for a in surface)
|
||||
xmesh, ymesh = numpy.meshgrid(x, y, indexing='ij')
|
||||
x_label, y_label = ('xyz'[a] for a in surface)
|
||||
x, y = (self.shifted_exyz(which_shifts)[a] for a in surface)
|
||||
xmesh, ymesh = numpy.meshgrid(x, y, indexing='ij')
|
||||
x_label, y_label = ('xyz'[a] for a in surface)
|
||||
|
||||
fig, ax = pyplot.subplots()
|
||||
mappable = ax.pcolormesh(xmesh, ymesh, grid_slice, **pcolormesh_args)
|
||||
fig.colorbar(mappable)
|
||||
ax.set_aspect('equal', adjustable='box')
|
||||
ax.set_xlabel(x_label)
|
||||
ax.set_ylabel(y_label)
|
||||
if finalize:
|
||||
pyplot.show()
|
||||
fig, ax = pyplot.subplots()
|
||||
mappable = ax.pcolormesh(xmesh, ymesh, grid_slice, **pcolormesh_args)
|
||||
fig.colorbar(mappable)
|
||||
ax.set_aspect('equal', adjustable='box')
|
||||
ax.set_xlabel(x_label)
|
||||
ax.set_ylabel(y_label)
|
||||
if finalize:
|
||||
pyplot.show()
|
||||
|
||||
return fig, ax
|
||||
return fig, ax
|
||||
|
||||
|
||||
def visualize_isosurface(
|
||||
self,
|
||||
cell_data: NDArray,
|
||||
level: float | None = None,
|
||||
which_shifts: int = 0,
|
||||
sample_period: int = 1,
|
||||
show_edges: bool = True,
|
||||
finalize: bool = True,
|
||||
) -> tuple['matplotlib.axes.Axes', 'matplotlib.figure.Figure']:
|
||||
"""
|
||||
Draw an isosurface plot of the device.
|
||||
def visualize_isosurface(
|
||||
self,
|
||||
cell_data: NDArray,
|
||||
level: float | None = None,
|
||||
which_shifts: int = 0,
|
||||
sample_period: int = 1,
|
||||
show_edges: bool = True,
|
||||
finalize: bool = True,
|
||||
) -> tuple['matplotlib.axes.Axes', 'matplotlib.figure.Figure']:
|
||||
"""
|
||||
Draw an isosurface plot of the device.
|
||||
|
||||
Args:
|
||||
cell_data: Cell data to visualize
|
||||
level: Value at which to find isosurface. Default (None) uses mean value in grid.
|
||||
which_shifts: Which grid to display. Default is the first grid (0).
|
||||
sample_period: Period for down-sampling the image. Default 1 (disabled)
|
||||
show_edges: Whether to draw triangle edges. Default `True`
|
||||
finalize: Whether to call `pyplot.show()` after constructing the plot. Default `True`
|
||||
Args:
|
||||
cell_data: Cell data to visualize
|
||||
level: Value at which to find isosurface. Default (None) uses mean value in grid.
|
||||
which_shifts: Which grid to display. Default is the first grid (0).
|
||||
sample_period: Period for down-sampling the image. Default 1 (disabled)
|
||||
show_edges: Whether to draw triangle edges. Default `True`
|
||||
finalize: Whether to call `pyplot.show()` after constructing the plot. Default `True`
|
||||
|
||||
Returns:
|
||||
(Figure, Axes)
|
||||
"""
|
||||
from matplotlib import pyplot
|
||||
import skimage.measure
|
||||
# Claims to be unused, but needed for subplot(projection='3d')
|
||||
from mpl_toolkits.mplot3d import Axes3D
|
||||
del Axes3D # imported for side effects only
|
||||
Returns:
|
||||
(Figure, Axes)
|
||||
"""
|
||||
from matplotlib import pyplot
|
||||
import skimage.measure
|
||||
# Claims to be unused, but needed for subplot(projection='3d')
|
||||
from mpl_toolkits.mplot3d import Axes3D
|
||||
del Axes3D # imported for side effects only
|
||||
|
||||
# Get data from cell_data
|
||||
grid = cell_data[which_shifts][::sample_period, ::sample_period, ::sample_period]
|
||||
if level is None:
|
||||
level = grid.mean()
|
||||
# Get data from cell_data
|
||||
grid = cell_data[which_shifts][::sample_period, ::sample_period, ::sample_period]
|
||||
if level is None:
|
||||
level = grid.mean()
|
||||
|
||||
# Find isosurface with marching cubes
|
||||
verts, faces, _normals, _values = skimage.measure.marching_cubes(grid, level)
|
||||
# Find isosurface with marching cubes
|
||||
verts, faces, _normals, _values = skimage.measure.marching_cubes(grid, level)
|
||||
|
||||
# Convert vertices from index to position
|
||||
pos_verts = numpy.array([self.ind2pos(verts[i, :], which_shifts, round_ind=False)
|
||||
for i in range(verts.shape[0])], dtype=float)
|
||||
xs, ys, zs = (pos_verts[:, a] for a in range(3))
|
||||
# Convert vertices from index to position
|
||||
pos_verts = numpy.array([self.ind2pos(verts[i, :], which_shifts, round_ind=False)
|
||||
for i in range(verts.shape[0])], dtype=float)
|
||||
xs, ys, zs = (pos_verts[:, a] for a in range(3))
|
||||
|
||||
# Draw the plot
|
||||
fig = pyplot.figure()
|
||||
ax = fig.add_subplot(111, projection='3d')
|
||||
if show_edges:
|
||||
ax.plot_trisurf(xs, ys, faces, zs)
|
||||
else:
|
||||
ax.plot_trisurf(xs, ys, faces, zs, edgecolor='none')
|
||||
# Draw the plot
|
||||
fig = pyplot.figure()
|
||||
ax = fig.add_subplot(111, projection='3d')
|
||||
if show_edges:
|
||||
ax.plot_trisurf(xs, ys, faces, zs)
|
||||
else:
|
||||
ax.plot_trisurf(xs, ys, faces, zs, edgecolor='none')
|
||||
|
||||
# Add a fake plot of a cube to force the axes to be equal lengths
|
||||
max_range = numpy.array([xs.max() - xs.min(),
|
||||
ys.max() - ys.min(),
|
||||
zs.max() - zs.min()], dtype=float).max()
|
||||
mg = numpy.mgrid[-1:2:2, -1:2:2, -1:2:2]
|
||||
xbs = 0.5 * max_range * mg[0].flatten() + 0.5 * (xs.max() + xs.min())
|
||||
ybs = 0.5 * max_range * mg[1].flatten() + 0.5 * (ys.max() + ys.min())
|
||||
zbs = 0.5 * max_range * mg[2].flatten() + 0.5 * (zs.max() + zs.min())
|
||||
# Comment or uncomment following both lines to test the fake bounding box:
|
||||
for xb, yb, zb in zip(xbs, ybs, zbs, strict=True):
|
||||
ax.plot([xb], [yb], [zb], 'w')
|
||||
# Add a fake plot of a cube to force the axes to be equal lengths
|
||||
max_range = numpy.array([xs.max() - xs.min(),
|
||||
ys.max() - ys.min(),
|
||||
zs.max() - zs.min()], dtype=float).max()
|
||||
mg = numpy.mgrid[-1:2:2, -1:2:2, -1:2:2]
|
||||
xbs = 0.5 * max_range * mg[0].flatten() + 0.5 * (xs.max() + xs.min())
|
||||
ybs = 0.5 * max_range * mg[1].flatten() + 0.5 * (ys.max() + ys.min())
|
||||
zbs = 0.5 * max_range * mg[2].flatten() + 0.5 * (zs.max() + zs.min())
|
||||
# Comment or uncomment following both lines to test the fake bounding box:
|
||||
for xb, yb, zb in zip(xbs, ybs, zbs, strict=True):
|
||||
ax.plot([xb], [yb], [zb], 'w')
|
||||
|
||||
if finalize:
|
||||
pyplot.show()
|
||||
if finalize:
|
||||
pyplot.show()
|
||||
|
||||
return fig, ax
|
||||
return fig, ax
|
||||
|
Loading…
Reference in New Issue
Block a user