Remove unused waveguide_mode functions

fdtd_extras
Jan Petykiewicz 5 years ago
parent d2d4220313
commit f4bac9598d

@ -307,107 +307,6 @@ def solve_waveguide_mode_cylindrical(mode_number: int,
return fields
def compute_source_q(E: field_t,
H: field_t,
wavenumber: complex,
omega: complex,
dxes: dx_lists_t,
axis: int,
polarity: int,
slices: List[slice],
mu: field_t = None,
) -> field_t:
A1f = functional.curl_h(dxes)
A2f = functional.curl_e(dxes)
J = A1f(H)
M = A2f(-E)
m2j = functional.m2j(omega, dxes, mu)
Jm = m2j(M)
Jtot = J + Jm
return Jtot, J, M
def compute_source_e(QE: field_t,
omega: complex,
dxes: dx_lists_t,
axis: int,
polarity: int,
slices: List[slice],
epsilon: field_t,
mu: field_t = None,
) -> field_t:
"""
Want AQE = -iwJ, where Q is mask and normally AE = -iwJ
## Want (AQ-QA) E = -iwJ, where Q is a mask
## If E is an eigenmode, AE = 0 so just AQE = -iwJ
Really only need E in 4 cells along axis (0, 0, Emode1, Emode2), find AE (1 iteration), then use center 2 cells as src
Maybe better to use (0, Emode1, Emode2, Emode3), find AE (1 iteration), then use left 2 cells as src?
"""
slices = tuple(slices)
# Trim a cell from each end of the propagation axis
slices_reduced = list(slices)
for aa in range(3):
if aa == axis:
if polarity > 0:
slices_reduced[axis] = slice(slices[axis].start, slices[axis].start+2)
else:
slices_reduced[axis] = slice(slices[axis].stop-2, slices[axis].stop)
else:
start = slices[aa].start
stop = slices[aa].stop
# if start is not None or stop is not None:
# if start is None:
# start = 1
# stop -= 1
# elif stop is None:
# stop = E.shape[aa + 1] - 1
# start += 1
# else:
# start += 1
# stop -= 1
# slices_reduced[aa] = slice(start, stop)
slices_reduced = (slice(None), *slices_reduced)
# Don't actually need to mask out E here since it needs to be pre-masked (QE)
A = functional.e_full(omega, dxes, epsilon, mu)
J4 = A(QE) / (-1j * omega) #J4 is 4-cell result of -iwJ = A QE
J = numpy.zeros_like(J4)
J[slices_reduced] = J4[slices_reduced]
return J
def compute_source_wg(E: field_t,
wavenumber: complex,
omega: complex,
dxes: dx_lists_t,
axis: int,
polarity: int,
slices: List[slice],
epsilon: field_t,
mu: field_t = None,
) -> field_t:
slices = tuple(slices)
Etgt, _slices2 = compute_overlap_ce(E=E, wavenumber=wavenumber,
dxes=dxes, axis=axis, polarity=polarity,
slices=slices)
slices4 = list(slices)
slices4[axis] = slice(slices[axis].start - 4 * polarity, slices[axis].start)
slices4 = tuple(slices4)
J = compute_source_e(QE=Etgt,
omega=omega, dxes=dxes, axis=axis,
polarity=polarity, slices=slices4,
epsilon=epsilon, mu=mu)
return J
def compute_overlap_ce(E: field_t,
wavenumber: complex,
dxes: dx_lists_t,

Loading…
Cancel
Save