v -> e_xy for cylindrical mode result
This commit is contained in:
parent
f4bac9598d
commit
e99019b37f
@ -280,14 +280,14 @@ def solve_waveguide_mode_cylindrical(mode_number: int,
|
||||
|
||||
A_r = waveguide.cylindrical_operator(numpy.real(omega), dxes_real, numpy.real(epsilon), r0)
|
||||
eigvals, eigvecs = signed_eigensolve(A_r, mode_number + 3)
|
||||
v = eigvecs[:, -(mode_number+1)]
|
||||
e_xy = eigvecs[:, -(mode_number+1)]
|
||||
|
||||
'''
|
||||
Now solve for the eigenvector of the full operator, using the real operator's
|
||||
eigenvector as an initial guess for Rayleigh quotient iteration.
|
||||
'''
|
||||
A = waveguide.cylindrical_operator(omega, dxes, epsilon, r0)
|
||||
eigval, v = rayleigh_quotient_iteration(A, v)
|
||||
eigval, e_xy = rayleigh_quotient_iteration(A, e_xy)
|
||||
|
||||
# Calculate the wave-vector (force the real part to be positive)
|
||||
wavenumber = numpy.sqrt(eigval)
|
||||
@ -296,10 +296,10 @@ def solve_waveguide_mode_cylindrical(mode_number: int,
|
||||
# TODO: Perform correction on wavenumber to account for numerical dispersion.
|
||||
|
||||
shape = [d.size for d in dxes[0]]
|
||||
v = numpy.hstack((v, numpy.zeros(shape[0] * shape[1])))
|
||||
e_xy = numpy.hstack((e_xy, numpy.zeros(shape[0] * shape[1])))
|
||||
fields = {
|
||||
'wavenumber': wavenumber,
|
||||
'E': unvec(v, shape),
|
||||
'E': unvec(e_xy, shape),
|
||||
# 'E': unvec(e, shape),
|
||||
# 'H': unvec(h, shape),
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user