rename to meanas and split fdtd/fdfd
This commit is contained in:
parent
25cb83089d
commit
f61bcf3dfa
50
README.md
50
README.md
@ -1,46 +1,56 @@
|
||||
# fdfd_tools
|
||||
# meanas
|
||||
|
||||
**fdfd_tools** is a python package containing utilities for
|
||||
creating and analyzing 2D and 3D finite-difference frequency-domain (FDFD)
|
||||
electromagnetic simulations.
|
||||
**meanas** is a python package for electromagnetic simulations
|
||||
|
||||
This package is intended for building simulation inputs, analyzing
|
||||
simulation outputs, and running short simulations on unspecialized hardware.
|
||||
It is designed to provide tooling and a baseline for other, high-performance
|
||||
purpose- and hardware-specific solvers.
|
||||
|
||||
|
||||
**Contents**
|
||||
* Library of sparse matrices for representing the electromagnetic wave
|
||||
equation in 3D, as well as auxiliary matrices for conversion between fields
|
||||
* Waveguide mode solver and waveguide mode operators
|
||||
* Stretched-coordinate PML boundaries (SCPML)
|
||||
* Functional versions of most operators
|
||||
* Anisotropic media (eps_xx, eps_yy, eps_zz, mu_xx, ...)
|
||||
* Arbitrary distributions of perfect electric and magnetic conductors (PEC / PMC)
|
||||
- Finite difference frequency domain (FDFD)
|
||||
* Library of sparse matrices for representing the electromagnetic wave
|
||||
equation in 3D, as well as auxiliary matrices for conversion between fields
|
||||
* Waveguide mode operators
|
||||
* Waveguide mode eigensolver
|
||||
* Stretched-coordinate PML boundaries (SCPML)
|
||||
* Functional versions of most operators
|
||||
* Anisotropic media (limited to diagonal elements eps_xx, eps_yy, eps_zz, mu_xx, ...)
|
||||
* Arbitrary distributions of perfect electric and magnetic conductors (PEC / PMC)
|
||||
- Finite difference time domain (FDTD)
|
||||
* Basic Maxwell time-steps
|
||||
* Poynting vector and energy calculation
|
||||
* Convolutional PMLs
|
||||
|
||||
This package does *not* provide a fast matrix solver, though by default
|
||||
```fdfd_tools.solvers.generic(...)``` will call
|
||||
```scipy.sparse.linalg.qmr(...)``` to perform a solve.
|
||||
For 2D problems this should be fine; likewise, the waveguide mode
|
||||
`meanas.fdfd.solvers.generic(...)` will call
|
||||
`scipy.sparse.linalg.qmr(...)` to perform a solve.
|
||||
For 2D FDFD problems this should be fine; likewise, the waveguide mode
|
||||
solver uses scipy's eigenvalue solver, with reasonable results.
|
||||
|
||||
For solving large (or 3D) problems, I recommend a GPU-based iterative
|
||||
solver, such as [opencl_fdfd](https://mpxd.net/gogs/jan/opencl_fdfd) or
|
||||
For solving large (or 3D) FDFD problems, I recommend a GPU-based iterative
|
||||
solver, such as [opencl_fdfd](https://mpxd.net/code/jan/opencl_fdfd) or
|
||||
those included in [MAGMA](http://icl.cs.utk.edu/magma/index.html)). Your
|
||||
solver will need the ability to solve complex symmetric (non-Hermitian)
|
||||
linear systems, ideally with double precision.
|
||||
|
||||
|
||||
## Installation
|
||||
|
||||
**Requirements:**
|
||||
* python 3 (written and tested with 3.5)
|
||||
* python 3 (tests require 3.7)
|
||||
* numpy
|
||||
* scipy
|
||||
|
||||
|
||||
Install with pip, via git:
|
||||
```bash
|
||||
pip install git+https://mpxd.net/gogs/jan/fdfd_tools.git@release
|
||||
pip install git+https://mpxd.net/code/jan/meanas.git@release
|
||||
```
|
||||
|
||||
## Use
|
||||
|
||||
See examples/test.py for some simple examples; you may need additional
|
||||
packages such as [gridlock](https://mpxd.net/gogs/jan/gridlock)
|
||||
See `examples/` for some simple examples; you may need additional
|
||||
packages such as [gridlock](https://mpxd.net/code/jan/gridlock)
|
||||
to run the examples.
|
||||
|
@ -1,26 +0,0 @@
|
||||
"""
|
||||
Electromagnetic FDFD simulation tools
|
||||
|
||||
Tools for 3D and 2D Electromagnetic Finite Difference Frequency Domain (FDFD)
|
||||
simulations. These tools handle conversion of fields to/from vector form,
|
||||
creation of the wave operator matrix, stretched-coordinate PMLs, PECs and PMCs,
|
||||
field conversion operators, waveguide mode operator, and waveguide mode
|
||||
solver.
|
||||
|
||||
This package only contains a solver for the waveguide mode eigenproblem;
|
||||
if you want to solve 3D problems you can use your favorite iterative sparse
|
||||
matrix solver (so long as it can handle complex symmetric [non-Hermitian]
|
||||
matrices, ideally with double precision).
|
||||
|
||||
|
||||
Dependencies:
|
||||
- numpy
|
||||
- scipy
|
||||
|
||||
"""
|
||||
|
||||
from .vectorization import vec, unvec, field_t, vfield_t
|
||||
from .grid import dx_lists_t
|
||||
|
||||
__author__ = 'Jan Petykiewicz'
|
||||
version = '0.5'
|
@ -1,339 +0,0 @@
|
||||
from typing import List, Callable, Tuple, Dict
|
||||
import numpy
|
||||
|
||||
from . import dx_lists_t, field_t
|
||||
|
||||
#TODO fix pmls
|
||||
|
||||
__author__ = 'Jan Petykiewicz'
|
||||
|
||||
|
||||
functional_matrix = Callable[[field_t], field_t]
|
||||
|
||||
|
||||
def curl_h(dxes: dx_lists_t = None) -> functional_matrix:
|
||||
"""
|
||||
Curl operator for use with the H field.
|
||||
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in fdfd_tools.operators header
|
||||
:return: Function for taking the discretized curl of the H-field, F(H) -> curlH
|
||||
"""
|
||||
if dxes:
|
||||
dxyz_b = numpy.meshgrid(*dxes[1], indexing='ij')
|
||||
|
||||
def dh(f, ax):
|
||||
return (f - numpy.roll(f, 1, axis=ax)) / dxyz_b[ax]
|
||||
else:
|
||||
def dh(f, ax):
|
||||
return f - numpy.roll(f, 1, axis=ax)
|
||||
|
||||
def ch_fun(h: field_t) -> field_t:
|
||||
output = numpy.empty_like(h)
|
||||
output[0] = dh(h[2], 1)
|
||||
output[1] = dh(h[0], 2)
|
||||
output[2] = dh(h[1], 0)
|
||||
output[0] -= dh(h[1], 2)
|
||||
output[1] -= dh(h[2], 0)
|
||||
output[2] -= dh(h[0], 1)
|
||||
return output
|
||||
|
||||
return ch_fun
|
||||
|
||||
|
||||
def curl_e(dxes: dx_lists_t = None) -> functional_matrix:
|
||||
"""
|
||||
Curl operator for use with the E field.
|
||||
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in fdfd_tools.operators header
|
||||
:return: Function for taking the discretized curl of the E-field, F(E) -> curlE
|
||||
"""
|
||||
if dxes is not None:
|
||||
dxyz_a = numpy.meshgrid(*dxes[0], indexing='ij')
|
||||
|
||||
def de(f, ax):
|
||||
return (numpy.roll(f, -1, axis=ax) - f) / dxyz_a[ax]
|
||||
else:
|
||||
def de(f, ax):
|
||||
return numpy.roll(f, -1, axis=ax) - f
|
||||
|
||||
def ce_fun(e: field_t) -> field_t:
|
||||
output = numpy.empty_like(e)
|
||||
output[0] = de(e[2], 1)
|
||||
output[1] = de(e[0], 2)
|
||||
output[2] = de(e[1], 0)
|
||||
output[0] -= de(e[1], 2)
|
||||
output[1] -= de(e[2], 0)
|
||||
output[2] -= de(e[0], 1)
|
||||
return output
|
||||
|
||||
return ce_fun
|
||||
|
||||
|
||||
def maxwell_e(dt: float, dxes: dx_lists_t = None) -> functional_matrix:
|
||||
curl_h_fun = curl_h(dxes)
|
||||
|
||||
def me_fun(e: field_t, h: field_t, epsilon: field_t):
|
||||
e += dt * curl_h_fun(h) / epsilon
|
||||
return e
|
||||
|
||||
return me_fun
|
||||
|
||||
|
||||
def maxwell_h(dt: float, dxes: dx_lists_t = None) -> functional_matrix:
|
||||
curl_e_fun = curl_e(dxes)
|
||||
|
||||
def mh_fun(e: field_t, h: field_t):
|
||||
h -= dt * curl_e_fun(e)
|
||||
return h
|
||||
|
||||
return mh_fun
|
||||
|
||||
|
||||
def conducting_boundary(direction: int,
|
||||
polarity: int
|
||||
) -> Tuple[functional_matrix, functional_matrix]:
|
||||
dirs = [0, 1, 2]
|
||||
if direction not in dirs:
|
||||
raise Exception('Invalid direction: {}'.format(direction))
|
||||
dirs.remove(direction)
|
||||
u, v = dirs
|
||||
|
||||
if polarity < 0:
|
||||
boundary_slice = [slice(None)] * 3
|
||||
shifted1_slice = [slice(None)] * 3
|
||||
boundary_slice[direction] = 0
|
||||
shifted1_slice[direction] = 1
|
||||
|
||||
def en(e: field_t):
|
||||
e[direction][boundary_slice] = 0
|
||||
e[u][boundary_slice] = e[u][shifted1_slice]
|
||||
e[v][boundary_slice] = e[v][shifted1_slice]
|
||||
return e
|
||||
|
||||
def hn(h: field_t):
|
||||
h[direction][boundary_slice] = h[direction][shifted1_slice]
|
||||
h[u][boundary_slice] = 0
|
||||
h[v][boundary_slice] = 0
|
||||
return h
|
||||
|
||||
return en, hn
|
||||
|
||||
elif polarity > 0:
|
||||
boundary_slice = [slice(None)] * 3
|
||||
shifted1_slice = [slice(None)] * 3
|
||||
shifted2_slice = [slice(None)] * 3
|
||||
boundary_slice[direction] = -1
|
||||
shifted1_slice[direction] = -2
|
||||
shifted2_slice[direction] = -3
|
||||
|
||||
def ep(e: field_t):
|
||||
e[direction][boundary_slice] = -e[direction][shifted2_slice]
|
||||
e[direction][shifted1_slice] = 0
|
||||
e[u][boundary_slice] = e[u][shifted1_slice]
|
||||
e[v][boundary_slice] = e[v][shifted1_slice]
|
||||
return e
|
||||
|
||||
def hp(h: field_t):
|
||||
h[direction][boundary_slice] = h[direction][shifted1_slice]
|
||||
h[u][boundary_slice] = -h[u][shifted2_slice]
|
||||
h[u][shifted1_slice] = 0
|
||||
h[v][boundary_slice] = -h[v][shifted2_slice]
|
||||
h[v][shifted1_slice] = 0
|
||||
return h
|
||||
|
||||
return ep, hp
|
||||
|
||||
else:
|
||||
raise Exception('Bad polarity: {}'.format(polarity))
|
||||
|
||||
|
||||
def cpml(direction:int,
|
||||
polarity: int,
|
||||
dt: float,
|
||||
epsilon: field_t,
|
||||
thickness: int = 8,
|
||||
ln_R_per_layer: float = -1.6,
|
||||
epsilon_eff: float = 1,
|
||||
mu_eff: float = 1,
|
||||
m: float = 3.5,
|
||||
ma: float = 1,
|
||||
cfs_alpha: float = 0,
|
||||
dtype: numpy.dtype = numpy.float32,
|
||||
) -> Tuple[Callable, Callable, Dict[str, field_t]]:
|
||||
|
||||
if direction not in range(3):
|
||||
raise Exception('Invalid direction: {}'.format(direction))
|
||||
|
||||
if polarity not in (-1, 1):
|
||||
raise Exception('Invalid polarity: {}'.format(polarity))
|
||||
|
||||
if thickness <= 2:
|
||||
raise Exception('It would be wise to have a pml with 4+ cells of thickness')
|
||||
|
||||
if epsilon_eff <= 0:
|
||||
raise Exception('epsilon_eff must be positive')
|
||||
|
||||
sigma_max = -ln_R_per_layer / 2 * (m + 1)
|
||||
kappa_max = numpy.sqrt(epsilon_eff * mu_eff)
|
||||
alpha_max = cfs_alpha
|
||||
transverse = numpy.delete(range(3), direction)
|
||||
u, v = transverse
|
||||
|
||||
xe = numpy.arange(1, thickness+1, dtype=float)
|
||||
xh = numpy.arange(1, thickness+1, dtype=float)
|
||||
if polarity > 0:
|
||||
xe -= 0.5
|
||||
elif polarity < 0:
|
||||
xh -= 0.5
|
||||
xe = xe[::-1]
|
||||
xh = xh[::-1]
|
||||
else:
|
||||
raise Exception('Bad polarity!')
|
||||
|
||||
expand_slice = [None] * 3
|
||||
expand_slice[direction] = slice(None)
|
||||
|
||||
def par(x):
|
||||
scaling = (x / thickness) ** m
|
||||
sigma = scaling * sigma_max
|
||||
kappa = 1 + scaling * (kappa_max - 1)
|
||||
alpha = ((1 - x / thickness) ** ma) * alpha_max
|
||||
p0 = numpy.exp(-(sigma / kappa + alpha) * dt)
|
||||
p1 = sigma / (sigma + kappa * alpha) * (p0 - 1)
|
||||
p2 = 1 / kappa
|
||||
return p0[expand_slice], p1[expand_slice], p2[expand_slice]
|
||||
|
||||
p0e, p1e, p2e = par(xe)
|
||||
p0h, p1h, p2h = par(xh)
|
||||
|
||||
region = [slice(None)] * 3
|
||||
if polarity < 0:
|
||||
region[direction] = slice(None, thickness)
|
||||
elif polarity > 0:
|
||||
region[direction] = slice(-thickness, None)
|
||||
else:
|
||||
raise Exception('Bad polarity!')
|
||||
|
||||
se = 1 if direction == 1 else -1
|
||||
|
||||
# TODO check if epsilon is uniform in pml region?
|
||||
shape = list(epsilon[0].shape)
|
||||
shape[direction] = thickness
|
||||
psi_e = [numpy.zeros(shape, dtype=dtype), numpy.zeros(shape, dtype=dtype)]
|
||||
psi_h = [numpy.zeros(shape, dtype=dtype), numpy.zeros(shape, dtype=dtype)]
|
||||
|
||||
fields = {
|
||||
'psi_e_u': psi_e[0],
|
||||
'psi_e_v': psi_e[1],
|
||||
'psi_h_u': psi_h[0],
|
||||
'psi_h_v': psi_h[1],
|
||||
}
|
||||
|
||||
# Note that this is kinda slow -- would be faster to reuse dHv*p2h for the original
|
||||
# H update, but then you have multiple arrays and a monolithic (field + pml) update operation
|
||||
def pml_e(e: field_t, h: field_t, epsilon: field_t) -> Tuple[field_t, field_t]:
|
||||
dHv = h[v][region] - numpy.roll(h[v], 1, axis=direction)[region]
|
||||
dHu = h[u][region] - numpy.roll(h[u], 1, axis=direction)[region]
|
||||
psi_e[0] *= p0e
|
||||
psi_e[0] += p1e * dHv * p2e
|
||||
psi_e[1] *= p0e
|
||||
psi_e[1] += p1e * dHu * p2e
|
||||
e[u][region] += se * dt / epsilon[u][region] * (psi_e[0] + (p2e - 1) * dHv)
|
||||
e[v][region] -= se * dt / epsilon[v][region] * (psi_e[1] + (p2e - 1) * dHu)
|
||||
return e, h
|
||||
|
||||
def pml_h(e: field_t, h: field_t) -> Tuple[field_t, field_t]:
|
||||
dEv = (numpy.roll(e[v], -1, axis=direction)[region] - e[v][region])
|
||||
dEu = (numpy.roll(e[u], -1, axis=direction)[region] - e[u][region])
|
||||
psi_h[0] *= p0h
|
||||
psi_h[0] += p1h * dEv * p2h
|
||||
psi_h[1] *= p0h
|
||||
psi_h[1] += p1h * dEu * p2h
|
||||
h[u][region] -= se * dt * (psi_h[0] + (p2h - 1) * dEv)
|
||||
h[v][region] += se * dt * (psi_h[1] + (p2h - 1) * dEu)
|
||||
return e, h
|
||||
|
||||
return pml_e, pml_h, fields
|
||||
|
||||
|
||||
def poynting(e, h):
|
||||
s = (numpy.roll(e[1], -1, axis=0) * h[2] - numpy.roll(e[2], -1, axis=0) * h[1],
|
||||
numpy.roll(e[2], -1, axis=1) * h[0] - numpy.roll(e[0], -1, axis=1) * h[2],
|
||||
numpy.roll(e[0], -1, axis=2) * h[1] - numpy.roll(e[1], -1, axis=2) * h[0])
|
||||
return numpy.array(s)
|
||||
|
||||
|
||||
def poynting_divergence(s=None, *, e=None, h=None, dxes=None): # TODO dxes
|
||||
if dxes is None:
|
||||
dxes = tuple(tuple(numpy.ones(1) for _ in range(3)) for _ in range(2))
|
||||
|
||||
if s is None:
|
||||
s = poynting(e, h)
|
||||
|
||||
ds = ((s[0] - numpy.roll(s[0], 1, axis=0)) / numpy.sqrt(dxes[0][0] * dxes[1][0])[:, None, None] +
|
||||
(s[1] - numpy.roll(s[1], 1, axis=1)) / numpy.sqrt(dxes[0][1] * dxes[1][1])[None, :, None] +
|
||||
(s[2] - numpy.roll(s[2], 1, axis=2)) / numpy.sqrt(dxes[0][2] * dxes[1][2])[None, None, :] )
|
||||
return ds
|
||||
|
||||
|
||||
def energy_hstep(e0, h1, e2, epsilon=None, mu=None, dxes=None):
|
||||
u = dxmul(e0 * e2, h1 * h1, epsilon, mu, dxes)
|
||||
return u
|
||||
|
||||
|
||||
def energy_estep(h0, e1, h2, epsilon=None, mu=None, dxes=None):
|
||||
u = dxmul(e1 * e1, h0 * h2, epsilon, mu, dxes)
|
||||
return u
|
||||
|
||||
|
||||
def delta_energy_h2e(dt, e0, h1, e2, h3, epsilon=None, mu=None, dxes=None):
|
||||
"""
|
||||
This is just from (e2 * e2 + h3 * h1) - (h1 * h1 + e0 * e2)
|
||||
"""
|
||||
de = e2 * (e2 - e0) / dt
|
||||
dh = h1 * (h3 - h1) / dt
|
||||
du = dxmul(de, dh, epsilon, mu, dxes)
|
||||
return du
|
||||
|
||||
|
||||
def delta_energy_e2h(dt, h0, e1, h2, e3, epsilon=None, mu=None, dxes=None):
|
||||
"""
|
||||
This is just from (h2 * h2 + e3 * e1) - (e1 * e1 + h0 * h2)
|
||||
"""
|
||||
de = e1 * (e3 - e1) / dt
|
||||
dh = h2 * (h2 - h0) / dt
|
||||
du = dxmul(de, dh, epsilon, mu, dxes)
|
||||
return du
|
||||
|
||||
|
||||
def delta_energy_j(j0, e1, dxes=None):
|
||||
if dxes is None:
|
||||
dxes = tuple(tuple(numpy.ones(1) for _ in range(3)) for _ in range(2))
|
||||
|
||||
du = ((j0 * e1).sum(axis=0) *
|
||||
dxes[0][0][:, None, None] *
|
||||
dxes[0][1][None, :, None] *
|
||||
dxes[0][2][None, None, :])
|
||||
return du
|
||||
|
||||
|
||||
def dxmul(ee, hh, epsilon=None, mu=None, dxes=None):
|
||||
if epsilon is None:
|
||||
epsilon = 1
|
||||
if mu is None:
|
||||
mu = 1
|
||||
if dxes is None:
|
||||
dxes = tuple(tuple(numpy.ones(1) for _ in range(3)) for _ in range(2))
|
||||
|
||||
result = ((ee * epsilon).sum(axis=0) *
|
||||
dxes[0][0][:, None, None] *
|
||||
dxes[0][1][None, :, None] *
|
||||
dxes[0][2][None, None, :] +
|
||||
(hh * mu).sum(axis=0) *
|
||||
dxes[1][0][:, None, None] *
|
||||
dxes[1][1][None, :, None] *
|
||||
dxes[1][2][None, None, :])
|
||||
return result
|
||||
|
||||
|
||||
|
48
meanas/__init__.py
Normal file
48
meanas/__init__.py
Normal file
@ -0,0 +1,48 @@
|
||||
"""
|
||||
Electromagnetic simulation tools
|
||||
|
||||
This package is intended for building simulation inputs, analyzing
|
||||
simulation outputs, and running short simulations on unspecialized hardware.
|
||||
It is designed to provide tooling and a baseline for other, high-performance
|
||||
purpose- and hardware-specific solvers.
|
||||
|
||||
|
||||
**Contents**
|
||||
- Finite difference frequency domain (FDFD)
|
||||
* Library of sparse matrices for representing the electromagnetic wave
|
||||
equation in 3D, as well as auxiliary matrices for conversion between fields
|
||||
* Waveguide mode operators
|
||||
* Waveguide mode eigensolver
|
||||
* Stretched-coordinate PML boundaries (SCPML)
|
||||
* Functional versions of most operators
|
||||
* Anisotropic media (limited to diagonal elements eps_xx, eps_yy, eps_zz, mu_xx, ...)
|
||||
* Arbitrary distributions of perfect electric and magnetic conductors (PEC / PMC)
|
||||
- Finite difference time domain (FDTD)
|
||||
* Basic Maxwell time-steps
|
||||
* Poynting vector and energy calculation
|
||||
* Convolutional PMLs
|
||||
|
||||
This package does *not* provide a fast matrix solver, though by default
|
||||
```meanas.fdfd.solvers.generic(...)``` will call
|
||||
```scipy.sparse.linalg.qmr(...)``` to perform a solve.
|
||||
For 2D FDFD problems this should be fine; likewise, the waveguide mode
|
||||
solver uses scipy's eigenvalue solver, with reasonable results.
|
||||
|
||||
For solving large (or 3D) FDFD problems, I recommend a GPU-based iterative
|
||||
solver, such as [opencl_fdfd](https://mpxd.net/code/jan/opencl_fdfd) or
|
||||
those included in [MAGMA](http://icl.cs.utk.edu/magma/index.html)). Your
|
||||
solver will need the ability to solve complex symmetric (non-Hermitian)
|
||||
linear systems, ideally with double precision.
|
||||
|
||||
|
||||
Dependencies:
|
||||
- numpy
|
||||
- scipy
|
||||
|
||||
"""
|
||||
|
||||
from .types import dx_lists_t, field_t, vfield_t, field_updater
|
||||
from .vectorization import vec, unvec
|
||||
|
||||
__author__ = 'Jan Petykiewicz'
|
||||
version = '0.5'
|
@ -2,8 +2,8 @@
|
||||
Functional versions of many FDFD operators. These can be useful for performing
|
||||
FDFD calculations without needing to construct large matrices in memory.
|
||||
|
||||
The functions generated here expect inputs in the form E = [E_x, E_y, E_z], where each
|
||||
component E_* is an ndarray of equal shape.
|
||||
The functions generated here expect field inputs with shape (3, X, Y, Z),
|
||||
e.g. E = [E_x, E_y, E_z] where each component has shape (X, Y, Z)
|
||||
"""
|
||||
from typing import List, Callable
|
||||
import numpy
|
||||
@ -20,7 +20,7 @@ def curl_h(dxes: dx_lists_t) -> functional_matrix:
|
||||
"""
|
||||
Curl operator for use with the H field.
|
||||
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in fdfd_tools.operators header
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types
|
||||
:return: Function for taking the discretized curl of the H-field, F(H) -> curlH
|
||||
"""
|
||||
dxyz_b = numpy.meshgrid(*dxes[1], indexing='ij')
|
||||
@ -41,7 +41,7 @@ def curl_e(dxes: dx_lists_t) -> functional_matrix:
|
||||
"""
|
||||
Curl operator for use with the E field.
|
||||
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in fdfd_tools.operators header
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types
|
||||
:return: Function for taking the discretized curl of the E-field, F(E) -> curlE
|
||||
"""
|
||||
dxyz_a = numpy.meshgrid(*dxes[0], indexing='ij')
|
||||
@ -69,7 +69,7 @@ def e_full(omega: complex,
|
||||
(del x (1/mu * del x) - omega**2 * epsilon) E = -i * omega * J
|
||||
|
||||
:param omega: Angular frequency of the simulation
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in fdfd_tools.operators header
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types
|
||||
:param epsilon: Dielectric constant
|
||||
:param mu: Magnetic permeability (default 1 everywhere)
|
||||
:return: Function implementing the wave operator A(E) -> E
|
||||
@ -100,7 +100,7 @@ def eh_full(omega: complex,
|
||||
Wave operator for full (both E and H) field representation.
|
||||
|
||||
:param omega: Angular frequency of the simulation
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in fdfd_tools.operators header
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types
|
||||
:param epsilon: Dielectric constant
|
||||
:param mu: Magnetic permeability (default 1 everywhere)
|
||||
:return: Function implementing the wave operator A(E, H) -> (E, H)
|
||||
@ -131,7 +131,7 @@ def e2h(omega: complex,
|
||||
For use with e_full -- assumes that there is no magnetic current M.
|
||||
|
||||
:param omega: Angular frequency of the simulation
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in fdfd_tools.operators header
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types
|
||||
:param mu: Magnetic permeability (default 1 everywhere)
|
||||
:return: Function for converting E to H
|
||||
"""
|
||||
@ -159,7 +159,7 @@ def m2j(omega: complex,
|
||||
For use with e.g. e_full().
|
||||
|
||||
:param omega: Angular frequency of the simulation
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in fdfd_tools.operators header
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types
|
||||
:param mu: Magnetic permeability (default 1 everywhere)
|
||||
:return: Function for converting M to J
|
||||
"""
|
@ -3,17 +3,13 @@ Sparse matrix operators for use with electromagnetic wave equations.
|
||||
|
||||
These functions return sparse-matrix (scipy.sparse.spmatrix) representations of
|
||||
a variety of operators, intended for use with E and H fields vectorized using the
|
||||
fdfd_tools.vec() and .unvec() functions (column-major/Fortran ordering).
|
||||
meanas.vec() and .unvec() functions (column-major/Fortran ordering).
|
||||
|
||||
E- and H-field values are defined on a Yee cell; epsilon values should be calculated for
|
||||
cells centered at each E component (mu at each H component).
|
||||
|
||||
Many of these functions require a 'dxes' parameter, of type fdfd_tools.dx_lists_type,
|
||||
which contains grid cell width information in the following format:
|
||||
[[[dx_e_0, dx_e_1, ...], [dy_e_0, ...], [dz_e_0, ...]],
|
||||
[[dx_h_0, dx_h_1, ...], [dy_h_0, ...], [dz_h_0, ...]]]
|
||||
where dx_e_0 is the x-width of the x=0 cells, as used when calculating dE/dx,
|
||||
and dy_h_0 is the y-width of the y=0 cells, as used when calculating dH/dy, etc.
|
||||
Many of these functions require a 'dxes' parameter, of type meanas.dx_lists_type; see
|
||||
the meanas.types submodule for details.
|
||||
|
||||
|
||||
The following operators are included:
|
||||
@ -57,7 +53,7 @@ def e_full(omega: complex,
|
||||
To make this matrix symmetric, use the preconditions from e_full_preconditioners().
|
||||
|
||||
:param omega: Angular frequency of the simulation
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in fdfd_tools.operators header
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types
|
||||
:param epsilon: Vectorized dielectric constant
|
||||
:param mu: Vectorized magnetic permeability (default 1 everywhere).
|
||||
:param pec: Vectorized mask specifying PEC cells. Any cells where pec != 0 are interpreted
|
||||
@ -101,7 +97,7 @@ def e_full_preconditioners(dxes: dx_lists_t
|
||||
|
||||
The preconditioner matrices are diagonal and complex, with Pr = 1 / Pl
|
||||
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in fdfd_tools.operators header
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types
|
||||
:return: Preconditioner matrices (Pl, Pr)
|
||||
"""
|
||||
p_squared = [dxes[0][0][:, None, None] * dxes[1][1][None, :, None] * dxes[1][2][None, None, :],
|
||||
@ -127,7 +123,7 @@ def h_full(omega: complex,
|
||||
(del x (1/epsilon * del x) - omega**2 * mu) H = i * omega * M
|
||||
|
||||
:param omega: Angular frequency of the simulation
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in fdfd_tools.operators header
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types
|
||||
:param epsilon: Vectorized dielectric constant
|
||||
:param mu: Vectorized magnetic permeability (default 1 everywhere)
|
||||
:param pec: Vectorized mask specifying PEC cells. Any cells where pec != 0 are interpreted
|
||||
@ -177,7 +173,7 @@ def eh_full(omega: complex,
|
||||
for use with a field vector of the form hstack(vec(E), vec(H)).
|
||||
|
||||
:param omega: Angular frequency of the simulation
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in fdfd_tools.operators header
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types
|
||||
:param epsilon: Vectorized dielectric constant
|
||||
:param mu: Vectorized magnetic permeability (default 1 everywhere)
|
||||
:param pec: Vectorized mask specifying PEC cells. Any cells where pec != 0 are interpreted
|
||||
@ -216,7 +212,7 @@ def curl_h(dxes: dx_lists_t) -> sparse.spmatrix:
|
||||
"""
|
||||
Curl operator for use with the H field.
|
||||
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in fdfd_tools.operators header
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types
|
||||
:return: Sparse matrix for taking the discretized curl of the H-field
|
||||
"""
|
||||
return cross(deriv_back(dxes[1]))
|
||||
@ -226,7 +222,7 @@ def curl_e(dxes: dx_lists_t) -> sparse.spmatrix:
|
||||
"""
|
||||
Curl operator for use with the E field.
|
||||
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in fdfd_tools.operators header
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types
|
||||
:return: Sparse matrix for taking the discretized curl of the E-field
|
||||
"""
|
||||
return cross(deriv_forward(dxes[0]))
|
||||
@ -242,7 +238,7 @@ def e2h(omega: complex,
|
||||
For use with e_full -- assumes that there is no magnetic current M.
|
||||
|
||||
:param omega: Angular frequency of the simulation
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in fdfd_tools.operators header
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types
|
||||
:param mu: Vectorized magnetic permeability (default 1 everywhere)
|
||||
:param pmc: Vectorized mask specifying PMC cells. Any cells where pmc != 0 are interpreted
|
||||
as containing a perfect magnetic conductor (PMC).
|
||||
@ -270,7 +266,7 @@ def m2j(omega: complex,
|
||||
For use with eg. e_full.
|
||||
|
||||
:param omega: Angular frequency of the simulation
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in fdfd_tools.operators header
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types
|
||||
:param mu: Vectorized magnetic permeability (default 1 everywhere)
|
||||
:return: Sparse matrix for converting E to H
|
||||
"""
|
||||
@ -454,7 +450,7 @@ def poynting_e_cross(e: vfield_t, dxes: dx_lists_t) -> sparse.spmatrix:
|
||||
Operator for computing the Poynting vector, containing the (E x) portion of the Poynting vector.
|
||||
|
||||
:param e: Vectorized E-field for the ExH cross product
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in fdfd_tools.operators header
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types
|
||||
:return: Sparse matrix containing (E x) portion of Poynting cross product
|
||||
"""
|
||||
shape = [len(dx) for dx in dxes[0]]
|
||||
@ -483,7 +479,7 @@ def poynting_h_cross(h: vfield_t, dxes: dx_lists_t) -> sparse.spmatrix:
|
||||
Operator for computing the Poynting vector, containing the (H x) portion of the Poynting vector.
|
||||
|
||||
:param h: Vectorized H-field for the HxE cross product
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in fdfd_tools.operators header
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types
|
||||
:return: Sparse matrix containing (H x) portion of Poynting cross product
|
||||
"""
|
||||
shape = [len(dx) for dx in dxes[0]]
|
@ -8,7 +8,6 @@ import numpy
|
||||
__author__ = 'Jan Petykiewicz'
|
||||
|
||||
|
||||
dx_lists_t = List[List[numpy.ndarray]]
|
||||
s_function_type = Callable[[float], float]
|
||||
|
||||
|
@ -70,7 +70,7 @@ def generic(omega: complex,
|
||||
"""
|
||||
Conjugate gradient FDFD solver using CSR sparse matrices.
|
||||
|
||||
All ndarray arguments should be 1D array, as returned by fdfd_tools.vec().
|
||||
All ndarray arguments should be 1D array, as returned by meanas.vec().
|
||||
|
||||
:param omega: Complex frequency to solve at.
|
||||
:param dxes: [[dx_e, dy_e, dz_e], [dx_h, dy_h, dz_h]] (complex cell sizes)
|
@ -51,7 +51,7 @@ def operator(omega: complex,
|
||||
z-dependence is assumed for the fields).
|
||||
|
||||
:param omega: The angular frequency of the system
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in fdfd_tools.operators header (2D)
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types (2D)
|
||||
:param epsilon: Vectorized dielectric constant grid
|
||||
:param mu: Vectorized magnetic permeability grid (default 1 everywhere)
|
||||
:return: Sparse matrix representation of the operator
|
||||
@ -91,7 +91,7 @@ def normalized_fields(v: numpy.ndarray,
|
||||
:param v: Vector containing H_x and H_y fields
|
||||
:param wavenumber: Wavenumber satisfying A @ v == wavenumber**2 * v
|
||||
:param omega: The angular frequency of the system
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in fdfd_tools.operators header (2D)
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types (2D)
|
||||
:param epsilon: Vectorized dielectric constant grid
|
||||
:param mu: Vectorized magnetic permeability grid (default 1 everywhere)
|
||||
:return: Normalized, vectorized (e, h) containing all vector components.
|
||||
@ -120,6 +120,8 @@ def normalized_fields(v: numpy.ndarray,
|
||||
# Try to break symmetry to assign a consistent sign [experimental]
|
||||
E_weighted = unvec(e * energy * numpy.exp(1j * norm_angle), shape)
|
||||
sign = numpy.sign(E_weighted[:, :max(shape[0]//2, 1), :max(shape[1]//2, 1)].real.sum())
|
||||
logger.debug('norm_angle = {}'.format(norm_angle))
|
||||
logger.debug('norm_sign = {}'.format(sign)
|
||||
|
||||
norm_factor = sign * norm_amplitude * numpy.exp(1j * norm_angle)
|
||||
|
||||
@ -140,7 +142,7 @@ def v2h(v: numpy.ndarray,
|
||||
|
||||
:param v: Vector containing H_x and H_y fields
|
||||
:param wavenumber: Wavenumber satisfying A @ v == wavenumber**2 * v
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in fdfd_tools.operators header (2D)
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types (2D)
|
||||
:param mu: Vectorized magnetic permeability grid (default 1 everywhere)
|
||||
:return: Vectorized H field with all vector components
|
||||
"""
|
||||
@ -172,7 +174,7 @@ def v2e(v: numpy.ndarray,
|
||||
:param v: Vector containing H_x and H_y fields
|
||||
:param wavenumber: Wavenumber satisfying A @ v == wavenumber**2 * v
|
||||
:param omega: The angular frequency of the system
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in fdfd_tools.operators header (2D)
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types (2D)
|
||||
:param epsilon: Vectorized dielectric constant grid
|
||||
:param mu: Vectorized magnetic permeability grid (default 1 everywhere)
|
||||
:return: Vectorized E field with all vector components.
|
||||
@ -192,7 +194,7 @@ def e2h(wavenumber: complex,
|
||||
|
||||
:param wavenumber: Wavenumber satisfying A @ v == wavenumber**2 * v
|
||||
:param omega: The angular frequency of the system
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in fdfd_tools.operators header (2D)
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types (2D)
|
||||
:param mu: Vectorized magnetic permeability grid (default 1 everywhere)
|
||||
:return: Sparse matrix representation of the operator
|
||||
"""
|
||||
@ -213,7 +215,7 @@ def h2e(wavenumber: complex,
|
||||
|
||||
:param wavenumber: Wavenumber satisfying A @ v == wavenumber**2 * v
|
||||
:param omega: The angular frequency of the system
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in fdfd_tools.operators header (2D)
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types (2D)
|
||||
:param epsilon: Vectorized dielectric constant grid
|
||||
:return: Sparse matrix representation of the operator
|
||||
"""
|
||||
@ -226,7 +228,7 @@ def curl_e(wavenumber: complex, dxes: dx_lists_t) -> sparse.spmatrix:
|
||||
Discretized curl operator for use with the waveguide E field.
|
||||
|
||||
:param wavenumber: Wavenumber satisfying A @ v == wavenumber**2 * v
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in fdfd_tools.operators header (2D)
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types (2D)
|
||||
:return: Sparse matrix representation of the operator
|
||||
"""
|
||||
n = 1
|
||||
@ -243,7 +245,7 @@ def curl_h(wavenumber: complex, dxes: dx_lists_t) -> sparse.spmatrix:
|
||||
Discretized curl operator for use with the waveguide H field.
|
||||
|
||||
:param wavenumber: Wavenumber satisfying A @ v == wavenumber**2 * v
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in fdfd_tools.operators header (2D)
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types (2D)
|
||||
:return: Sparse matrix representation of the operator
|
||||
"""
|
||||
n = 1
|
||||
@ -268,7 +270,7 @@ def h_err(h: vfield_t,
|
||||
:param h: Vectorized H field
|
||||
:param wavenumber: Wavenumber satisfying A @ v == wavenumber**2 * v
|
||||
:param omega: The angular frequency of the system
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in fdfd_tools.operators header (2D)
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types (2D)
|
||||
:param epsilon: Vectorized dielectric constant grid
|
||||
:param mu: Vectorized magnetic permeability grid (default 1 everywhere)
|
||||
:return: Relative error norm(OP @ h) / norm(h)
|
||||
@ -299,7 +301,7 @@ def e_err(e: vfield_t,
|
||||
:param e: Vectorized E field
|
||||
:param wavenumber: Wavenumber satisfying A @ v == wavenumber**2 * v
|
||||
:param omega: The angular frequency of the system
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in fdfd_tools.operators header (2D)
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types (2D)
|
||||
:param epsilon: Vectorized dielectric constant grid
|
||||
:param mu: Vectorized magnetic permeability grid (default 1 everywhere)
|
||||
:return: Relative error norm(OP @ e) / norm(e)
|
||||
@ -335,7 +337,7 @@ def cylindrical_operator(omega: complex,
|
||||
theta-dependence is assumed for the fields).
|
||||
|
||||
:param omega: The angular frequency of the system
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in fdfd_tools.operators header (2D)
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types (2D)
|
||||
:param epsilon: Vectorized dielectric constant grid
|
||||
:param r0: Radius of curvature for the simulation. This should be the minimum value of
|
||||
r within the simulation domain.
|
@ -19,7 +19,7 @@ def solve_waveguide_mode_2d(mode_number: int,
|
||||
|
||||
:param mode_number: Number of the mode, 0-indexed.
|
||||
:param omega: Angular frequency of the simulation
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in fdfd_tools.operators header
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types
|
||||
:param epsilon: Dielectric constant
|
||||
:param mu: Magnetic permeability (default 1 everywhere)
|
||||
:param wavenumber_correction: Whether to correct the wavenumber to
|
||||
@ -87,7 +87,7 @@ def solve_waveguide_mode(mode_number: int,
|
||||
|
||||
:param mode_number: Number of the mode, 0-indexed
|
||||
:param omega: Angular frequency of the simulation
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in fdfd_tools.operators header
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types
|
||||
:param axis: Propagation axis (0=x, 1=y, 2=z)
|
||||
:param polarity: Propagation direction (+1 for +ve, -1 for -ve)
|
||||
:param slices: epsilon[tuple(slices)] is used to select the portion of the grid to use
|
||||
@ -167,7 +167,7 @@ def compute_source(E: field_t,
|
||||
:param H: H-field of the mode (advanced by half of a Yee cell from E)
|
||||
:param wavenumber: Wavenumber of the mode
|
||||
:param omega: Angular frequency of the simulation
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in fdfd_tools.operators header
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types
|
||||
:param axis: Propagation axis (0=x, 1=y, 2=z)
|
||||
:param polarity: Propagation direction (+1 for +ve, -1 for -ve)
|
||||
:param slices: epsilon[tuple(slices)] is used to select the portion of the grid to use
|
||||
@ -219,7 +219,7 @@ def compute_overlap_e(E: field_t,
|
||||
:param H: H-field of the mode (advanced by half of a Yee cell from E)
|
||||
:param wavenumber: Wavenumber of the mode
|
||||
:param omega: Angular frequency of the simulation
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in fdfd_tools.operators header
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types
|
||||
:param axis: Propagation axis (0=x, 1=y, 2=z)
|
||||
:param polarity: Propagation direction (+1 for +ve, -1 for -ve)
|
||||
:param slices: epsilon[tuple(slices)] is used to select the portion of the grid to use
|
||||
@ -283,7 +283,7 @@ def solve_waveguide_mode_cylindrical(mode_number: int,
|
||||
|
||||
:param mode_number: Number of the mode, 0-indexed
|
||||
:param omega: Angular frequency of the simulation
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in fdfd_tools.operators header.
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types.
|
||||
The first coordinate is assumed to be r, the second is y.
|
||||
:param epsilon: Dielectric constant
|
||||
:param r0: Radius of curvature for the simulation. This should be the minimum value of
|
9
meanas/fdtd/__init__.py
Normal file
9
meanas/fdtd/__init__.py
Normal file
@ -0,0 +1,9 @@
|
||||
"""
|
||||
Basic FDTD functionality
|
||||
"""
|
||||
|
||||
from .base import maxwell_e, maxwell_h
|
||||
from .pml import cpml
|
||||
from .energy import (poynting, poynting_divergence, energy_hstep, energy_estep,
|
||||
delta_energy_h2e, delta_energy_h2e, delta_energy_j)
|
||||
from .boundaries import conducting_boundary
|
87
meanas/fdtd/base.py
Normal file
87
meanas/fdtd/base.py
Normal file
@ -0,0 +1,87 @@
|
||||
"""
|
||||
Basic FDTD field updates
|
||||
"""
|
||||
from typing import List, Callable, Tuple, Dict
|
||||
import numpy
|
||||
|
||||
from .. import dx_lists_t, field_t, field_updater
|
||||
|
||||
__author__ = 'Jan Petykiewicz'
|
||||
|
||||
|
||||
def curl_h(dxes: dx_lists_t = None) -> field_updater:
|
||||
"""
|
||||
Curl operator for use with the H field.
|
||||
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in fdfd_tools.operators header
|
||||
:return: Function for taking the discretized curl of the H-field, F(H) -> curlH
|
||||
"""
|
||||
if dxes:
|
||||
dxyz_b = numpy.meshgrid(*dxes[1], indexing='ij')
|
||||
|
||||
def dh(f, ax):
|
||||
return (f - numpy.roll(f, 1, axis=ax)) / dxyz_b[ax]
|
||||
else:
|
||||
def dh(f, ax):
|
||||
return f - numpy.roll(f, 1, axis=ax)
|
||||
|
||||
def ch_fun(h: field_t) -> field_t:
|
||||
output = numpy.empty_like(h)
|
||||
output[0] = dh(h[2], 1)
|
||||
output[1] = dh(h[0], 2)
|
||||
output[2] = dh(h[1], 0)
|
||||
output[0] -= dh(h[1], 2)
|
||||
output[1] -= dh(h[2], 0)
|
||||
output[2] -= dh(h[0], 1)
|
||||
return output
|
||||
|
||||
return ch_fun
|
||||
|
||||
|
||||
def curl_e(dxes: dx_lists_t = None) -> field_updater:
|
||||
"""
|
||||
Curl operator for use with the E field.
|
||||
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in fdfd_tools.operators header
|
||||
:return: Function for taking the discretized curl of the E-field, F(E) -> curlE
|
||||
"""
|
||||
if dxes is not None:
|
||||
dxyz_a = numpy.meshgrid(*dxes[0], indexing='ij')
|
||||
|
||||
def de(f, ax):
|
||||
return (numpy.roll(f, -1, axis=ax) - f) / dxyz_a[ax]
|
||||
else:
|
||||
def de(f, ax):
|
||||
return numpy.roll(f, -1, axis=ax) - f
|
||||
|
||||
def ce_fun(e: field_t) -> field_t:
|
||||
output = numpy.empty_like(e)
|
||||
output[0] = de(e[2], 1)
|
||||
output[1] = de(e[0], 2)
|
||||
output[2] = de(e[1], 0)
|
||||
output[0] -= de(e[1], 2)
|
||||
output[1] -= de(e[2], 0)
|
||||
output[2] -= de(e[0], 1)
|
||||
return output
|
||||
|
||||
return ce_fun
|
||||
|
||||
|
||||
def maxwell_e(dt: float, dxes: dx_lists_t = None) -> field_updater:
|
||||
curl_h_fun = curl_h(dxes)
|
||||
|
||||
def me_fun(e: field_t, h: field_t, epsilon: field_t):
|
||||
e += dt * curl_h_fun(h) / epsilon
|
||||
return e
|
||||
|
||||
return me_fun
|
||||
|
||||
|
||||
def maxwell_h(dt: float, dxes: dx_lists_t = None) -> field_updater:
|
||||
curl_e_fun = curl_e(dxes)
|
||||
|
||||
def mh_fun(e: field_t, h: field_t):
|
||||
h -= dt * curl_e_fun(e)
|
||||
return h
|
||||
|
||||
return mh_fun
|
68
meanas/fdtd/boundaries.py
Normal file
68
meanas/fdtd/boundaries.py
Normal file
@ -0,0 +1,68 @@
|
||||
"""
|
||||
Boundary conditions
|
||||
"""
|
||||
|
||||
from typing import List, Callable, Tuple, Dict
|
||||
import numpy
|
||||
|
||||
from .. import dx_lists_t, field_t, field_updater
|
||||
|
||||
|
||||
def conducting_boundary(direction: int,
|
||||
polarity: int
|
||||
) -> Tuple[field_updater, field_updater]:
|
||||
dirs = [0, 1, 2]
|
||||
if direction not in dirs:
|
||||
raise Exception('Invalid direction: {}'.format(direction))
|
||||
dirs.remove(direction)
|
||||
u, v = dirs
|
||||
|
||||
if polarity < 0:
|
||||
boundary_slice = [slice(None)] * 3
|
||||
shifted1_slice = [slice(None)] * 3
|
||||
boundary_slice[direction] = 0
|
||||
shifted1_slice[direction] = 1
|
||||
|
||||
def en(e: field_t):
|
||||
e[direction][boundary_slice] = 0
|
||||
e[u][boundary_slice] = e[u][shifted1_slice]
|
||||
e[v][boundary_slice] = e[v][shifted1_slice]
|
||||
return e
|
||||
|
||||
def hn(h: field_t):
|
||||
h[direction][boundary_slice] = h[direction][shifted1_slice]
|
||||
h[u][boundary_slice] = 0
|
||||
h[v][boundary_slice] = 0
|
||||
return h
|
||||
|
||||
return en, hn
|
||||
|
||||
elif polarity > 0:
|
||||
boundary_slice = [slice(None)] * 3
|
||||
shifted1_slice = [slice(None)] * 3
|
||||
shifted2_slice = [slice(None)] * 3
|
||||
boundary_slice[direction] = -1
|
||||
shifted1_slice[direction] = -2
|
||||
shifted2_slice[direction] = -3
|
||||
|
||||
def ep(e: field_t):
|
||||
e[direction][boundary_slice] = -e[direction][shifted2_slice]
|
||||
e[direction][shifted1_slice] = 0
|
||||
e[u][boundary_slice] = e[u][shifted1_slice]
|
||||
e[v][boundary_slice] = e[v][shifted1_slice]
|
||||
return e
|
||||
|
||||
def hp(h: field_t):
|
||||
h[direction][boundary_slice] = h[direction][shifted1_slice]
|
||||
h[u][boundary_slice] = -h[u][shifted2_slice]
|
||||
h[u][shifted1_slice] = 0
|
||||
h[v][boundary_slice] = -h[v][shifted2_slice]
|
||||
h[v][shifted1_slice] = 0
|
||||
return h
|
||||
|
||||
return ep, hp
|
||||
|
||||
else:
|
||||
raise Exception('Bad polarity: {}'.format(polarity))
|
||||
|
||||
|
84
meanas/fdtd/energy.py
Normal file
84
meanas/fdtd/energy.py
Normal file
@ -0,0 +1,84 @@
|
||||
from typing import List, Callable, Tuple, Dict
|
||||
import numpy
|
||||
|
||||
from .. import dx_lists_t, field_t, field_updater
|
||||
|
||||
|
||||
def poynting(e, h):
|
||||
s = (numpy.roll(e[1], -1, axis=0) * h[2] - numpy.roll(e[2], -1, axis=0) * h[1],
|
||||
numpy.roll(e[2], -1, axis=1) * h[0] - numpy.roll(e[0], -1, axis=1) * h[2],
|
||||
numpy.roll(e[0], -1, axis=2) * h[1] - numpy.roll(e[1], -1, axis=2) * h[0])
|
||||
return numpy.array(s)
|
||||
|
||||
|
||||
def poynting_divergence(s=None, *, e=None, h=None, dxes=None): # TODO dxes
|
||||
if dxes is None:
|
||||
dxes = tuple(tuple(numpy.ones(1) for _ in range(3)) for _ in range(2))
|
||||
|
||||
if s is None:
|
||||
s = poynting(e, h)
|
||||
|
||||
ds = ((s[0] - numpy.roll(s[0], 1, axis=0)) / numpy.sqrt(dxes[0][0] * dxes[1][0])[:, None, None] +
|
||||
(s[1] - numpy.roll(s[1], 1, axis=1)) / numpy.sqrt(dxes[0][1] * dxes[1][1])[None, :, None] +
|
||||
(s[2] - numpy.roll(s[2], 1, axis=2)) / numpy.sqrt(dxes[0][2] * dxes[1][2])[None, None, :] )
|
||||
return ds
|
||||
|
||||
|
||||
def energy_hstep(e0, h1, e2, epsilon=None, mu=None, dxes=None):
|
||||
u = dxmul(e0 * e2, h1 * h1, epsilon, mu, dxes)
|
||||
return u
|
||||
|
||||
|
||||
def energy_estep(h0, e1, h2, epsilon=None, mu=None, dxes=None):
|
||||
u = dxmul(e1 * e1, h0 * h2, epsilon, mu, dxes)
|
||||
return u
|
||||
|
||||
|
||||
def delta_energy_h2e(dt, e0, h1, e2, h3, epsilon=None, mu=None, dxes=None):
|
||||
"""
|
||||
This is just from (e2 * e2 + h3 * h1) - (h1 * h1 + e0 * e2)
|
||||
"""
|
||||
de = e2 * (e2 - e0) / dt
|
||||
dh = h1 * (h3 - h1) / dt
|
||||
du = dxmul(de, dh, epsilon, mu, dxes)
|
||||
return du
|
||||
|
||||
|
||||
def delta_energy_e2h(dt, h0, e1, h2, e3, epsilon=None, mu=None, dxes=None):
|
||||
"""
|
||||
This is just from (h2 * h2 + e3 * e1) - (e1 * e1 + h0 * h2)
|
||||
"""
|
||||
de = e1 * (e3 - e1) / dt
|
||||
dh = h2 * (h2 - h0) / dt
|
||||
du = dxmul(de, dh, epsilon, mu, dxes)
|
||||
return du
|
||||
|
||||
|
||||
def delta_energy_j(j0, e1, dxes=None):
|
||||
if dxes is None:
|
||||
dxes = tuple(tuple(numpy.ones(1) for _ in range(3)) for _ in range(2))
|
||||
|
||||
du = ((j0 * e1).sum(axis=0) *
|
||||
dxes[0][0][:, None, None] *
|
||||
dxes[0][1][None, :, None] *
|
||||
dxes[0][2][None, None, :])
|
||||
return du
|
||||
|
||||
|
||||
def dxmul(ee, hh, epsilon=None, mu=None, dxes=None):
|
||||
if epsilon is None:
|
||||
epsilon = 1
|
||||
if mu is None:
|
||||
mu = 1
|
||||
if dxes is None:
|
||||
dxes = tuple(tuple(numpy.ones(1) for _ in range(3)) for _ in range(2))
|
||||
|
||||
result = ((ee * epsilon).sum(axis=0) *
|
||||
dxes[0][0][:, None, None] *
|
||||
dxes[0][1][None, :, None] *
|
||||
dxes[0][2][None, None, :] +
|
||||
(hh * mu).sum(axis=0) *
|
||||
dxes[1][0][:, None, None] *
|
||||
dxes[1][1][None, :, None] *
|
||||
dxes[1][2][None, None, :])
|
||||
return result
|
122
meanas/fdtd/pml.py
Normal file
122
meanas/fdtd/pml.py
Normal file
@ -0,0 +1,122 @@
|
||||
"""
|
||||
PML implementations
|
||||
|
||||
"""
|
||||
# TODO retest pmls!
|
||||
|
||||
from typing import List, Callable, Tuple, Dict
|
||||
import numpy
|
||||
|
||||
from .. import dx_lists_t, field_t, field_updater
|
||||
|
||||
|
||||
__author__ = 'Jan Petykiewicz'
|
||||
|
||||
|
||||
def cpml(direction:int,
|
||||
polarity: int,
|
||||
dt: float,
|
||||
epsilon: field_t,
|
||||
thickness: int = 8,
|
||||
ln_R_per_layer: float = -1.6,
|
||||
epsilon_eff: float = 1,
|
||||
mu_eff: float = 1,
|
||||
m: float = 3.5,
|
||||
ma: float = 1,
|
||||
cfs_alpha: float = 0,
|
||||
dtype: numpy.dtype = numpy.float32,
|
||||
) -> Tuple[Callable, Callable, Dict[str, field_t]]:
|
||||
|
||||
if direction not in range(3):
|
||||
raise Exception('Invalid direction: {}'.format(direction))
|
||||
|
||||
if polarity not in (-1, 1):
|
||||
raise Exception('Invalid polarity: {}'.format(polarity))
|
||||
|
||||
if thickness <= 2:
|
||||
raise Exception('It would be wise to have a pml with 4+ cells of thickness')
|
||||
|
||||
if epsilon_eff <= 0:
|
||||
raise Exception('epsilon_eff must be positive')
|
||||
|
||||
sigma_max = -ln_R_per_layer / 2 * (m + 1)
|
||||
kappa_max = numpy.sqrt(epsilon_eff * mu_eff)
|
||||
alpha_max = cfs_alpha
|
||||
transverse = numpy.delete(range(3), direction)
|
||||
u, v = transverse
|
||||
|
||||
xe = numpy.arange(1, thickness+1, dtype=float)
|
||||
xh = numpy.arange(1, thickness+1, dtype=float)
|
||||
if polarity > 0:
|
||||
xe -= 0.5
|
||||
elif polarity < 0:
|
||||
xh -= 0.5
|
||||
xe = xe[::-1]
|
||||
xh = xh[::-1]
|
||||
else:
|
||||
raise Exception('Bad polarity!')
|
||||
|
||||
expand_slice = [None] * 3
|
||||
expand_slice[direction] = slice(None)
|
||||
|
||||
def par(x):
|
||||
scaling = (x / thickness) ** m
|
||||
sigma = scaling * sigma_max
|
||||
kappa = 1 + scaling * (kappa_max - 1)
|
||||
alpha = ((1 - x / thickness) ** ma) * alpha_max
|
||||
p0 = numpy.exp(-(sigma / kappa + alpha) * dt)
|
||||
p1 = sigma / (sigma + kappa * alpha) * (p0 - 1)
|
||||
p2 = 1 / kappa
|
||||
return p0[expand_slice], p1[expand_slice], p2[expand_slice]
|
||||
|
||||
p0e, p1e, p2e = par(xe)
|
||||
p0h, p1h, p2h = par(xh)
|
||||
|
||||
region = [slice(None)] * 3
|
||||
if polarity < 0:
|
||||
region[direction] = slice(None, thickness)
|
||||
elif polarity > 0:
|
||||
region[direction] = slice(-thickness, None)
|
||||
else:
|
||||
raise Exception('Bad polarity!')
|
||||
|
||||
se = 1 if direction == 1 else -1
|
||||
|
||||
# TODO check if epsilon is uniform in pml region?
|
||||
shape = list(epsilon[0].shape)
|
||||
shape[direction] = thickness
|
||||
psi_e = [numpy.zeros(shape, dtype=dtype), numpy.zeros(shape, dtype=dtype)]
|
||||
psi_h = [numpy.zeros(shape, dtype=dtype), numpy.zeros(shape, dtype=dtype)]
|
||||
|
||||
fields = {
|
||||
'psi_e_u': psi_e[0],
|
||||
'psi_e_v': psi_e[1],
|
||||
'psi_h_u': psi_h[0],
|
||||
'psi_h_v': psi_h[1],
|
||||
}
|
||||
|
||||
# Note that this is kinda slow -- would be faster to reuse dHv*p2h for the original
|
||||
# H update, but then you have multiple arrays and a monolithic (field + pml) update operation
|
||||
def pml_e(e: field_t, h: field_t, epsilon: field_t) -> Tuple[field_t, field_t]:
|
||||
dHv = h[v][region] - numpy.roll(h[v], 1, axis=direction)[region]
|
||||
dHu = h[u][region] - numpy.roll(h[u], 1, axis=direction)[region]
|
||||
psi_e[0] *= p0e
|
||||
psi_e[0] += p1e * dHv * p2e
|
||||
psi_e[1] *= p0e
|
||||
psi_e[1] += p1e * dHu * p2e
|
||||
e[u][region] += se * dt / epsilon[u][region] * (psi_e[0] + (p2e - 1) * dHv)
|
||||
e[v][region] -= se * dt / epsilon[v][region] * (psi_e[1] + (p2e - 1) * dHu)
|
||||
return e, h
|
||||
|
||||
def pml_h(e: field_t, h: field_t) -> Tuple[field_t, field_t]:
|
||||
dEv = (numpy.roll(e[v], -1, axis=direction)[region] - e[v][region])
|
||||
dEu = (numpy.roll(e[u], -1, axis=direction)[region] - e[u][region])
|
||||
psi_h[0] *= p0h
|
||||
psi_h[0] += p1h * dEv * p2h
|
||||
psi_h[1] *= p0h
|
||||
psi_h[1] += p1h * dEu * p2h
|
||||
h[u][region] -= se * dt * (psi_h[0] + (p2h - 1) * dEv)
|
||||
h[v][region] += se * dt * (psi_h[1] + (p2h - 1) * dEu)
|
||||
return e, h
|
||||
|
||||
return pml_e, pml_h, fields
|
@ -4,7 +4,7 @@ import dataclasses
|
||||
from typing import List, Tuple
|
||||
from numpy.testing import assert_allclose, assert_array_equal
|
||||
|
||||
from fdfd_tools import fdtd
|
||||
from meanas import fdtd
|
||||
|
||||
|
||||
prng = numpy.random.RandomState(12345)
|
22
meanas/types.py
Normal file
22
meanas/types.py
Normal file
@ -0,0 +1,22 @@
|
||||
"""
|
||||
Types shared across multiple submodules
|
||||
"""
|
||||
import numpy
|
||||
from typing import List, Callable
|
||||
|
||||
|
||||
# Field types
|
||||
field_t = numpy.ndarray # vector field with shape (3, X, Y, Z) (e.g. [E_x, E_y, E_z])
|
||||
vfield_t = numpy.ndarray # linearized vector field (vector of length 3*X*Y*Z)
|
||||
|
||||
'''
|
||||
'dxes' datastructure which contains grid cell width information in the following format:
|
||||
[[[dx_e_0, dx_e_1, ...], [dy_e_0, ...], [dz_e_0, ...]],
|
||||
[[dx_h_0, dx_h_1, ...], [dy_h_0, ...], [dz_h_0, ...]]]
|
||||
where dx_e_0 is the x-width of the x=0 cells, as used when calculating dE/dx,
|
||||
and dy_h_0 is the y-width of the y=0 cells, as used when calculating dH/dy, etc.
|
||||
'''
|
||||
dx_lists_t = List[List[numpy.ndarray]]
|
||||
|
||||
|
||||
field_updater = Callable[[field_t], field_t]
|
@ -4,15 +4,13 @@ and a 1D array representation of that field [f_x0, f_x1, f_x2,... f_y0,... f_z0,
|
||||
Vectorized versions of the field use row-major (ie., C-style) ordering.
|
||||
"""
|
||||
|
||||
|
||||
from typing import List
|
||||
import numpy
|
||||
|
||||
__author__ = 'Jan Petykiewicz'
|
||||
from .types import field_t, vfield_t
|
||||
|
||||
# Types
|
||||
field_t = List[numpy.ndarray] # vector field (eg. [E_x, E_y, E_z]
|
||||
vfield_t = numpy.ndarray # linearized vector field
|
||||
|
||||
__author__ = 'Jan Petykiewicz'
|
||||
|
||||
|
||||
def vec(f: field_t) -> vfield_t:
|
||||
@ -27,7 +25,7 @@ def vec(f: field_t) -> vfield_t:
|
||||
"""
|
||||
if numpy.any(numpy.equal(f, None)):
|
||||
return None
|
||||
return numpy.hstack(tuple((fi.ravel(order='C') for fi in f)))
|
||||
return numpy.ravel(f, order='C')
|
||||
|
||||
|
||||
def unvec(v: vfield_t, shape: numpy.ndarray) -> field_t:
|
8
setup.py
8
setup.py
@ -1,14 +1,14 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
from setuptools import setup, find_packages
|
||||
import fdfd_tools
|
||||
import meanas
|
||||
|
||||
with open('README.md', 'r') as f:
|
||||
long_description = f.read()
|
||||
|
||||
setup(name='fdfd_tools',
|
||||
version=fdfd_tools.version,
|
||||
description='FDFD Electromagnetic simulation tools',
|
||||
setup(name='meanas',
|
||||
version=meanas.version,
|
||||
description='Electromagnetic simulation tools',
|
||||
long_description=long_description,
|
||||
long_description_content_type='text/markdown',
|
||||
author='Jan Petykiewicz',
|
||||
|
Loading…
Reference in New Issue
Block a user