378 lines
13 KiB
Python
378 lines
13 KiB
Python
"""
|
|
Various operators and helper functions for solving for waveguide modes.
|
|
|
|
Assuming a z-dependence of the from exp(-i * wavenumber * z), we can simplify Maxwell's
|
|
equations in the absence of sources to the form
|
|
|
|
A @ [H_x, H_y] = wavenumber**2 * [H_x, H_y]
|
|
|
|
with A =
|
|
omega**2 * epsilon * mu +
|
|
epsilon * [[-Dy], [Dx]] / epsilon * [-Dy, Dx] +
|
|
[[Dx], [Dy]] / mu * [Dx, Dy] * mu
|
|
|
|
which is the form used in this file.
|
|
|
|
As the z-dependence is known, all the functions in this file assume a 2D grid
|
|
(ie. dxes = [[[dx_e_0, dx_e_1, ...], [dy_e_0, ...]], [[dx_h_0, ...], [dy_h_0, ...]]])
|
|
with propagation along the z axis.
|
|
"""
|
|
|
|
from typing import List, Tuple
|
|
import numpy
|
|
from numpy.linalg import norm
|
|
import scipy.sparse as sparse
|
|
|
|
from . import vec, unvec, dx_lists_t, field_t, vfield_t
|
|
from . import operators
|
|
|
|
|
|
__author__ = 'Jan Petykiewicz'
|
|
|
|
|
|
def operator(omega: complex,
|
|
dxes: dx_lists_t,
|
|
epsilon: vfield_t,
|
|
mu: vfield_t = None,
|
|
) -> sparse.spmatrix:
|
|
"""
|
|
Waveguide operator of the form
|
|
|
|
omega**2 * epsilon * mu +
|
|
epsilon * [[-Dy], [Dx]] / epsilon * [-Dy, Dx] +
|
|
[[Dx], [Dy]] / mu * [Dx, Dy] * mu
|
|
|
|
for use with a field vector of the form [H_x, H_y].
|
|
|
|
This operator can be used to form an eigenvalue problem of the form
|
|
A @ [H_x, H_y] = wavenumber**2 * [H_x, H_y]
|
|
|
|
which can then be solved for the eigenmodes of the system (an exp(-i * wavenumber * z)
|
|
z-dependence is assumed for the fields).
|
|
|
|
:param omega: The angular frequency of the system
|
|
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types (2D)
|
|
:param epsilon: Vectorized dielectric constant grid
|
|
:param mu: Vectorized magnetic permeability grid (default 1 everywhere)
|
|
:return: Sparse matrix representation of the operator
|
|
"""
|
|
if numpy.any(numpy.equal(mu, None)):
|
|
mu = numpy.ones_like(epsilon)
|
|
|
|
Dfx, Dfy = operators.deriv_forward(dxes[0])
|
|
Dbx, Dby = operators.deriv_back(dxes[1])
|
|
|
|
eps_parts = numpy.split(epsilon, 3)
|
|
eps_yx = sparse.diags(numpy.hstack((eps_parts[1], eps_parts[0])))
|
|
eps_z_inv = sparse.diags(1 / eps_parts[2])
|
|
|
|
mu_parts = numpy.split(mu, 3)
|
|
mu_xy = sparse.diags(numpy.hstack((mu_parts[0], mu_parts[1])))
|
|
mu_z_inv = sparse.diags(1 / mu_parts[2])
|
|
|
|
op = omega ** 2 * eps_yx @ mu_xy + \
|
|
eps_yx @ sparse.vstack((-Dfy, Dfx)) @ eps_z_inv @ sparse.hstack((-Dby, Dbx)) + \
|
|
sparse.vstack((Dbx, Dby)) @ mu_z_inv @ sparse.hstack((Dfx, Dfy)) @ mu_xy
|
|
|
|
return op
|
|
|
|
|
|
def normalized_fields(v: numpy.ndarray,
|
|
wavenumber: complex,
|
|
omega: complex,
|
|
dxes: dx_lists_t,
|
|
epsilon: vfield_t,
|
|
mu: vfield_t = None
|
|
) -> Tuple[vfield_t, vfield_t]:
|
|
"""
|
|
Given a vector v containing the vectorized H_x and H_y fields,
|
|
returns normalized, vectorized E and H fields for the system.
|
|
|
|
:param v: Vector containing H_x and H_y fields
|
|
:param wavenumber: Wavenumber satisfying A @ v == wavenumber**2 * v
|
|
:param omega: The angular frequency of the system
|
|
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types (2D)
|
|
:param epsilon: Vectorized dielectric constant grid
|
|
:param mu: Vectorized magnetic permeability grid (default 1 everywhere)
|
|
:return: Normalized, vectorized (e, h) containing all vector components.
|
|
"""
|
|
e = v2e(v, wavenumber, omega, dxes, epsilon, mu=mu)
|
|
h = v2h(v, wavenumber, dxes, mu=mu)
|
|
|
|
shape = [s.size for s in dxes[0]]
|
|
dxes_real = [[numpy.real(d) for d in numpy.meshgrid(*dxes[v], indexing='ij')] for v in (0, 1)]
|
|
|
|
E = unvec(e, shape)
|
|
H = unvec(h, shape)
|
|
|
|
S1 = E[0] * numpy.roll(numpy.conj(H[1]), 1, axis=0) * dxes_real[0][1] * dxes_real[1][0]
|
|
S2 = E[1] * numpy.roll(numpy.conj(H[0]), 1, axis=1) * dxes_real[0][0] * dxes_real[1][1]
|
|
S = 0.25 * ((S1 + numpy.roll(S1, 1, axis=0)) -
|
|
(S2 + numpy.roll(S2, 1, axis=1)))
|
|
P = 0.5 * numpy.real(S.sum())
|
|
assert P > 0, 'Found a mode propagating in the wrong direction! P={}'.format(P)
|
|
|
|
energy = epsilon * e.conj() * e
|
|
|
|
norm_amplitude = 1 / numpy.sqrt(P)
|
|
norm_angle = -numpy.angle(e[energy.argmax()]) # Will randomly add a negative sign when mode is symmetric
|
|
|
|
# Try to break symmetry to assign a consistent sign [experimental]
|
|
E_weighted = unvec(e * energy * numpy.exp(1j * norm_angle), shape)
|
|
sign = numpy.sign(E_weighted[:, :max(shape[0]//2, 1), :max(shape[1]//2, 1)].real.sum())
|
|
logger.debug('norm_angle = {}'.format(norm_angle))
|
|
logger.debug('norm_sign = {}'.format(sign)
|
|
|
|
norm_factor = sign * norm_amplitude * numpy.exp(1j * norm_angle)
|
|
|
|
e *= norm_factor
|
|
h *= norm_factor
|
|
|
|
return e, h
|
|
|
|
|
|
def v2h(v: numpy.ndarray,
|
|
wavenumber: complex,
|
|
dxes: dx_lists_t,
|
|
mu: vfield_t = None
|
|
) -> vfield_t:
|
|
"""
|
|
Given a vector v containing the vectorized H_x and H_y fields,
|
|
returns a vectorized H including all three H components.
|
|
|
|
:param v: Vector containing H_x and H_y fields
|
|
:param wavenumber: Wavenumber satisfying A @ v == wavenumber**2 * v
|
|
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types (2D)
|
|
:param mu: Vectorized magnetic permeability grid (default 1 everywhere)
|
|
:return: Vectorized H field with all vector components
|
|
"""
|
|
Dfx, Dfy = operators.deriv_forward(dxes[0])
|
|
op = sparse.hstack((Dfx, Dfy))
|
|
|
|
if not numpy.any(numpy.equal(mu, None)):
|
|
mu_parts = numpy.split(mu, 3)
|
|
mu_xy = sparse.diags(numpy.hstack((mu_parts[0], mu_parts[1])))
|
|
mu_z_inv = sparse.diags(1 / mu_parts[2])
|
|
|
|
op = mu_z_inv @ op @ mu_xy
|
|
|
|
w = op @ v / (1j * wavenumber)
|
|
return numpy.hstack((v, w)).flatten()
|
|
|
|
|
|
def v2e(v: numpy.ndarray,
|
|
wavenumber: complex,
|
|
omega: complex,
|
|
dxes: dx_lists_t,
|
|
epsilon: vfield_t,
|
|
mu: vfield_t = None
|
|
) -> vfield_t:
|
|
"""
|
|
Given a vector v containing the vectorized H_x and H_y fields,
|
|
returns a vectorized E containing all three E components
|
|
|
|
:param v: Vector containing H_x and H_y fields
|
|
:param wavenumber: Wavenumber satisfying A @ v == wavenumber**2 * v
|
|
:param omega: The angular frequency of the system
|
|
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types (2D)
|
|
:param epsilon: Vectorized dielectric constant grid
|
|
:param mu: Vectorized magnetic permeability grid (default 1 everywhere)
|
|
:return: Vectorized E field with all vector components.
|
|
"""
|
|
h2eop = h2e(wavenumber, omega, dxes, epsilon)
|
|
return h2eop @ v2h(v, wavenumber, dxes, mu)
|
|
|
|
|
|
def e2h(wavenumber: complex,
|
|
omega: complex,
|
|
dxes: dx_lists_t,
|
|
mu: vfield_t = None
|
|
) -> sparse.spmatrix:
|
|
"""
|
|
Returns an operator which, when applied to a vectorized E eigenfield, produces
|
|
the vectorized H eigenfield.
|
|
|
|
:param wavenumber: Wavenumber satisfying A @ v == wavenumber**2 * v
|
|
:param omega: The angular frequency of the system
|
|
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types (2D)
|
|
:param mu: Vectorized magnetic permeability grid (default 1 everywhere)
|
|
:return: Sparse matrix representation of the operator
|
|
"""
|
|
op = curl_e(wavenumber, dxes) / (-1j * omega)
|
|
if not numpy.any(numpy.equal(mu, None)):
|
|
op = sparse.diags(1 / mu) @ op
|
|
return op
|
|
|
|
|
|
def h2e(wavenumber: complex,
|
|
omega: complex,
|
|
dxes: dx_lists_t,
|
|
epsilon: vfield_t
|
|
) -> sparse.spmatrix:
|
|
"""
|
|
Returns an operator which, when applied to a vectorized H eigenfield, produces
|
|
the vectorized E eigenfield.
|
|
|
|
:param wavenumber: Wavenumber satisfying A @ v == wavenumber**2 * v
|
|
:param omega: The angular frequency of the system
|
|
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types (2D)
|
|
:param epsilon: Vectorized dielectric constant grid
|
|
:return: Sparse matrix representation of the operator
|
|
"""
|
|
op = sparse.diags(1 / (1j * omega * epsilon)) @ curl_h(wavenumber, dxes)
|
|
return op
|
|
|
|
|
|
def curl_e(wavenumber: complex, dxes: dx_lists_t) -> sparse.spmatrix:
|
|
"""
|
|
Discretized curl operator for use with the waveguide E field.
|
|
|
|
:param wavenumber: Wavenumber satisfying A @ v == wavenumber**2 * v
|
|
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types (2D)
|
|
:return: Sparse matrix representation of the operator
|
|
"""
|
|
n = 1
|
|
for d in dxes[0]:
|
|
n *= len(d)
|
|
|
|
Bz = -1j * wavenumber * sparse.eye(n)
|
|
Dfx, Dfy = operators.deriv_forward(dxes[0])
|
|
return operators.cross([Dfx, Dfy, Bz])
|
|
|
|
|
|
def curl_h(wavenumber: complex, dxes: dx_lists_t) -> sparse.spmatrix:
|
|
"""
|
|
Discretized curl operator for use with the waveguide H field.
|
|
|
|
:param wavenumber: Wavenumber satisfying A @ v == wavenumber**2 * v
|
|
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types (2D)
|
|
:return: Sparse matrix representation of the operator
|
|
"""
|
|
n = 1
|
|
for d in dxes[1]:
|
|
n *= len(d)
|
|
|
|
Bz = -1j * wavenumber * sparse.eye(n)
|
|
Dbx, Dby = operators.deriv_back(dxes[1])
|
|
return operators.cross([Dbx, Dby, Bz])
|
|
|
|
|
|
def h_err(h: vfield_t,
|
|
wavenumber: complex,
|
|
omega: complex,
|
|
dxes: dx_lists_t,
|
|
epsilon: vfield_t,
|
|
mu: vfield_t = None
|
|
) -> float:
|
|
"""
|
|
Calculates the relative error in the H field
|
|
|
|
:param h: Vectorized H field
|
|
:param wavenumber: Wavenumber satisfying A @ v == wavenumber**2 * v
|
|
:param omega: The angular frequency of the system
|
|
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types (2D)
|
|
:param epsilon: Vectorized dielectric constant grid
|
|
:param mu: Vectorized magnetic permeability grid (default 1 everywhere)
|
|
:return: Relative error norm(OP @ h) / norm(h)
|
|
"""
|
|
ce = curl_e(wavenumber, dxes)
|
|
ch = curl_h(wavenumber, dxes)
|
|
|
|
eps_inv = sparse.diags(1 / epsilon)
|
|
|
|
if numpy.any(numpy.equal(mu, None)):
|
|
op = ce @ eps_inv @ ch @ h - omega ** 2 * h
|
|
else:
|
|
op = ce @ eps_inv @ ch @ h - omega ** 2 * (mu * h)
|
|
|
|
return norm(op) / norm(h)
|
|
|
|
|
|
def e_err(e: vfield_t,
|
|
wavenumber: complex,
|
|
omega: complex,
|
|
dxes: dx_lists_t,
|
|
epsilon: vfield_t,
|
|
mu: vfield_t = None
|
|
) -> float:
|
|
"""
|
|
Calculates the relative error in the E field
|
|
|
|
:param e: Vectorized E field
|
|
:param wavenumber: Wavenumber satisfying A @ v == wavenumber**2 * v
|
|
:param omega: The angular frequency of the system
|
|
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types (2D)
|
|
:param epsilon: Vectorized dielectric constant grid
|
|
:param mu: Vectorized magnetic permeability grid (default 1 everywhere)
|
|
:return: Relative error norm(OP @ e) / norm(e)
|
|
"""
|
|
ce = curl_e(wavenumber, dxes)
|
|
ch = curl_h(wavenumber, dxes)
|
|
|
|
if numpy.any(numpy.equal(mu, None)):
|
|
op = ch @ ce @ e - omega ** 2 * (epsilon * e)
|
|
else:
|
|
mu_inv = sparse.diags(1 / mu)
|
|
op = ch @ mu_inv @ ce @ e - omega ** 2 * (epsilon * e)
|
|
|
|
return norm(op) / norm(e)
|
|
|
|
|
|
def cylindrical_operator(omega: complex,
|
|
dxes: dx_lists_t,
|
|
epsilon: vfield_t,
|
|
r0: float,
|
|
) -> sparse.spmatrix:
|
|
"""
|
|
Cylindrical coordinate waveguide operator of the form
|
|
|
|
TODO
|
|
|
|
for use with a field vector of the form [E_r, E_y].
|
|
|
|
This operator can be used to form an eigenvalue problem of the form
|
|
A @ [E_r, E_y] = wavenumber**2 * [E_r, E_y]
|
|
|
|
which can then be solved for the eigenmodes of the system (an exp(-i * wavenumber * theta)
|
|
theta-dependence is assumed for the fields).
|
|
|
|
:param omega: The angular frequency of the system
|
|
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types (2D)
|
|
:param epsilon: Vectorized dielectric constant grid
|
|
:param r0: Radius of curvature for the simulation. This should be the minimum value of
|
|
r within the simulation domain.
|
|
:return: Sparse matrix representation of the operator
|
|
"""
|
|
|
|
Dfx, Dfy = operators.deriv_forward(dxes[0])
|
|
Dbx, Dby = operators.deriv_back(dxes[1])
|
|
|
|
rx = r0 + numpy.cumsum(dxes[0][0])
|
|
ry = r0 + dxes[0][0]/2.0 + numpy.cumsum(dxes[1][0])
|
|
tx = rx/r0
|
|
ty = ry/r0
|
|
|
|
Tx = sparse.diags(vec(tx[:, None].repeat(dxes[0][1].size, axis=1)))
|
|
Ty = sparse.diags(vec(ty[:, None].repeat(dxes[1][1].size, axis=1)))
|
|
|
|
eps_parts = numpy.split(epsilon, 3)
|
|
eps_x = sparse.diags(eps_parts[0])
|
|
eps_y = sparse.diags(eps_parts[1])
|
|
eps_z_inv = sparse.diags(1 / eps_parts[2])
|
|
|
|
pa = sparse.vstack((Dfx, Dfy)) @ Tx @ eps_z_inv @ sparse.hstack((Dbx, Dby))
|
|
pb = sparse.vstack((Dfx, Dfy)) @ Tx @ eps_z_inv @ sparse.hstack((Dby, Dbx))
|
|
a0 = Ty @ eps_x + omega**-2 * Dby @ Ty @ Dfy
|
|
a1 = Tx @ eps_y + omega**-2 * Dbx @ Ty @ Dfx
|
|
b0 = Dbx @ Ty @ Dfy
|
|
b1 = Dby @ Ty @ Dfx
|
|
|
|
diag = sparse.block_diag
|
|
op = (omega**2 * diag((Tx, Ty)) + pa) @ diag((a0, a1)) + \
|
|
- (sparse.bmat(((None, Ty), (Tx, None))) + omega**-2 * pb) @ diag((b0, b1))
|
|
|
|
return op
|
|
|
|
|
|
|