Move .grids data into separate cell_data array. Also remove Direction enum

This commit is contained in:
Jan Petykiewicz 2021-10-24 18:59:44 -07:00
parent fbf173072a
commit 551da07f3e
4 changed files with 90 additions and 100 deletions

View File

@ -16,7 +16,6 @@ Dependencies:
- skimage [Grid.visualize_isosurface()]
"""
from .error import GridError
from .direction import Direction
from .grid import Grid
__author__ = 'Jan Petykiewicz'

View File

@ -6,15 +6,16 @@ from typing import List, Optional, Union, Sequence, Callable
import numpy # type: ignore
from float_raster import raster
from . import GridError, Direction
from ._helpers import is_scalar
from . import GridError
eps_callable_t = Callable[[numpy.ndarray, numpy.ndarray, numpy.ndarray], numpy.ndarray]
def draw_polygons(self,
surface_normal: Union[Direction, int],
cell_data: numpy.ndarray,
surface_normal: int,
center: numpy.ndarray,
polygons: Sequence[numpy.ndarray],
thickness: float,
@ -24,8 +25,8 @@ def draw_polygons(self,
Draw polygons on an axis-aligned plane.
Args:
surface_normal: Axis normal to the plane we're drawing on. Can be a `Direction` or
integer in `range(3)`
cell_data: Cell data to modify (e.g. created by `Grid.allocate()`)
surface_normal: Axis normal to the plane we're drawing on. Integer in `range(3)`.
center: 3-element ndarray or list specifying an offset applied to all the polygons
polygons: List of Nx2 or Nx3 ndarrays, each specifying the vertices of a polygon
(non-closed, clockwise). If Nx3, the surface_normal coordinate is ignored. Each
@ -39,11 +40,6 @@ def draw_polygons(self,
Raises:
GridError
"""
# Turn surface_normal into its integer representation
if isinstance(surface_normal, Direction):
surface_normal = surface_normal.value
assert(isinstance(surface_normal, int))
if surface_normal not in range(3):
raise GridError('Invalid surface_normal direction')
@ -66,8 +62,8 @@ def draw_polygons(self,
% 'xyz'[surface_normal])
# Broadcast eps where necessary
if is_scalar(eps):
eps = [eps] * len(self.grids)
if numpy.size(eps) == 1:
eps = [eps] * len(cell_data)
elif isinstance(eps, numpy.ndarray):
raise GridError('ndarray not supported for eps')
@ -101,7 +97,7 @@ def draw_polygons(self,
return numpy.insert(v_2d, surface_normal, (val,))
# iterate over grids
for i, grid in enumerate(self.grids):
for i, grid in enumerate(cell_data):
# ## Evaluate or expand eps[i]
if callable(eps[i]):
# meshgrid over the (shifted) domain
@ -184,11 +180,12 @@ def draw_polygons(self,
# ## Modify the grid
g_slice = (i,) + tuple(numpy.s_[bdi_min[a]:bdi_max[a] + 1] for a in range(3))
self.grids[g_slice] = (1 - w) * self.grids[g_slice] + w * eps_i
cell_data[g_slice] = (1 - w) * cell_data[g_slice] + w * eps_i
def draw_polygon(self,
surface_normal: Union[Direction, int],
cell_data: numpy.ndarray,
surface_normal: int,
center: numpy.ndarray,
polygon: numpy.ndarray,
thickness: float,
@ -198,8 +195,8 @@ def draw_polygon(self,
Draw a polygon on an axis-aligned plane.
Args:
surface_normal: Axis normal to the plane we're drawing on. Can be a Direction or
integer in range(3)
cell_data: Cell data to modify (e.g. created by `Grid.allocate()`)
surface_normal: Axis normal to the plane we're drawing on. Integer in `range(3)`.
center: 3-element ndarray or list specifying an offset applied to the polygon
polygon: Nx2 or Nx3 ndarray specifying the vertices of a polygon (non-closed,
clockwise). If Nx3, the surface_normal coordinate is ignored. Must have at
@ -207,11 +204,12 @@ def draw_polygon(self,
thickness: Thickness of the layer to draw
eps: Value to draw with ('epsilon'). See `draw_polygons()` for details.
"""
self.draw_polygons(surface_normal, center, [polygon], thickness, eps)
self.draw_polygons(cell_data, surface_normal, center, [polygon], thickness, eps)
def draw_slab(self,
surface_normal: Union[Direction, int],
cell_data: numpy.ndarray,
surface_normal: int,
center: numpy.ndarray,
thickness: float,
eps: Union[List[Union[float, eps_callable_t]], float, eps_callable_t],
@ -220,15 +218,13 @@ def draw_slab(self,
Draw an axis-aligned infinite slab.
Args:
surface_normal: Axis normal to the plane we're drawing on. Can be a `Direction` or
integer in `range(3)`
cell_data: Cell data to modify (e.g. created by `Grid.allocate()`)
surface_normal: Axis normal to the plane we're drawing on. Integer in `range(3)`.
center: Surface_normal coordinate at the center of the slab
thickness: Thickness of the layer to draw
eps: Value to draw with ('epsilon'). See `draw_polygons()` for details.
"""
# Turn surface_normal into its integer representation
if isinstance(surface_normal, Direction):
surface_normal = surface_normal.value
if surface_normal not in range(3):
raise GridError('Invalid surface_normal direction')
@ -258,10 +254,11 @@ def draw_slab(self,
[xyz_max[0], xyz_min[1]],
[xyz_min[0], xyz_min[1]]], dtype=float)
self.draw_polygon(surface_normal, center_shift, p, thickness, eps)
self.draw_polygon(cell_data, surface_normal, center_shift, p, thickness, eps)
def draw_cuboid(self,
cell_data: numpy.ndarray,
center: numpy.ndarray,
dimensions: numpy.ndarray,
eps: Union[List[Union[float, eps_callable_t]], float, eps_callable_t],
@ -270,6 +267,7 @@ def draw_cuboid(self,
Draw an axis-aligned cuboid
Args:
cell_data: Cell data to modify (e.g. created by `Grid.allocate()`)
center: 3-element ndarray or list specifying the cuboid's center
dimensions: 3-element list or ndarray containing the x, y, and z edge-to-edge
sizes of the cuboid
@ -280,11 +278,12 @@ def draw_cuboid(self,
[+dimensions[0], -dimensions[1]],
[-dimensions[0], -dimensions[1]]], dtype=float) / 2.0
thickness = dimensions[2]
self.draw_polygon(Direction.z, center, p, thickness, eps)
self.draw_polygon(cell_data, 2, center, p, thickness, eps)
def draw_cylinder(self,
surface_normal: Union[Direction, int],
cell_data: numpy.ndarray,
surface_normal: int,
center: numpy.ndarray,
radius: float,
thickness: float,
@ -295,8 +294,8 @@ def draw_cylinder(self,
Draw an axis-aligned cylinder. Approximated by a num_points-gon
Args:
surface_normal: Axis normal to the plane we're drawing on. Can be a `Direction` or
integer in `range(3)`
cell_data: Cell data to modify (e.g. created by `Grid.allocate()`)
surface_normal: Axis normal to the plane we're drawing on. Integer in `range(3)`.
center: 3-element ndarray or list specifying the cylinder's center
radius: cylinder radius
thickness: Thickness of the layer to draw
@ -306,13 +305,14 @@ def draw_cylinder(self,
theta = numpy.linspace(0, 2*numpy.pi, num_points, endpoint=False)
x = radius * numpy.sin(theta)
y = radius * numpy.cos(theta)
self.draw_polygon(surface_normal, center, polygon, thickness, eps)
polygon = numpy.hstack((x[:, None], y[:, None]))
self.draw_polygon(cell_data, surface_normal, center, polygon, thickness, eps)
def draw_extrude_rectangle(self,
cell_data: numpy.ndarray,
rectangle: numpy.ndarray,
direction: Union[Direction, int],
direction: int,
polarity: int,
distance: float,
) -> None:
@ -320,16 +320,12 @@ def draw_extrude_rectangle(self,
Extrude a rectangle of a previously-drawn structure along an axis.
Args:
cell_data: Cell data to modify (e.g. created by `Grid.allocate()`)
rectangle: 2x3 ndarray or list specifying the rectangle's corners
direction: Direction to extrude in. Direction enum or int in range(3)
direction: Direction to extrude in. Integer in `range(3)`.
polarity: +1 or -1, direction along axis to extrude in
distance: How far to extrude
"""
# Turn extrude_direction into its integer representation
if isinstance(direction, Direction):
direction = direction.value
assert(isinstance(direction, int))
s = numpy.sign(polarity)
rectangle = numpy.array(rectangle, dtype=float)
@ -351,7 +347,7 @@ def draw_extrude_rectangle(self,
thickness = distance
eps_func = []
for i, grid in enumerate(self.grids):
for i, grid in enumerate(cell_data):
z = self.pos2ind(rectangle[0, :], i, round_ind=False, check_bounds=False)[direction]
ind = [int(numpy.floor(z)) if i == direction else slice(None) for i in range(3)]
@ -373,5 +369,5 @@ def draw_extrude_rectangle(self,
eps_func.append(f_eps)
self.draw_polygon(direction, center, p, thickness, eps_func)
self.draw_polygon(cell_data, direction, center, p, thickness, eps_func)

View File

@ -7,8 +7,8 @@ import pickle
import warnings
import copy
from . import GridError, Direction
from ._helpers import is_scalar
from . import GridError
__author__ = 'Jan Petykiewicz'
@ -18,12 +18,18 @@ eps_callable_type = Callable[[numpy.ndarray, numpy.ndarray, numpy.ndarray], nump
class Grid:
"""
Simulation grid generator intended for electromagnetic simulations.
Can be used to generate non-uniform rectangular grids (the entire grid
Simulation grid metadata for finite-difference simulations.
Can be used to generate non-uniform rectangular grids (the entire grid
is generated based on the coordinates of the boundary points). Also does
straightforward natural <-> grid unit conversion.
`self.grids[i][a,b,c]` contains the value of epsilon for the cell located around
This class handles data describing the grid, and should be paired with a
(separate) ndarray that contains the actual data in each cell. The `allocate()`
method can be used to create this ndarray.
The resulting `cell_data[i, a, b, c]` should correspond to the value in the
`i`-th grid, in the cell centered around
```
(xyz[0][a] + dxyz[0][a] * shifts[i, 0],
xyz[1][b] + dxyz[1][b] * shifts[i, 1],
@ -47,9 +53,6 @@ class Grid:
exyz: List[numpy.ndarray]
"""Cell edges. Monotonically increasing without duplicates."""
grids: numpy.ndarray
"""epsilon (or mu, or whatever) grids. shape is (num_grids, X, Y, Z)"""
periodic: List[bool]
"""For each axis, determines how far the rightmost boundary gets shifted. """
@ -103,6 +106,20 @@ class Grid:
"""
return numpy.array([coord.size - 1 for coord in self.exyz], dtype=int)
@property
def num_grids(self) -> int:
"""
The number of grids (number of shifts)
"""
return self.shifts.shape[0]
@property
def cell_data_shape(self):
"""
The shape of the cell_data ndarray (num_grids, *self.shape).
"""
return numpy.hstack((self.num_grids, self.shape))
@property
def dxyz_with_ghost(self) -> List[numpy.ndarray]:
"""
@ -218,16 +235,30 @@ class Grid:
Returns:
`[grid.shifted_dxyz(which_shifts=a)[a] for a in range(3)]`
"""
if len(self.grids) != 3:
raise GridError('autoshifting requires exactly 3 grids')
if self.num_grids != 3:
raise GridError('Autoshifting requires exactly 3 grids')
return [self.shifted_dxyz(which_shifts=a)[a] for a in range(3)]
def allocate(self, fill_value: Optional[float] = 1.0, dtype=numpy.float64) -> numpy.ndarray:
"""
Allocate an ndarray for storing grid data.
Args:
fill_value: Value to initialize the grid to. If None, an
uninitialized array is returned.
dtype: Numpy dtype for the array. Default is `numpy.float64`.
Returns:
The allocated array
"""
if fill_value is None:
return numpy.empty(self.cell_data_shape)
else:
return numpy.full(self.cell_data_shape, fill_value)
def __init__(self,
pixel_edge_coordinates: Sequence[numpy.ndarray],
shifts: numpy.ndarray = Yee_Shifts_E,
initial: Union[float, numpy.ndarray] = 1.0,
num_grids: Optional[int] = None,
periodic: Union[bool, Sequence[bool]] = False,
) -> None:
"""
@ -238,12 +269,6 @@ class Grid:
x=`x1`, the second has edges x=`x1` and x=`x2`, etc.)
shifts: Nx3 array containing `[x, y, z]` offsets for each of N grids.
E-field Yee shifts are used by default.
initial: Grids are initialized to this value. If scalar, all grids are initialized
with ndarrays full of the scalar. If a list of scalars, `grid[i]` is initialized to an
ndarray full of `initial[i]`. If a list of ndarrays of the same shape as the grids, `grid[i]`
is set to `initial[i]`. Default `1.0`.
num_grids: How many grids to create. Must be <= `shifts.shape[0]`.
Default is `shifts.shape[0]`
periodic: Specifies how the sizes of edge cells are calculated; see main class
documentation. List of 3 bool, or a single bool that gets broadcast. Default `False`.
@ -276,33 +301,6 @@ class Grid:
# TODO: Test negative shifts
warnings.warn('Negative shifts are still experimental and mostly untested, be careful!', stacklevel=2)
num_shifts = self.shifts.shape[0]
if num_grids is None:
num_grids = num_shifts
elif num_grids > num_shifts:
raise GridError('Number of grids exceeds number of shifts (%u)' % num_shifts)
grids_shape = hstack((num_grids, self.shape))
if isinstance(initial, (float, int)):
if isinstance(initial, int):
warnings.warn('Initial value is an int, grids will be integer-typed!', stacklevel=2)
self.grids = numpy.full(grids_shape, initial)
else:
if len(initial) < num_grids:
raise GridError('Too few initial grids specified!')
self.grids = numpy.empty(grids_shape)
for i in range(num_grids):
if is_scalar(initial[i]):
if initial[i] is not None:
if isinstance(initial[i], int):
warnings.warn('Initial value is an int, grid {} will be integer-typed!'.format(i), stacklevel=2)
self.grids[i] = numpy.full(self.shape, initial[i])
else:
if not numpy.array_equal(initial[i].shape, self.shape):
raise GridError('Initial grid sizes must match given coordinates')
self.grids[i] = initial[i]
@staticmethod
def load(filename: str) -> 'Grid':
"""

View File

@ -5,8 +5,8 @@ from typing import Dict, Optional, Union, Any
import numpy # type: ignore
from . import GridError, Direction
from ._helpers import is_scalar
from . import GridError
# .visualize_* uses matplotlib
# .visualize_isosurface uses skimage
@ -14,7 +14,8 @@ from ._helpers import is_scalar
def get_slice(self,
surface_normal: Union[Direction, int],
cell_data: numpy.ndarray,
surface_normal: int,
center: float,
which_shifts: int = 0,
sample_period: int = 1
@ -24,8 +25,8 @@ def get_slice(self,
Interpolates if given a position between two planes.
Args:
surface_normal: Axis normal to the plane we're displaying. Can be a `Direction` or
integer in `range(3)`
cell_data: Cell data to slice
surface_normal: Axis normal to the plane we're displaying. Integer in `range(3)`.
center: Scalar specifying position along surface_normal axis.
which_shifts: Which grid to display. Default is the first grid (0).
sample_period: Period for down-sampling the image. Default 1 (disabled)
@ -43,9 +44,6 @@ def get_slice(self,
if not is_scalar(which_shifts) or which_shifts < 0:
raise GridError('Invalid which_shifts')
# Turn surface_normal into its integer representation
if isinstance(surface_normal, Direction):
surface_normal = surface_normal.value
if surface_normal not in range(3):
raise GridError('Invalid surface_normal direction')
@ -70,7 +68,7 @@ def get_slice(self,
sliced_grid = numpy.zeros(self.shape[surface])
for ci, weight in zip(centers, w):
s = tuple(ci if a == surface_normal else numpy.s_[::sp] for a in range(3))
sliced_grid += weight * self.grids[which_shifts][tuple(s)]
sliced_grid += weight * cell_data[which_shifts][tuple(s)]
# Remove extra dimensions
sliced_grid = numpy.squeeze(sliced_grid)
@ -79,7 +77,8 @@ def get_slice(self,
def visualize_slice(self,
surface_normal: Union[Direction, int],
cell_data: numpy.ndarray,
surface_normal: int,
center: float,
which_shifts: int = 0,
sample_period: int = 1,
@ -91,8 +90,7 @@ def visualize_slice(self,
Interpolates if given a position between two planes.
Args:
surface_normal: Axis normal to the plane we're displaying. Can be a `Direction` or
integer in `range(3)`
surface_normal: Axis normal to the plane we're displaying. Integer in `range(3)`.
center: Scalar specifying position along surface_normal axis.
which_shifts: Which grid to display. Default is the first grid (0).
sample_period: Period for down-sampling the image. Default 1 (disabled)
@ -100,14 +98,11 @@ def visualize_slice(self,
"""
from matplotlib import pyplot
# Set surface normal to its integer value
if isinstance(surface_normal, Direction):
surface_normal = surface_normal.value
if pcolormesh_args is None:
pcolormesh_args = {}
grid_slice = self.get_slice(surface_normal=surface_normal,
grid_slice = self.get_slice(cell_data=cell_data,
surface_normal=surface_normal,
center=center,
which_shifts=which_shifts,
sample_period=sample_period)
@ -129,6 +124,7 @@ def visualize_slice(self,
def visualize_isosurface(self,
cell_data: numpy.ndarray,
level: Optional[float] = None,
which_shifts: int = 0,
sample_period: int = 1,
@ -139,6 +135,7 @@ def visualize_isosurface(self,
Draw an isosurface plot of the device.
Args:
cell_data: Cell data to visualize
level: Value at which to find isosurface. Default (None) uses mean value in grid.
which_shifts: Which grid to display. Default is the first grid (0).
sample_period: Period for down-sampling the image. Default 1 (disabled)
@ -150,8 +147,8 @@ def visualize_isosurface(self,
# Claims to be unused, but needed for subplot(projection='3d')
from mpl_toolkits.mplot3d import Axes3D
# Get data from self.grids
grid = self.grids[which_shifts][::sample_period, ::sample_period, ::sample_period]
# Get data from cell_data
grid = cell_data[which_shifts][::sample_period, ::sample_period, ::sample_period]
if level is None:
level = grid.mean()