Big documentation and structure updates
- Split math into fdmath package - Rename waveguide into _2d _3d and _cyl variants - pdoc-based documentation
This commit is contained in:
parent
f0ef31c25d
commit
d6e7e3dee1
3
make_docs.sh
Executable file
3
make_docs.sh
Executable file
@ -0,0 +1,3 @@
|
||||
#!/bin/bash
|
||||
cd ~/projects/meanas
|
||||
pdoc3 --html --force --template-dir pdoc_templates -o doc .
|
@ -15,10 +15,13 @@ def power_iteration(operator: sparse.spmatrix,
|
||||
"""
|
||||
Use power iteration to estimate the dominant eigenvector of a matrix.
|
||||
|
||||
:param operator: Matrix to analyze.
|
||||
:param guess_vector: Starting point for the eigenvector. Default is a randomly chosen vector.
|
||||
:param iterations: Number of iterations to perform. Default 20.
|
||||
:return: (Largest-magnitude eigenvalue, Corresponding eigenvector estimate)
|
||||
Args:
|
||||
operator: Matrix to analyze.
|
||||
guess_vector: Starting point for the eigenvector. Default is a randomly chosen vector.
|
||||
iterations: Number of iterations to perform. Default 20.
|
||||
|
||||
Returns:
|
||||
(Largest-magnitude eigenvalue, Corresponding eigenvector estimate)
|
||||
"""
|
||||
if numpy.any(numpy.equal(guess_vector, None)):
|
||||
v = numpy.random.rand(operator.shape[0])
|
||||
@ -91,12 +94,15 @@ def signed_eigensolve(operator: sparse.spmatrix or spalg.LinearOperator,
|
||||
Find the largest-magnitude positive-only (or negative-only) eigenvalues and
|
||||
eigenvectors of the provided matrix.
|
||||
|
||||
:param operator: Matrix to analyze.
|
||||
:param how_many: How many eigenvalues to find.
|
||||
:param negative: Whether to find negative-only eigenvalues.
|
||||
Default False (positive only).
|
||||
:return: (sorted list of eigenvalues, 2D ndarray of corresponding eigenvectors)
|
||||
eigenvectors[:, k] corresponds to the k-th eigenvalue
|
||||
Args:
|
||||
operator: Matrix to analyze.
|
||||
how_many: How many eigenvalues to find.
|
||||
negative: Whether to find negative-only eigenvalues.
|
||||
Default False (positive only).
|
||||
|
||||
Returns:
|
||||
(sorted list of eigenvalues, 2D ndarray of corresponding eigenvectors)
|
||||
`eigenvectors[:, k]` corresponds to the k-th eigenvalue
|
||||
"""
|
||||
# Use power iteration to estimate the dominant eigenvector
|
||||
lm_eigval, _ = power_iteration(operator)
|
||||
|
@ -1,2 +1,17 @@
|
||||
from . import solvers, operators, functional, scpml, waveguide, waveguide_mode
|
||||
"""
|
||||
Tools for finite difference frequency-domain (FDFD) simulations and calculations.
|
||||
|
||||
These mostly involve picking a single frequency, then setting up and solving a
|
||||
matrix equation (Ax=b) or eigenvalue problem.
|
||||
|
||||
|
||||
Submodules:
|
||||
|
||||
- `operators`, `functional`: General FDFD problem setup.
|
||||
- `solvers`: Solver interface and reference implementation.
|
||||
- `scpml`: Stretched-coordinate perfectly matched layer (scpml) boundary conditions
|
||||
- `waveguide_2d`: Operators and mode-solver for waveguides with constant cross-section.
|
||||
- `waveguide_3d`: Functions for transforming `waveguide_2d` results into 3D.
|
||||
"""
|
||||
from . import solvers, operators, functional, scpml, waveguide_2d, waveguide_3d
|
||||
# from . import farfield, bloch TODO
|
||||
|
@ -83,7 +83,7 @@ import scipy.optimize
|
||||
from scipy.linalg import norm
|
||||
import scipy.sparse.linalg as spalg
|
||||
|
||||
from . import field_t
|
||||
from .. import field_t
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
@ -1,7 +1,7 @@
|
||||
"""
|
||||
Functions for performing near-to-farfield transformation (and the reverse).
|
||||
"""
|
||||
from typing import Dict, List
|
||||
from typing import Dict, List, Any
|
||||
import numpy
|
||||
from numpy.fft import fft2, fftshift, fftfreq, ifft2, ifftshift
|
||||
from numpy import pi
|
||||
@ -14,7 +14,7 @@ def near_to_farfield(E_near: field_t,
|
||||
dx: float,
|
||||
dy: float,
|
||||
padded_size: List[int] = None
|
||||
) -> Dict[str]:
|
||||
) -> Dict[str, Any]:
|
||||
"""
|
||||
Compute the farfield, i.e. the distribution of the fields after propagation
|
||||
through several wavelengths of uniform medium.
|
||||
@ -122,7 +122,7 @@ def far_to_nearfield(E_far: field_t,
|
||||
dkx: float,
|
||||
dky: float,
|
||||
padded_size: List[int] = None
|
||||
) -> Dict[str]:
|
||||
) -> Dict[str, Any]:
|
||||
"""
|
||||
Compute the farfield, i.e. the distribution of the fields after propagation
|
||||
through several wavelengths of uniform medium.
|
||||
|
@ -2,88 +2,41 @@
|
||||
Functional versions of many FDFD operators. These can be useful for performing
|
||||
FDFD calculations without needing to construct large matrices in memory.
|
||||
|
||||
The functions generated here expect field inputs with shape (3, X, Y, Z),
|
||||
The functions generated here expect `field_t` inputs with shape (3, X, Y, Z),
|
||||
e.g. E = [E_x, E_y, E_z] where each component has shape (X, Y, Z)
|
||||
"""
|
||||
from typing import List, Callable
|
||||
from typing import List, Callable, Tuple
|
||||
import numpy
|
||||
|
||||
from .. import dx_lists_t, field_t
|
||||
from ..fdmath.functional import curl_forward, curl_back
|
||||
|
||||
__author__ = 'Jan Petykiewicz'
|
||||
|
||||
|
||||
functional_matrix = Callable[[field_t], field_t]
|
||||
|
||||
|
||||
def curl_h(dxes: dx_lists_t) -> functional_matrix:
|
||||
"""
|
||||
Curl operator for use with the H field.
|
||||
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types
|
||||
:return: Function for taking the discretized curl of the H-field, F(H) -> curlH
|
||||
"""
|
||||
dxyz_b = numpy.meshgrid(*dxes[1], indexing='ij')
|
||||
|
||||
def dh(f, ax):
|
||||
return (f - numpy.roll(f, 1, axis=ax)) / dxyz_b[ax]
|
||||
|
||||
def ch_fun(h: field_t) -> field_t:
|
||||
e = numpy.empty_like(h)
|
||||
e[0] = dh(h[2], 1)
|
||||
e[0] -= dh(h[1], 2)
|
||||
e[1] = dh(h[0], 2)
|
||||
e[1] -= dh(h[2], 0)
|
||||
e[2] = dh(h[1], 0)
|
||||
e[2] -= dh(h[0], 1)
|
||||
return e
|
||||
|
||||
return ch_fun
|
||||
|
||||
|
||||
def curl_e(dxes: dx_lists_t) -> functional_matrix:
|
||||
"""
|
||||
Curl operator for use with the E field.
|
||||
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types
|
||||
:return: Function for taking the discretized curl of the E-field, F(E) -> curlE
|
||||
"""
|
||||
dxyz_a = numpy.meshgrid(*dxes[0], indexing='ij')
|
||||
|
||||
def de(f, ax):
|
||||
return (numpy.roll(f, -1, axis=ax) - f) / dxyz_a[ax]
|
||||
|
||||
def ce_fun(e: field_t) -> field_t:
|
||||
h = numpy.empty_like(e)
|
||||
h[0] = de(e[2], 1)
|
||||
h[0] -= de(e[1], 2)
|
||||
h[1] = de(e[0], 2)
|
||||
h[1] -= de(e[2], 0)
|
||||
h[2] = de(e[1], 0)
|
||||
h[2] -= de(e[0], 1)
|
||||
return h
|
||||
|
||||
return ce_fun
|
||||
field_transform_t = Callable[[field_t], field_t]
|
||||
|
||||
|
||||
def e_full(omega: complex,
|
||||
dxes: dx_lists_t,
|
||||
epsilon: field_t,
|
||||
mu: field_t = None
|
||||
) -> functional_matrix:
|
||||
) -> field_transform_t:
|
||||
"""
|
||||
Wave operator del x (1/mu * del x) - omega**2 * epsilon, for use with E-field,
|
||||
with wave equation
|
||||
(del x (1/mu * del x) - omega**2 * epsilon) E = -i * omega * J
|
||||
Wave operator for use with E-field. See `operators.e_full` for details.
|
||||
|
||||
:param omega: Angular frequency of the simulation
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types
|
||||
:param epsilon: Dielectric constant
|
||||
:param mu: Magnetic permeability (default 1 everywhere)
|
||||
:return: Function implementing the wave operator A(E) -> E
|
||||
Args:
|
||||
omega: Angular frequency of the simulation
|
||||
dxes: Grid parameters [dx_e, dx_h] as described in meanas.types
|
||||
epsilon: Dielectric constant
|
||||
mu: Magnetic permeability (default 1 everywhere)
|
||||
|
||||
Return:
|
||||
Function `f` implementing the wave operator
|
||||
`f(E)` -> `-i * omega * J`
|
||||
"""
|
||||
ch = curl_h(dxes)
|
||||
ce = curl_e(dxes)
|
||||
ch = curl_back(dxes[1])
|
||||
ce = curl_forward(dxes[0])
|
||||
|
||||
def op_1(e):
|
||||
curls = ch(ce(e))
|
||||
@ -103,18 +56,23 @@ def eh_full(omega: complex,
|
||||
dxes: dx_lists_t,
|
||||
epsilon: field_t,
|
||||
mu: field_t = None
|
||||
) -> functional_matrix:
|
||||
) -> Callable[[field_t, field_t], Tuple[field_t, field_t]]:
|
||||
"""
|
||||
Wave operator for full (both E and H) field representation.
|
||||
See `operators.eh_full`.
|
||||
|
||||
:param omega: Angular frequency of the simulation
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types
|
||||
:param epsilon: Dielectric constant
|
||||
:param mu: Magnetic permeability (default 1 everywhere)
|
||||
:return: Function implementing the wave operator A(E, H) -> (E, H)
|
||||
Args:
|
||||
omega: Angular frequency of the simulation
|
||||
dxes: Grid parameters [dx_e, dx_h] as described in meanas.types
|
||||
epsilon: Dielectric constant
|
||||
mu: Magnetic permeability (default 1 everywhere)
|
||||
|
||||
Returns:
|
||||
Function `f` implementing the wave operator
|
||||
`f(E, H)` -> `(J, -M)`
|
||||
"""
|
||||
ch = curl_h(dxes)
|
||||
ce = curl_e(dxes)
|
||||
ch = curl_back(dxes[1])
|
||||
ce = curl_forward(dxes[0])
|
||||
|
||||
def op_1(e, h):
|
||||
return (ch(h) - 1j * omega * epsilon * e,
|
||||
@ -133,23 +91,27 @@ def eh_full(omega: complex,
|
||||
def e2h(omega: complex,
|
||||
dxes: dx_lists_t,
|
||||
mu: field_t = None,
|
||||
) -> functional_matrix:
|
||||
) -> field_transform_t:
|
||||
"""
|
||||
Utility operator for converting the E field into the H field.
|
||||
For use with e_full -- assumes that there is no magnetic current M.
|
||||
Utility operator for converting the `E` field into the `H` field.
|
||||
For use with `e_full` -- assumes that there is no magnetic current `M`.
|
||||
|
||||
:param omega: Angular frequency of the simulation
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types
|
||||
:param mu: Magnetic permeability (default 1 everywhere)
|
||||
:return: Function for converting E to H
|
||||
"""
|
||||
A2 = curl_e(dxes)
|
||||
Args:
|
||||
omega: Angular frequency of the simulation
|
||||
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.types`
|
||||
mu: Magnetic permeability (default 1 everywhere)
|
||||
|
||||
Return:
|
||||
Function `f` for converting `E` to `H`,
|
||||
`f(E)` -> `H`
|
||||
"""
|
||||
ce = curl_forward(dxes[0])
|
||||
|
||||
def e2h_1_1(e):
|
||||
return A2(e) / (-1j * omega)
|
||||
return ce(e) / (-1j * omega)
|
||||
|
||||
def e2h_mu(e):
|
||||
return A2(e) / (-1j * omega * mu)
|
||||
return ce(e) / (-1j * omega * mu)
|
||||
|
||||
if numpy.any(numpy.equal(mu, None)):
|
||||
return e2h_1_1
|
||||
@ -160,18 +122,22 @@ def e2h(omega: complex,
|
||||
def m2j(omega: complex,
|
||||
dxes: dx_lists_t,
|
||||
mu: field_t = None,
|
||||
) -> functional_matrix:
|
||||
) -> field_transform_t:
|
||||
"""
|
||||
Utility operator for converting magnetic current (M) distribution
|
||||
into equivalent electric current distribution (J).
|
||||
For use with e.g. e_full().
|
||||
Utility operator for converting magnetic current `M` distribution
|
||||
into equivalent electric current distribution `J`.
|
||||
For use with e.g. `e_full`.
|
||||
|
||||
:param omega: Angular frequency of the simulation
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types
|
||||
:param mu: Magnetic permeability (default 1 everywhere)
|
||||
:return: Function for converting M to J
|
||||
"""
|
||||
ch = curl_h(dxes)
|
||||
Args:
|
||||
omega: Angular frequency of the simulation
|
||||
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.types`
|
||||
mu: Magnetic permeability (default 1 everywhere)
|
||||
|
||||
Returns:
|
||||
Function `f` for converting `M` to `J`,
|
||||
`f(M)` -> `J`
|
||||
"""
|
||||
ch = curl_back(dxes[1])
|
||||
|
||||
def m2j_mu(m):
|
||||
J = ch(m / mu) / (-1j * omega)
|
||||
@ -192,10 +158,23 @@ def e_tfsf_source(TF_region: field_t,
|
||||
dxes: dx_lists_t,
|
||||
epsilon: field_t,
|
||||
mu: field_t = None,
|
||||
) -> functional_matrix:
|
||||
) -> field_transform_t:
|
||||
"""
|
||||
Operator that turuns an E-field distribution into a total-field/scattered-field
|
||||
Operator that turns an E-field distribution into a total-field/scattered-field
|
||||
(TFSF) source.
|
||||
|
||||
Args:
|
||||
TF_region: mask which is set to 1 in the total-field region, and 0 elsewhere
|
||||
(i.e. in the scattered-field region).
|
||||
Should have the same shape as the simulation grid, e.g. `epsilon[0].shape`.
|
||||
omega: Angular frequency of the simulation
|
||||
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.types`
|
||||
epsilon: Dielectric constant distribution
|
||||
mu: Magnetic permeability (default 1 everywhere)
|
||||
|
||||
Returns:
|
||||
Function `f` which takes an E field and returns a current distribution,
|
||||
`f(E)` -> `J`
|
||||
"""
|
||||
# TODO documentation
|
||||
A = e_full(omega, dxes, epsilon, mu)
|
||||
@ -205,7 +184,28 @@ def e_tfsf_source(TF_region: field_t,
|
||||
return neg_iwj / (-1j * omega)
|
||||
|
||||
|
||||
def poynting_e_cross_h(dxes: dx_lists_t):
|
||||
def poynting_e_cross_h(dxes: dx_lists_t) -> Callable[[field_t, field_t], field_t]:
|
||||
"""
|
||||
Generates a function that takes the single-frequency `E` and `H` fields
|
||||
and calculates the cross product `E` x `H` = \\( E \\times H \\) as required
|
||||
for the Poynting vector, \\( S = E \\times H \\)
|
||||
|
||||
Note:
|
||||
This function also shifts the input `E` field by one cell as required
|
||||
for computing the Poynting cross product (see `meanas.fdfd` module docs).
|
||||
|
||||
Note:
|
||||
If `E` and `H` are peak amplitudes as assumed elsewhere in this code,
|
||||
the time-average of the poynting vector is `<S> = Re(S)/2 = Re(E x H) / 2`.
|
||||
The factor of `1/2` can be omitted if root-mean-square quantities are used
|
||||
instead.
|
||||
|
||||
Args:
|
||||
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.types`
|
||||
|
||||
Returns:
|
||||
Function `f` that returns E x H as required for the poynting vector.
|
||||
"""
|
||||
def exh(e: field_t, h: field_t):
|
||||
s = numpy.empty_like(e)
|
||||
ex = e[0] * dxes[0][0][:, None, None]
|
||||
|
@ -1,18 +1,19 @@
|
||||
"""
|
||||
Sparse matrix operators for use with electromagnetic wave equations.
|
||||
|
||||
These functions return sparse-matrix (scipy.sparse.spmatrix) representations of
|
||||
These functions return sparse-matrix (`scipy.sparse.spmatrix`) representations of
|
||||
a variety of operators, intended for use with E and H fields vectorized using the
|
||||
meanas.vec() and .unvec() functions (column-major/Fortran ordering).
|
||||
`meanas.vec()` and `meanas.unvec()` functions.
|
||||
|
||||
E- and H-field values are defined on a Yee cell; epsilon values should be calculated for
|
||||
cells centered at each E component (mu at each H component).
|
||||
E- and H-field values are defined on a Yee cell; `epsilon` values should be calculated for
|
||||
cells centered at each E component (`mu` at each H component).
|
||||
|
||||
Many of these functions require a 'dxes' parameter, of type meanas.dx_lists_type; see
|
||||
the meanas.types submodule for details.
|
||||
Many of these functions require a `dxes` parameter, of type `dx_lists_t`; see
|
||||
the `meanas.types` submodule for details.
|
||||
|
||||
|
||||
The following operators are included:
|
||||
|
||||
- E-only wave operator
|
||||
- H-only wave operator
|
||||
- EH wave operator
|
||||
@ -20,8 +21,6 @@ The following operators are included:
|
||||
- E to H conversion
|
||||
- M to J conversion
|
||||
- Poynting cross products
|
||||
|
||||
Also available:
|
||||
- Circular shifts
|
||||
- Discrete derivatives
|
||||
- Averaging operators
|
||||
@ -33,6 +32,7 @@ import numpy
|
||||
import scipy.sparse as sparse
|
||||
|
||||
from .. import vec, dx_lists_t, vfield_t
|
||||
from ..fdmath.operators import shift_with_mirror, rotation, curl_forward, curl_back
|
||||
|
||||
|
||||
__author__ = 'Jan Petykiewicz'
|
||||
@ -46,26 +46,35 @@ def e_full(omega: complex,
|
||||
pmc: vfield_t = None,
|
||||
) -> sparse.spmatrix:
|
||||
"""
|
||||
Wave operator del x (1/mu * del x) - omega**2 * epsilon, for use with E-field,
|
||||
with wave equation
|
||||
(del x (1/mu * del x) - omega**2 * epsilon) E = -i * omega * J
|
||||
Wave operator
|
||||
$$ \\nabla \\times (\\frac{1}{\\mu} \\nabla \\times) - \\omega^2 \\epsilon $$
|
||||
|
||||
To make this matrix symmetric, use the preconditions from e_full_preconditioners().
|
||||
del x (1/mu * del x) - omega**2 * epsilon
|
||||
|
||||
:param omega: Angular frequency of the simulation
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types
|
||||
:param epsilon: Vectorized dielectric constant
|
||||
:param mu: Vectorized magnetic permeability (default 1 everywhere).
|
||||
:param pec: Vectorized mask specifying PEC cells. Any cells where pec != 0 are interpreted
|
||||
as containing a perfect electrical conductor (PEC).
|
||||
The PEC is applied per-field-component (ie, pec.size == epsilon.size)
|
||||
:param pmc: Vectorized mask specifying PMC cells. Any cells where pmc != 0 are interpreted
|
||||
as containing a perfect magnetic conductor (PMC).
|
||||
The PMC is applied per-field-component (ie, pmc.size == epsilon.size)
|
||||
:return: Sparse matrix containing the wave operator
|
||||
for use with the E-field, with wave equation
|
||||
$$ (\\nabla \\times (\\frac{1}{\\mu} \\nabla \\times) - \\omega^2 \\epsilon) E = -\\imath \\omega J $$
|
||||
|
||||
(del x (1/mu * del x) - omega**2 * epsilon) E = -i * omega * J
|
||||
|
||||
To make this matrix symmetric, use the preconditioners from `e_full_preconditioners()`.
|
||||
|
||||
Args:
|
||||
omega: Angular frequency of the simulation
|
||||
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.types`
|
||||
epsilon: Vectorized dielectric constant
|
||||
mu: Vectorized magnetic permeability (default 1 everywhere).
|
||||
pec: Vectorized mask specifying PEC cells. Any cells where `pec != 0` are interpreted
|
||||
as containing a perfect electrical conductor (PEC).
|
||||
The PEC is applied per-field-component (i.e. `pec.size == epsilon.size`)
|
||||
pmc: Vectorized mask specifying PMC cells. Any cells where `pmc != 0` are interpreted
|
||||
as containing a perfect magnetic conductor (PMC).
|
||||
The PMC is applied per-field-component (i.e. `pmc.size == epsilon.size`)
|
||||
|
||||
Returns:
|
||||
Sparse matrix containing the wave operator.
|
||||
"""
|
||||
ce = curl_e(dxes)
|
||||
ch = curl_h(dxes)
|
||||
ch = curl_back(dxes[1])
|
||||
ce = curl_forward(dxes[0])
|
||||
|
||||
if numpy.any(numpy.equal(pec, None)):
|
||||
pe = sparse.eye(epsilon.size)
|
||||
@ -90,15 +99,18 @@ def e_full(omega: complex,
|
||||
def e_full_preconditioners(dxes: dx_lists_t
|
||||
) -> Tuple[sparse.spmatrix, sparse.spmatrix]:
|
||||
"""
|
||||
Left and right preconditioners (Pl, Pr) for symmetrizing the e_full wave operator.
|
||||
Left and right preconditioners `(Pl, Pr)` for symmetrizing the `e_full` wave operator.
|
||||
|
||||
The preconditioned matrix A_symm = (Pl @ A @ Pr) is complex-symmetric
|
||||
The preconditioned matrix `A_symm = (Pl @ A @ Pr)` is complex-symmetric
|
||||
(non-Hermitian unless there is no loss or PMLs).
|
||||
|
||||
The preconditioner matrices are diagonal and complex, with Pr = 1 / Pl
|
||||
The preconditioner matrices are diagonal and complex, with `Pr = 1 / Pl`
|
||||
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types
|
||||
:return: Preconditioner matrices (Pl, Pr)
|
||||
Args:
|
||||
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.types`
|
||||
|
||||
Returns:
|
||||
Preconditioner matrices `(Pl, Pr)`.
|
||||
"""
|
||||
p_squared = [dxes[0][0][:, None, None] * dxes[1][1][None, :, None] * dxes[1][2][None, None, :],
|
||||
dxes[1][0][:, None, None] * dxes[0][1][None, :, None] * dxes[1][2][None, None, :],
|
||||
@ -118,24 +130,33 @@ def h_full(omega: complex,
|
||||
pmc: vfield_t = None,
|
||||
) -> sparse.spmatrix:
|
||||
"""
|
||||
Wave operator del x (1/epsilon * del x) - omega**2 * mu, for use with H-field,
|
||||
with wave equation
|
||||
(del x (1/epsilon * del x) - omega**2 * mu) H = i * omega * M
|
||||
Wave operator
|
||||
$$ \\nabla \\times (\\frac{1}{\\epsilon} \\nabla \\times) - \\omega^2 \\mu $$
|
||||
|
||||
:param omega: Angular frequency of the simulation
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types
|
||||
:param epsilon: Vectorized dielectric constant
|
||||
:param mu: Vectorized magnetic permeability (default 1 everywhere)
|
||||
:param pec: Vectorized mask specifying PEC cells. Any cells where pec != 0 are interpreted
|
||||
as containing a perfect electrical conductor (PEC).
|
||||
The PEC is applied per-field-component (ie, pec.size == epsilon.size)
|
||||
:param pmc: Vectorized mask specifying PMC cells. Any cells where pmc != 0 are interpreted
|
||||
as containing a perfect magnetic conductor (PMC).
|
||||
The PMC is applied per-field-component (ie, pmc.size == epsilon.size)
|
||||
:return: Sparse matrix containing the wave operator
|
||||
del x (1/epsilon * del x) - omega**2 * mu
|
||||
|
||||
for use with the H-field, with wave equation
|
||||
$$ (\\nabla \\times (\\frac{1}{\\epsilon} \\nabla \\times) - \\omega^2 \\mu) E = \\imath \\omega M $$
|
||||
|
||||
(del x (1/epsilon * del x) - omega**2 * mu) E = i * omega * M
|
||||
|
||||
Args:
|
||||
omega: Angular frequency of the simulation
|
||||
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.types`
|
||||
epsilon: Vectorized dielectric constant
|
||||
mu: Vectorized magnetic permeability (default 1 everywhere)
|
||||
pec: Vectorized mask specifying PEC cells. Any cells where `pec != 0` are interpreted
|
||||
as containing a perfect electrical conductor (PEC).
|
||||
The PEC is applied per-field-component (i.e. `pec.size == epsilon.size`)
|
||||
pmc: Vectorized mask specifying PMC cells. Any cells where `pmc != 0` are interpreted
|
||||
as containing a perfect magnetic conductor (PMC).
|
||||
The PMC is applied per-field-component (i.e. `pmc.size == epsilon.size`)
|
||||
|
||||
Returns:
|
||||
Sparse matrix containing the wave operator.
|
||||
"""
|
||||
ec = curl_e(dxes)
|
||||
hc = curl_h(dxes)
|
||||
ch = curl_back(dxes[1])
|
||||
ce = curl_forward(dxes[0])
|
||||
|
||||
if numpy.any(numpy.equal(pec, None)):
|
||||
pe = sparse.eye(epsilon.size)
|
||||
@ -153,7 +174,7 @@ def h_full(omega: complex,
|
||||
else:
|
||||
m = sparse.diags(mu)
|
||||
|
||||
A = pm @ (ec @ pe @ e_div @ hc - omega**2 * m) @ pm
|
||||
A = pm @ (ce @ pe @ e_div @ ch - omega**2 * m) @ pm
|
||||
return A
|
||||
|
||||
|
||||
@ -165,24 +186,42 @@ def eh_full(omega: complex,
|
||||
pmc: vfield_t = None
|
||||
) -> sparse.spmatrix:
|
||||
"""
|
||||
Wave operator for [E, H] field representation. This operator implements Maxwell's
|
||||
Wave operator for `[E, H]` field representation. This operator implements Maxwell's
|
||||
equations without cancelling out either E or H. The operator is
|
||||
[[-i * omega * epsilon, del x],
|
||||
[del x, i * omega * mu]]
|
||||
$$ \\begin{bmatrix}
|
||||
-\\imath \\omega \\epsilon & \\nabla \\times \\\\
|
||||
\\nabla \\times & \\imath \\omega \\mu
|
||||
\\end{bmatrix} $$
|
||||
|
||||
for use with a field vector of the form hstack(vec(E), vec(H)).
|
||||
[[-i * omega * epsilon, del x ],
|
||||
[del x, i * omega * mu]]
|
||||
|
||||
:param omega: Angular frequency of the simulation
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types
|
||||
:param epsilon: Vectorized dielectric constant
|
||||
:param mu: Vectorized magnetic permeability (default 1 everywhere)
|
||||
:param pec: Vectorized mask specifying PEC cells. Any cells where pec != 0 are interpreted
|
||||
as containing a perfect electrical conductor (PEC).
|
||||
The PEC is applied per-field-component (i.e., pec.size == epsilon.size)
|
||||
:param pmc: Vectorized mask specifying PMC cells. Any cells where pmc != 0 are interpreted
|
||||
as containing a perfect magnetic conductor (PMC).
|
||||
The PMC is applied per-field-component (i.e., pmc.size == epsilon.size)
|
||||
:return: Sparse matrix containing the wave operator
|
||||
for use with a field vector of the form `cat(vec(E), vec(H))`:
|
||||
$$ \\begin{bmatrix}
|
||||
-\\imath \\omega \\epsilon & \\nabla \\times \\\\
|
||||
\\nabla \\times & \\imath \\omega \\mu
|
||||
\\end{bmatrix}
|
||||
\\begin{bmatrix} E \\\\
|
||||
H
|
||||
\\end{bmatrix}
|
||||
= \\begin{bmatrix} J \\\\
|
||||
-M
|
||||
\\end{bmatrix} $$
|
||||
|
||||
Args:
|
||||
omega: Angular frequency of the simulation
|
||||
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.types`
|
||||
epsilon: Vectorized dielectric constant
|
||||
mu: Vectorized magnetic permeability (default 1 everywhere)
|
||||
pec: Vectorized mask specifying PEC cells. Any cells where `pec != 0` are interpreted
|
||||
as containing a perfect electrical conductor (PEC).
|
||||
The PEC is applied per-field-component (i.e. `pec.size == epsilon.size`)
|
||||
pmc: Vectorized mask specifying PMC cells. Any cells where `pmc != 0` are interpreted
|
||||
as containing a perfect magnetic conductor (PMC).
|
||||
The PMC is applied per-field-component (i.e. `pmc.size == epsilon.size`)
|
||||
|
||||
Returns:
|
||||
Sparse matrix containing the wave operator.
|
||||
"""
|
||||
if numpy.any(numpy.equal(pec, None)):
|
||||
pe = sparse.eye(epsilon.size)
|
||||
@ -200,34 +239,14 @@ def eh_full(omega: complex,
|
||||
iwm *= sparse.diags(mu)
|
||||
iwm = pm @ iwm @ pm
|
||||
|
||||
A1 = pe @ curl_h(dxes) @ pm
|
||||
A2 = pm @ curl_e(dxes) @ pe
|
||||
A1 = pe @ curl_back(dxes[1]) @ pm
|
||||
A2 = pm @ curl_forward(dxes[0]) @ pe
|
||||
|
||||
A = sparse.bmat([[-iwe, A1],
|
||||
[A2, iwm]])
|
||||
return A
|
||||
|
||||
|
||||
def curl_h(dxes: dx_lists_t) -> sparse.spmatrix:
|
||||
"""
|
||||
Curl operator for use with the H field.
|
||||
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types
|
||||
:return: Sparse matrix for taking the discretized curl of the H-field
|
||||
"""
|
||||
return cross(deriv_back(dxes[1]))
|
||||
|
||||
|
||||
def curl_e(dxes: dx_lists_t) -> sparse.spmatrix:
|
||||
"""
|
||||
Curl operator for use with the E field.
|
||||
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types
|
||||
:return: Sparse matrix for taking the discretized curl of the E-field
|
||||
"""
|
||||
return cross(deriv_forward(dxes[0]))
|
||||
|
||||
|
||||
def e2h(omega: complex,
|
||||
dxes: dx_lists_t,
|
||||
mu: vfield_t = None,
|
||||
@ -235,17 +254,20 @@ def e2h(omega: complex,
|
||||
) -> sparse.spmatrix:
|
||||
"""
|
||||
Utility operator for converting the E field into the H field.
|
||||
For use with e_full -- assumes that there is no magnetic current M.
|
||||
For use with `e_full()` -- assumes that there is no magnetic current M.
|
||||
|
||||
:param omega: Angular frequency of the simulation
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types
|
||||
:param mu: Vectorized magnetic permeability (default 1 everywhere)
|
||||
:param pmc: Vectorized mask specifying PMC cells. Any cells where pmc != 0 are interpreted
|
||||
as containing a perfect magnetic conductor (PMC).
|
||||
The PMC is applied per-field-component (ie, pmc.size == epsilon.size)
|
||||
:return: Sparse matrix for converting E to H
|
||||
Args:
|
||||
omega: Angular frequency of the simulation
|
||||
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.types`
|
||||
mu: Vectorized magnetic permeability (default 1 everywhere)
|
||||
pmc: Vectorized mask specifying PMC cells. Any cells where `pmc != 0` are interpreted
|
||||
as containing a perfect magnetic conductor (PMC).
|
||||
The PMC is applied per-field-component (i.e. `pmc.size == epsilon.size`)
|
||||
|
||||
Returns:
|
||||
Sparse matrix for converting E to H.
|
||||
"""
|
||||
op = curl_e(dxes) / (-1j * omega)
|
||||
op = curl_forward(dxes[0]) / (-1j * omega)
|
||||
|
||||
if not numpy.any(numpy.equal(mu, None)):
|
||||
op = sparse.diags(1 / mu) @ op
|
||||
@ -261,16 +283,18 @@ def m2j(omega: complex,
|
||||
mu: vfield_t = None
|
||||
) -> sparse.spmatrix:
|
||||
"""
|
||||
Utility operator for converting M field into J.
|
||||
Converts a magnetic current M into an electric current J.
|
||||
For use with eg. e_full.
|
||||
Operator for converting a magnetic current M into an electric current J.
|
||||
For use with eg. `e_full()`.
|
||||
|
||||
:param omega: Angular frequency of the simulation
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types
|
||||
:param mu: Vectorized magnetic permeability (default 1 everywhere)
|
||||
:return: Sparse matrix for converting E to H
|
||||
Args:
|
||||
omega: Angular frequency of the simulation
|
||||
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.types`
|
||||
mu: Vectorized magnetic permeability (default 1 everywhere)
|
||||
|
||||
Returns:
|
||||
Sparse matrix for converting M to J.
|
||||
"""
|
||||
op = curl_h(dxes) / (1j * omega)
|
||||
op = curl_back(dxes[1]) / (1j * omega)
|
||||
|
||||
if not numpy.any(numpy.equal(mu, None)):
|
||||
op = op @ sparse.diags(1 / mu)
|
||||
@ -278,178 +302,17 @@ def m2j(omega: complex,
|
||||
return op
|
||||
|
||||
|
||||
def rotation(axis: int, shape: List[int], shift_distance: int=1) -> sparse.spmatrix:
|
||||
"""
|
||||
Utility operator for performing a circular shift along a specified axis by a
|
||||
specified number of elements.
|
||||
|
||||
:param axis: Axis to shift along. x=0, y=1, z=2
|
||||
:param shape: Shape of the grid being shifted
|
||||
:param shift_distance: Number of cells to shift by. May be negative. Default 1.
|
||||
:return: Sparse matrix for performing the circular shift
|
||||
"""
|
||||
if len(shape) not in (2, 3):
|
||||
raise Exception('Invalid shape: {}'.format(shape))
|
||||
if axis not in range(len(shape)):
|
||||
raise Exception('Invalid direction: {}, shape is {}'.format(axis, shape))
|
||||
|
||||
shifts = [abs(shift_distance) if a == axis else 0 for a in range(3)]
|
||||
shifted_diags = [(numpy.arange(n) + s) % n for n, s in zip(shape, shifts)]
|
||||
ijk = numpy.meshgrid(*shifted_diags, indexing='ij')
|
||||
|
||||
n = numpy.prod(shape)
|
||||
i_ind = numpy.arange(n)
|
||||
j_ind = numpy.ravel_multi_index(ijk, shape, order='C')
|
||||
|
||||
vij = (numpy.ones(n), (i_ind, j_ind.ravel(order='C')))
|
||||
|
||||
d = sparse.csr_matrix(vij, shape=(n, n))
|
||||
|
||||
if shift_distance < 0:
|
||||
d = d.T
|
||||
|
||||
return d
|
||||
|
||||
|
||||
def shift_with_mirror(axis: int, shape: List[int], shift_distance: int=1) -> sparse.spmatrix:
|
||||
"""
|
||||
Utility operator for performing an n-element shift along a specified axis, with mirror
|
||||
boundary conditions applied to the cells beyond the receding edge.
|
||||
|
||||
:param axis: Axis to shift along. x=0, y=1, z=2
|
||||
:param shape: Shape of the grid being shifted
|
||||
:param shift_distance: Number of cells to shift by. May be negative. Default 1.
|
||||
:return: Sparse matrix for performing the circular shift
|
||||
"""
|
||||
if len(shape) not in (2, 3):
|
||||
raise Exception('Invalid shape: {}'.format(shape))
|
||||
if axis not in range(len(shape)):
|
||||
raise Exception('Invalid direction: {}, shape is {}'.format(axis, shape))
|
||||
if shift_distance >= shape[axis]:
|
||||
raise Exception('Shift ({}) is too large for axis {} of size {}'.format(
|
||||
shift_distance, axis, shape[axis]))
|
||||
|
||||
def mirrored_range(n, s):
|
||||
v = numpy.arange(n) + s
|
||||
v = numpy.where(v >= n, 2 * n - v - 1, v)
|
||||
v = numpy.where(v < 0, - 1 - v, v)
|
||||
return v
|
||||
|
||||
shifts = [shift_distance if a == axis else 0 for a in range(3)]
|
||||
shifted_diags = [mirrored_range(n, s) for n, s in zip(shape, shifts)]
|
||||
ijk = numpy.meshgrid(*shifted_diags, indexing='ij')
|
||||
|
||||
n = numpy.prod(shape)
|
||||
i_ind = numpy.arange(n)
|
||||
j_ind = numpy.ravel_multi_index(ijk, shape, order='C')
|
||||
|
||||
vij = (numpy.ones(n), (i_ind, j_ind.ravel(order='C')))
|
||||
|
||||
d = sparse.csr_matrix(vij, shape=(n, n))
|
||||
return d
|
||||
|
||||
|
||||
def deriv_forward(dx_e: List[numpy.ndarray]) -> List[sparse.spmatrix]:
|
||||
"""
|
||||
Utility operators for taking discretized derivatives (forward variant).
|
||||
|
||||
:param dx_e: Lists of cell sizes for all axes [[dx_0, dx_1, ...], ...].
|
||||
:return: List of operators for taking forward derivatives along each axis.
|
||||
"""
|
||||
shape = [s.size for s in dx_e]
|
||||
n = numpy.prod(shape)
|
||||
|
||||
dx_e_expanded = numpy.meshgrid(*dx_e, indexing='ij')
|
||||
|
||||
def deriv(axis):
|
||||
return rotation(axis, shape, 1) - sparse.eye(n)
|
||||
|
||||
Ds = [sparse.diags(+1 / dx.ravel(order='C')) @ deriv(a)
|
||||
for a, dx in enumerate(dx_e_expanded)]
|
||||
|
||||
return Ds
|
||||
|
||||
|
||||
def deriv_back(dx_h: List[numpy.ndarray]) -> List[sparse.spmatrix]:
|
||||
"""
|
||||
Utility operators for taking discretized derivatives (backward variant).
|
||||
|
||||
:param dx_h: Lists of cell sizes for all axes [[dx_0, dx_1, ...], ...].
|
||||
:return: List of operators for taking forward derivatives along each axis.
|
||||
"""
|
||||
shape = [s.size for s in dx_h]
|
||||
n = numpy.prod(shape)
|
||||
|
||||
dx_h_expanded = numpy.meshgrid(*dx_h, indexing='ij')
|
||||
|
||||
def deriv(axis):
|
||||
return rotation(axis, shape, -1) - sparse.eye(n)
|
||||
|
||||
Ds = [sparse.diags(-1 / dx.ravel(order='C')) @ deriv(a)
|
||||
for a, dx in enumerate(dx_h_expanded)]
|
||||
|
||||
return Ds
|
||||
|
||||
|
||||
def cross(B: List[sparse.spmatrix]) -> sparse.spmatrix:
|
||||
"""
|
||||
Cross product operator
|
||||
|
||||
:param B: List [Bx, By, Bz] of sparse matrices corresponding to the x, y, z
|
||||
portions of the operator on the left side of the cross product.
|
||||
:return: Sparse matrix corresponding to (B x), where x is the cross product
|
||||
"""
|
||||
n = B[0].shape[0]
|
||||
zero = sparse.csr_matrix((n, n))
|
||||
return sparse.bmat([[zero, -B[2], B[1]],
|
||||
[B[2], zero, -B[0]],
|
||||
[-B[1], B[0], zero]])
|
||||
|
||||
|
||||
def vec_cross(b: vfield_t) -> sparse.spmatrix:
|
||||
"""
|
||||
Vector cross product operator
|
||||
|
||||
:param b: Vector on the left side of the cross product
|
||||
:return: Sparse matrix corresponding to (b x), where x is the cross product
|
||||
"""
|
||||
B = [sparse.diags(c) for c in numpy.split(b, 3)]
|
||||
return cross(B)
|
||||
|
||||
|
||||
def avgf(axis: int, shape: List[int]) -> sparse.spmatrix:
|
||||
"""
|
||||
Forward average operator (x4 = (x4 + x5) / 2)
|
||||
|
||||
:param axis: Axis to average along (x=0, y=1, z=2)
|
||||
:param shape: Shape of the grid to average
|
||||
:return: Sparse matrix for forward average operation
|
||||
"""
|
||||
if len(shape) not in (2, 3):
|
||||
raise Exception('Invalid shape: {}'.format(shape))
|
||||
|
||||
n = numpy.prod(shape)
|
||||
return 0.5 * (sparse.eye(n) + rotation(axis, shape))
|
||||
|
||||
|
||||
def avgb(axis: int, shape: List[int]) -> sparse.spmatrix:
|
||||
"""
|
||||
Backward average operator (x4 = (x4 + x3) / 2)
|
||||
|
||||
:param axis: Axis to average along (x=0, y=1, z=2)
|
||||
:param shape: Shape of the grid to average
|
||||
:return: Sparse matrix for backward average operation
|
||||
"""
|
||||
return avgf(axis, shape).T
|
||||
|
||||
|
||||
def poynting_e_cross(e: vfield_t, dxes: dx_lists_t) -> sparse.spmatrix:
|
||||
"""
|
||||
Operator for computing the Poynting vector, containing the (E x) portion of the Poynting vector.
|
||||
Operator for computing the Poynting vector, containing the
|
||||
(E x) portion of the Poynting vector.
|
||||
|
||||
:param e: Vectorized E-field for the ExH cross product
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types
|
||||
:return: Sparse matrix containing (E x) portion of Poynting cross product
|
||||
Args:
|
||||
e: Vectorized E-field for the ExH cross product
|
||||
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.types`
|
||||
|
||||
Returns:
|
||||
Sparse matrix containing (E x) portion of Poynting cross product.
|
||||
"""
|
||||
shape = [len(dx) for dx in dxes[0]]
|
||||
|
||||
@ -472,9 +335,12 @@ def poynting_h_cross(h: vfield_t, dxes: dx_lists_t) -> sparse.spmatrix:
|
||||
"""
|
||||
Operator for computing the Poynting vector, containing the (H x) portion of the Poynting vector.
|
||||
|
||||
:param h: Vectorized H-field for the HxE cross product
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types
|
||||
:return: Sparse matrix containing (H x) portion of Poynting cross product
|
||||
Args:
|
||||
h: Vectorized H-field for the HxE cross product
|
||||
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.types`
|
||||
|
||||
Returns:
|
||||
Sparse matrix containing (H x) portion of Poynting cross product.
|
||||
"""
|
||||
shape = [len(dx) for dx in dxes[0]]
|
||||
|
||||
@ -499,8 +365,22 @@ def e_tfsf_source(TF_region: vfield_t,
|
||||
mu: vfield_t = None,
|
||||
) -> sparse.spmatrix:
|
||||
"""
|
||||
Operator that turns an E-field distribution into a total-field/scattered-field
|
||||
(TFSF) source.
|
||||
Operator that turns a desired E-field distribution into a
|
||||
total-field/scattered-field (TFSF) source.
|
||||
|
||||
TODO: Reference Rumpf paper
|
||||
|
||||
Args:
|
||||
TF_region: Mask, which is set to 1 inside the total-field region and 0 in the
|
||||
scattered-field region
|
||||
omega: Angular frequency of the simulation
|
||||
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.types`
|
||||
epsilon: Vectorized dielectric constant
|
||||
mu: Vectorized magnetic permeability (default 1 everywhere).
|
||||
|
||||
Returns:
|
||||
Sparse matrix that turns an E-field into a current (J) distribution.
|
||||
|
||||
"""
|
||||
# TODO documentation
|
||||
A = e_full(omega, dxes, epsilon, mu)
|
||||
@ -518,7 +398,19 @@ def e_boundary_source(mask: vfield_t,
|
||||
"""
|
||||
Operator that turns an E-field distrubtion into a current (J) distribution
|
||||
along the edges (external and internal) of the provided mask. This is just an
|
||||
e_tfsf_source with an additional masking step.
|
||||
`e_tfsf_source()` with an additional masking step.
|
||||
|
||||
Args:
|
||||
mask: The current distribution is generated at the edges of the mask,
|
||||
i.e. any points where shifting the mask by one cell in any direction
|
||||
would change its value.
|
||||
omega: Angular frequency of the simulation
|
||||
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.types`
|
||||
epsilon: Vectorized dielectric constant
|
||||
mu: Vectorized magnetic permeability (default 1 everywhere).
|
||||
|
||||
Returns:
|
||||
Sparse matrix that turns an E-field into a current (J) distribution.
|
||||
"""
|
||||
full = e_tfsf_source(TF_region=mask, omega=omega, dxes=dxes, epsilon=epsilon, mu=mu)
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
"""
|
||||
Functions for creating stretched coordinate PMLs.
|
||||
Functions for creating stretched coordinate perfectly matched layer (PML) absorbers.
|
||||
"""
|
||||
|
||||
from typing import List, Callable
|
||||
@ -7,24 +7,29 @@ import numpy
|
||||
|
||||
from .. import dx_lists_t
|
||||
|
||||
|
||||
__author__ = 'Jan Petykiewicz'
|
||||
|
||||
|
||||
s_function_type = Callable[[float], float]
|
||||
s_function_t = Callable[[float], float]
|
||||
"""Typedef for s-functions"""
|
||||
|
||||
|
||||
def prepare_s_function(ln_R: float = -16,
|
||||
m: float = 4
|
||||
) -> s_function_type:
|
||||
) -> s_function_t:
|
||||
"""
|
||||
Create an s_function to pass to the SCPML functions. This is used when you would like to
|
||||
customize the PML parameters.
|
||||
|
||||
:param ln_R: Natural logarithm of the desired reflectance
|
||||
:param m: Polynomial order for the PML (imaginary part increases as distance ** m)
|
||||
:return: An s_function, which takes an ndarray (distances) and returns an ndarray (complex part
|
||||
of the cell width; needs to be divided by sqrt(epilon_effective) * real(omega))
|
||||
before use.
|
||||
Args:
|
||||
ln_R: Natural logarithm of the desired reflectance
|
||||
m: Polynomial order for the PML (imaginary part increases as distance ** m)
|
||||
|
||||
Returns:
|
||||
An s_function, which takes an ndarray (distances) and returns an ndarray (complex part
|
||||
of the cell width; needs to be divided by `sqrt(epilon_effective) * real(omega))`
|
||||
before use.
|
||||
"""
|
||||
def s_factor(distance: numpy.ndarray) -> numpy.ndarray:
|
||||
s_max = (m + 1) * ln_R / 2 # / 2 because we assume periodic boundaries
|
||||
@ -36,26 +41,29 @@ def uniform_grid_scpml(shape: numpy.ndarray or List[int],
|
||||
thicknesses: numpy.ndarray or List[int],
|
||||
omega: float,
|
||||
epsilon_effective: float = 1.0,
|
||||
s_function: s_function_type = None,
|
||||
s_function: s_function_t = None,
|
||||
) -> dx_lists_t:
|
||||
"""
|
||||
Create dx arrays for a uniform grid with a cell width of 1 and a pml.
|
||||
|
||||
If you want something more fine-grained, check out stretch_with_scpml(...).
|
||||
If you want something more fine-grained, check out `stretch_with_scpml(...)`.
|
||||
|
||||
:param shape: Shape of the grid, including the PMLs (which are 2*thicknesses thick)
|
||||
:param thicknesses: [th_x, th_y, th_z] Thickness of the PML in each direction.
|
||||
Both polarities are added.
|
||||
Each th_ of pml is applied twice, once on each edge of the grid along the given axis.
|
||||
th_* may be zero, in which case no pml is added.
|
||||
:param omega: Angular frequency for the simulation
|
||||
:param epsilon_effective: Effective epsilon of the PML. Match this to the material
|
||||
at the edge of your grid.
|
||||
Default 1.
|
||||
:param s_function: s_function created by prepare_s_function(...), allowing
|
||||
customization of pml parameters.
|
||||
Default uses prepare_s_function() with no parameters.
|
||||
:return: Complex cell widths (dx_lists)
|
||||
Args:
|
||||
shape: Shape of the grid, including the PMLs (which are 2*thicknesses thick)
|
||||
thicknesses: `[th_x, th_y, th_z]`
|
||||
Thickness of the PML in each direction.
|
||||
Both polarities are added.
|
||||
Each th_ of pml is applied twice, once on each edge of the grid along the given axis.
|
||||
`th_*` may be zero, in which case no pml is added.
|
||||
omega: Angular frequency for the simulation
|
||||
epsilon_effective: Effective epsilon of the PML. Match this to the material
|
||||
at the edge of your grid.
|
||||
Default 1.
|
||||
s_function: created by `prepare_s_function(...)`, allowing customization of pml parameters.
|
||||
Default uses `prepare_s_function()` with no parameters.
|
||||
|
||||
Returns:
|
||||
Complex cell widths (dx_lists_t) as discussed in `meanas.types`.
|
||||
"""
|
||||
if s_function is None:
|
||||
s_function = prepare_s_function()
|
||||
@ -88,21 +96,25 @@ def stretch_with_scpml(dxes: dx_lists_t,
|
||||
omega: float,
|
||||
epsilon_effective: float = 1.0,
|
||||
thickness: int = 10,
|
||||
s_function: s_function_type = None,
|
||||
s_function: s_function_t = None,
|
||||
) -> dx_lists_t:
|
||||
"""
|
||||
Stretch dxes to contain a stretched-coordinate PML (SCPML) in one direction along one axis.
|
||||
|
||||
:param dxes: dx_tuple with coordinates to stretch
|
||||
:param axis: axis to stretch (0=x, 1=y, 2=z)
|
||||
:param polarity: direction to stretch (-1 for -ve, +1 for +ve)
|
||||
:param omega: Angular frequency for the simulation
|
||||
:param epsilon_effective: Effective epsilon of the PML. Match this to the material at the
|
||||
edge of your grid. Default 1.
|
||||
:param thickness: number of cells to use for pml (default 10)
|
||||
:param s_function: s_function created by prepare_s_function(...), allowing customization
|
||||
of pml parameters. Default uses prepare_s_function() with no parameters.
|
||||
:return: Complex cell widths
|
||||
Args:
|
||||
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.types`
|
||||
axis: axis to stretch (0=x, 1=y, 2=z)
|
||||
polarity: direction to stretch (-1 for -ve, +1 for +ve)
|
||||
omega: Angular frequency for the simulation
|
||||
epsilon_effective: Effective epsilon of the PML. Match this to the material at the
|
||||
edge of your grid. Default 1.
|
||||
thickness: number of cells to use for pml (default 10)
|
||||
s_function: Created by `prepare_s_function(...)`, allowing customization
|
||||
of pml parameters. Default uses `prepare_s_function()` with no parameters.
|
||||
|
||||
Returns:
|
||||
Complex cell widths (dx_lists_t) as discussed in `meanas.types`.
|
||||
Multiple calls to this function may be necessary if multiple absorpbing boundaries are needed.
|
||||
"""
|
||||
if s_function is None:
|
||||
s_function = prepare_s_function()
|
||||
@ -147,25 +159,3 @@ def stretch_with_scpml(dxes: dx_lists_t,
|
||||
dxes[1][axis] = dx_bi
|
||||
|
||||
return dxes
|
||||
|
||||
|
||||
def generate_periodic_dx(pos: List[numpy.ndarray]) -> dx_lists_t:
|
||||
"""
|
||||
Given a list of 3 ndarrays cell centers, creates the cell width parameters for a periodic grid.
|
||||
|
||||
:param pos: List of 3 ndarrays of cell centers
|
||||
:return: (dx_a, dx_b) cell widths (no pml)
|
||||
"""
|
||||
if len(pos) != 3:
|
||||
raise Exception('Must have len(pos) == 3')
|
||||
|
||||
dx_a = [numpy.array(numpy.inf)] * 3
|
||||
dx_b = [numpy.array(numpy.inf)] * 3
|
||||
|
||||
for i, p_orig in enumerate(pos):
|
||||
p = numpy.array(p_orig, dtype=float)
|
||||
if p.size != 1:
|
||||
p_shifted = numpy.hstack((p[1:], p[-1] + (p[1] - p[0])))
|
||||
dx_a[i] = numpy.diff(p)
|
||||
dx_b[i] = numpy.diff((p + p_shifted) / 2)
|
||||
return dx_a, dx_b
|
||||
|
@ -1,5 +1,5 @@
|
||||
"""
|
||||
Solvers for FDFD problems.
|
||||
Solvers and solver interface for FDFD problems.
|
||||
"""
|
||||
|
||||
from typing import List, Callable, Dict, Any
|
||||
@ -22,10 +22,13 @@ def _scipy_qmr(A: scipy.sparse.csr_matrix,
|
||||
"""
|
||||
Wrapper for scipy.sparse.linalg.qmr
|
||||
|
||||
:param A: Sparse matrix
|
||||
:param b: Right-hand-side vector
|
||||
:param kwargs: Passed as **kwargs to the wrapped function
|
||||
:return: Guess for solution (returned even if didn't converge)
|
||||
Args:
|
||||
A: Sparse matrix
|
||||
b: Right-hand-side vector
|
||||
kwargs: Passed as **kwargs to the wrapped function
|
||||
|
||||
Returns:
|
||||
Guess for solution (returned even if didn't converge)
|
||||
"""
|
||||
|
||||
'''
|
||||
@ -70,27 +73,31 @@ def generic(omega: complex,
|
||||
"""
|
||||
Conjugate gradient FDFD solver using CSR sparse matrices.
|
||||
|
||||
All ndarray arguments should be 1D array, as returned by meanas.vec().
|
||||
All ndarray arguments should be 1D arrays, as returned by `meanas.vec()`.
|
||||
|
||||
:param omega: Complex frequency to solve at.
|
||||
:param dxes: [[dx_e, dy_e, dz_e], [dx_h, dy_h, dz_h]] (complex cell sizes)
|
||||
:param J: Electric current distribution (at E-field locations)
|
||||
:param epsilon: Dielectric constant distribution (at E-field locations)
|
||||
:param mu: Magnetic permeability distribution (at H-field locations)
|
||||
:param pec: Perfect electric conductor distribution
|
||||
(at E-field locations; non-zero value indicates PEC is present)
|
||||
:param pmc: Perfect magnetic conductor distribution
|
||||
(at H-field locations; non-zero value indicates PMC is present)
|
||||
:param adjoint: If true, solves the adjoint problem.
|
||||
:param matrix_solver: Called as matrix_solver(A, b, **matrix_solver_opts) -> x
|
||||
Where A: scipy.sparse.csr_matrix
|
||||
b: numpy.ndarray
|
||||
x: numpy.ndarray
|
||||
Default is a wrapped version of scipy.sparse.linalg.qmr()
|
||||
which doesn't return convergence info and logs the residual
|
||||
every 100 iterations.
|
||||
:param matrix_solver_opts: Passed as kwargs to matrix_solver(...)
|
||||
:return: E-field which solves the system.
|
||||
Args:
|
||||
omega: Complex frequency to solve at.
|
||||
dxes: `[[dx_e, dy_e, dz_e], [dx_h, dy_h, dz_h]]` (complex cell sizes) as
|
||||
discussed in `meanas.types`
|
||||
J: Electric current distribution (at E-field locations)
|
||||
epsilon: Dielectric constant distribution (at E-field locations)
|
||||
mu: Magnetic permeability distribution (at H-field locations)
|
||||
pec: Perfect electric conductor distribution
|
||||
(at E-field locations; non-zero value indicates PEC is present)
|
||||
pmc: Perfect magnetic conductor distribution
|
||||
(at H-field locations; non-zero value indicates PMC is present)
|
||||
adjoint: If true, solves the adjoint problem.
|
||||
matrix_solver: Called as `matrix_solver(A, b, **matrix_solver_opts) -> x`,
|
||||
where `A`: `scipy.sparse.csr_matrix`;
|
||||
`b`: `numpy.ndarray`;
|
||||
`x`: `numpy.ndarray`;
|
||||
Default is a wrapped version of `scipy.sparse.linalg.qmr()`
|
||||
which doesn't return convergence info and logs the residual
|
||||
every 100 iterations.
|
||||
matrix_solver_opts: Passed as kwargs to `matrix_solver(...)`
|
||||
|
||||
Returns:
|
||||
E-field which solves the system.
|
||||
"""
|
||||
|
||||
if matrix_solver_opts is None:
|
||||
|
@ -1,492 +0,0 @@
|
||||
"""
|
||||
Various operators and helper functions for solving for waveguide modes.
|
||||
|
||||
Assuming a z-dependence of the from exp(-i * wavenumber * z), we can simplify Maxwell's
|
||||
equations in the absence of sources to the form
|
||||
|
||||
A @ [H_x, H_y] = wavenumber**2 * [H_x, H_y]
|
||||
|
||||
with A =
|
||||
omega**2 * epsilon * mu +
|
||||
epsilon * [[-Dy], [Dx]] / epsilon * [-Dy, Dx] +
|
||||
[[Dx], [Dy]] / mu * [Dx, Dy] * mu
|
||||
|
||||
which is the form used in this file.
|
||||
|
||||
As the z-dependence is known, all the functions in this file assume a 2D grid
|
||||
(ie. dxes = [[[dx_e_0, dx_e_1, ...], [dy_e_0, ...]], [[dx_h_0, ...], [dy_h_0, ...]]])
|
||||
with propagation along the z axis.
|
||||
"""
|
||||
# TODO update module docs
|
||||
|
||||
from typing import List, Tuple
|
||||
import numpy
|
||||
from numpy.linalg import norm
|
||||
import scipy.sparse as sparse
|
||||
|
||||
from .. import vec, unvec, dx_lists_t, field_t, vfield_t
|
||||
from . import operators
|
||||
|
||||
|
||||
__author__ = 'Jan Petykiewicz'
|
||||
|
||||
|
||||
def operator_e(omega: complex,
|
||||
dxes: dx_lists_t,
|
||||
epsilon: vfield_t,
|
||||
mu: vfield_t = None,
|
||||
) -> sparse.spmatrix:
|
||||
if numpy.any(numpy.equal(mu, None)):
|
||||
mu = numpy.ones_like(epsilon)
|
||||
|
||||
Dfx, Dfy = operators.deriv_forward(dxes[0])
|
||||
Dbx, Dby = operators.deriv_back(dxes[1])
|
||||
|
||||
eps_parts = numpy.split(epsilon, 3)
|
||||
eps_xy = sparse.diags(numpy.hstack((eps_parts[0], eps_parts[1])))
|
||||
eps_z_inv = sparse.diags(1 / eps_parts[2])
|
||||
|
||||
mu_parts = numpy.split(mu, 3)
|
||||
mu_yx = sparse.diags(numpy.hstack((mu_parts[1], mu_parts[0])))
|
||||
mu_z_inv = sparse.diags(1 / mu_parts[2])
|
||||
|
||||
op = omega * omega * mu_yx @ eps_xy + \
|
||||
mu_yx @ sparse.vstack((-Dby, Dbx)) @ mu_z_inv @ sparse.hstack((-Dfy, Dfx)) + \
|
||||
sparse.vstack((Dfx, Dfy)) @ eps_z_inv @ sparse.hstack((Dbx, Dby)) @ eps_xy
|
||||
return op
|
||||
|
||||
|
||||
def operator_h(omega: complex,
|
||||
dxes: dx_lists_t,
|
||||
epsilon: vfield_t,
|
||||
mu: vfield_t = None,
|
||||
) -> sparse.spmatrix:
|
||||
"""
|
||||
Waveguide operator of the form
|
||||
|
||||
omega**2 * epsilon * mu +
|
||||
epsilon * [[-Dy], [Dx]] / epsilon * [-Dy, Dx] +
|
||||
[[Dx], [Dy]] / mu * [Dx, Dy] * mu
|
||||
|
||||
for use with a field vector of the form [H_x, H_y].
|
||||
|
||||
This operator can be used to form an eigenvalue problem of the form
|
||||
A @ [H_x, H_y] = wavenumber**2 * [H_x, H_y]
|
||||
|
||||
which can then be solved for the eigenmodes of the system (an exp(-i * wavenumber * z)
|
||||
z-dependence is assumed for the fields).
|
||||
|
||||
:param omega: The angular frequency of the system
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types (2D)
|
||||
:param epsilon: Vectorized dielectric constant grid
|
||||
:param mu: Vectorized magnetic permeability grid (default 1 everywhere)
|
||||
:return: Sparse matrix representation of the operator
|
||||
"""
|
||||
if numpy.any(numpy.equal(mu, None)):
|
||||
mu = numpy.ones_like(epsilon)
|
||||
|
||||
Dfx, Dfy = operators.deriv_forward(dxes[0])
|
||||
Dbx, Dby = operators.deriv_back(dxes[1])
|
||||
|
||||
eps_parts = numpy.split(epsilon, 3)
|
||||
eps_yx = sparse.diags(numpy.hstack((eps_parts[1], eps_parts[0])))
|
||||
eps_z_inv = sparse.diags(1 / eps_parts[2])
|
||||
|
||||
mu_parts = numpy.split(mu, 3)
|
||||
mu_xy = sparse.diags(numpy.hstack((mu_parts[0], mu_parts[1])))
|
||||
mu_z_inv = sparse.diags(1 / mu_parts[2])
|
||||
|
||||
op = omega * omega * eps_yx @ mu_xy + \
|
||||
eps_yx @ sparse.vstack((-Dfy, Dfx)) @ eps_z_inv @ sparse.hstack((-Dby, Dbx)) + \
|
||||
sparse.vstack((Dbx, Dby)) @ mu_z_inv @ sparse.hstack((Dfx, Dfy)) @ mu_xy
|
||||
|
||||
return op
|
||||
|
||||
|
||||
def normalized_fields_e(e_xy: numpy.ndarray,
|
||||
wavenumber: complex,
|
||||
omega: complex,
|
||||
dxes: dx_lists_t,
|
||||
epsilon: vfield_t,
|
||||
mu: vfield_t = None,
|
||||
prop_phase: float = 0,
|
||||
) -> Tuple[vfield_t, vfield_t]:
|
||||
"""
|
||||
Given a vector e_xy containing the vectorized E_x and E_y fields,
|
||||
returns normalized, vectorized E and H fields for the system.
|
||||
|
||||
:param e_xy: Vector containing E_x and E_y fields
|
||||
:param wavenumber: Wavenumber satisfying `operator_e(...) @ e_xy == wavenumber**2 * e_xy`
|
||||
:param omega: The angular frequency of the system
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types (2D)
|
||||
:param epsilon: Vectorized dielectric constant grid
|
||||
:param mu: Vectorized magnetic permeability grid (default 1 everywhere)
|
||||
:param prop_phase: Phase shift (dz * corrected_wavenumber) over 1 cell in propagation direction.
|
||||
Default 0 (continuous propagation direction, i.e. dz->0).
|
||||
:return: Normalized, vectorized (e, h) containing all vector components.
|
||||
"""
|
||||
e = exy2e(wavenumber=wavenumber, dxes=dxes, epsilon=epsilon) @ e_xy
|
||||
h = exy2h(wavenumber=wavenumber, omega=omega, dxes=dxes, epsilon=epsilon, mu=mu) @ e_xy
|
||||
e_norm, h_norm = _normalized_fields(e=e, h=h, omega=omega, dxes=dxes, epsilon=epsilon,
|
||||
mu=mu, prop_phase=prop_phase)
|
||||
return e_norm, h_norm
|
||||
|
||||
|
||||
def normalized_fields_h(h_xy: numpy.ndarray,
|
||||
wavenumber: complex,
|
||||
omega: complex,
|
||||
dxes: dx_lists_t,
|
||||
epsilon: vfield_t,
|
||||
mu: vfield_t = None,
|
||||
prop_phase: float = 0,
|
||||
) -> Tuple[vfield_t, vfield_t]:
|
||||
"""
|
||||
Given a vector e_xy containing the vectorized E_x and E_y fields,
|
||||
returns normalized, vectorized E and H fields for the system.
|
||||
|
||||
:param e_xy: Vector containing E_x and E_y fields
|
||||
:param wavenumber: Wavenumber satisfying `operator_e(...) @ e_xy == wavenumber**2 * e_xy`
|
||||
:param omega: The angular frequency of the system
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types (2D)
|
||||
:param epsilon: Vectorized dielectric constant grid
|
||||
:param mu: Vectorized magnetic permeability grid (default 1 everywhere)
|
||||
:param dxes_prop: Grid cell width in the propagation direction. Default 0 (continuous).
|
||||
:return: Normalized, vectorized (e, h) containing all vector components.
|
||||
"""
|
||||
e = hxy2e(wavenumber=wavenumber, omega=omega, dxes=dxes, epsilon=epsilon, mu=mu) @ h_xy
|
||||
h = hxy2h(wavenumber=wavenumber, dxes=dxes, mu=mu) @ h_xy
|
||||
e_norm, h_norm = _normalized_fields(e=e, h=h, omega=omega, dxes=dxes, epsilon=epsilon,
|
||||
mu=mu, prop_phase=prop_phase)
|
||||
return e_norm, h_norm
|
||||
|
||||
|
||||
def _normalized_fields(e: numpy.ndarray,
|
||||
h: numpy.ndarray,
|
||||
omega: complex,
|
||||
dxes: dx_lists_t,
|
||||
epsilon: vfield_t,
|
||||
mu: vfield_t = None,
|
||||
prop_phase: float = 0,
|
||||
) -> Tuple[vfield_t, vfield_t]:
|
||||
# TODO documentation
|
||||
shape = [s.size for s in dxes[0]]
|
||||
dxes_real = [[numpy.real(d) for d in numpy.meshgrid(*dxes[v], indexing='ij')] for v in (0, 1)]
|
||||
|
||||
E = unvec(e, shape)
|
||||
H = unvec(h, shape)
|
||||
|
||||
# Find time-averaged Sz and normalize to it
|
||||
# H phase is adjusted by a half-cell forward shift for Yee cell, and 1-cell reverse shift for Poynting
|
||||
phase = numpy.exp(-1j * -prop_phase / 2)
|
||||
Sz_a = E[0] * numpy.conj(H[1] * phase) * dxes_real[0][1] * dxes_real[1][0]
|
||||
Sz_b = E[1] * numpy.conj(H[0] * phase) * dxes_real[0][0] * dxes_real[1][1]
|
||||
Sz_tavg = numpy.real(Sz_a.sum() - Sz_b.sum()) * 0.5 # 0.5 since E, H are assumed to be peak (not RMS) amplitudes
|
||||
assert Sz_tavg > 0, 'Found a mode propagating in the wrong direction! Sz_tavg={}'.format(Sz_tavg)
|
||||
|
||||
energy = epsilon * e.conj() * e
|
||||
|
||||
norm_amplitude = 1 / numpy.sqrt(Sz_tavg)
|
||||
norm_angle = -numpy.angle(e[energy.argmax()]) # Will randomly add a negative sign when mode is symmetric
|
||||
|
||||
# Try to break symmetry to assign a consistent sign [experimental TODO]
|
||||
E_weighted = unvec(e * energy * numpy.exp(1j * norm_angle), shape)
|
||||
sign = numpy.sign(E_weighted[:, :max(shape[0]//2, 1), :max(shape[1]//2, 1)].real.sum())
|
||||
|
||||
norm_factor = sign * norm_amplitude * numpy.exp(1j * norm_angle)
|
||||
|
||||
e *= norm_factor
|
||||
h *= norm_factor
|
||||
|
||||
return e, h
|
||||
|
||||
|
||||
def exy2h(wavenumber: complex,
|
||||
omega: complex,
|
||||
dxes: dx_lists_t,
|
||||
epsilon: vfield_t,
|
||||
mu: vfield_t = None
|
||||
) -> sparse.spmatrix:
|
||||
"""
|
||||
Operator which transforms the vector e_xy containing the vectorized E_x and E_y fields,
|
||||
into a vectorized H containing all three H components
|
||||
|
||||
:param wavenumber: Wavenumber satisfying `operator_e(...) @ e_xy == wavenumber**2 * e_xy`
|
||||
:param omega: The angular frequency of the system
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types (2D)
|
||||
:param epsilon: Vectorized dielectric constant grid
|
||||
:param mu: Vectorized magnetic permeability grid (default 1 everywhere)
|
||||
:return: Sparse matrix representing the operator
|
||||
"""
|
||||
e2hop = e2h(wavenumber=wavenumber, omega=omega, dxes=dxes, mu=mu)
|
||||
return e2hop @ exy2e(wavenumber=wavenumber, dxes=dxes, epsilon=epsilon)
|
||||
|
||||
|
||||
def hxy2e(wavenumber: complex,
|
||||
omega: complex,
|
||||
dxes: dx_lists_t,
|
||||
epsilon: vfield_t,
|
||||
mu: vfield_t = None
|
||||
) -> sparse.spmatrix:
|
||||
"""
|
||||
Operator which transforms the vector h_xy containing the vectorized H_x and H_y fields,
|
||||
into a vectorized E containing all three E components
|
||||
|
||||
:param wavenumber: Wavenumber satisfying `operator_h(...) @ h_xy == wavenumber**2 * h_xy`
|
||||
:param omega: The angular frequency of the system
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types (2D)
|
||||
:param epsilon: Vectorized dielectric constant grid
|
||||
:param mu: Vectorized magnetic permeability grid (default 1 everywhere)
|
||||
:return: Sparse matrix representing the operator
|
||||
"""
|
||||
h2eop = h2e(wavenumber=wavenumber, omega=omega, dxes=dxes, epsilon=epsilon)
|
||||
return h2eop @ hxy2h(wavenumber=wavenumber, dxes=dxes, mu=mu)
|
||||
|
||||
|
||||
def hxy2h(wavenumber: complex,
|
||||
dxes: dx_lists_t,
|
||||
mu: vfield_t = None
|
||||
) -> sparse.spmatrix:
|
||||
"""
|
||||
Operator which transforms the vector h_xy containing the vectorized H_x and H_y fields,
|
||||
into a vectorized H containing all three H components
|
||||
|
||||
:param wavenumber: Wavenumber satisfying `operator_h(...) @ h_xy == wavenumber**2 * h_xy`
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types (2D)
|
||||
:param mu: Vectorized magnetic permeability grid (default 1 everywhere)
|
||||
:return: Sparse matrix representing the operator
|
||||
"""
|
||||
Dfx, Dfy = operators.deriv_forward(dxes[0])
|
||||
hxy2hz = sparse.hstack((Dfx, Dfy)) / (1j * wavenumber)
|
||||
|
||||
if not numpy.any(numpy.equal(mu, None)):
|
||||
mu_parts = numpy.split(mu, 3)
|
||||
mu_xy = sparse.diags(numpy.hstack((mu_parts[0], mu_parts[1])))
|
||||
mu_z_inv = sparse.diags(1 / mu_parts[2])
|
||||
|
||||
hxy2hz = mu_z_inv @ hxy2hz @ mu_xy
|
||||
|
||||
n_pts = dxes[1][0].size * dxes[1][1].size
|
||||
op = sparse.vstack((sparse.eye(2 * n_pts),
|
||||
hxy2hz))
|
||||
return op
|
||||
|
||||
|
||||
def exy2e(wavenumber: complex,
|
||||
dxes: dx_lists_t,
|
||||
epsilon: vfield_t,
|
||||
) -> sparse.spmatrix:
|
||||
"""
|
||||
Operator which transforms the vector e_xy containing the vectorized E_x and E_y fields,
|
||||
into a vectorized E containing all three E components
|
||||
|
||||
:param wavenumber: Wavenumber satisfying `operator_e(...) @ e_xy == wavenumber**2 * e_xy`
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types (2D)
|
||||
:param epsilon: Vectorized dielectric constant grid
|
||||
:return: Sparse matrix representing the operator
|
||||
"""
|
||||
Dbx, Dby = operators.deriv_back(dxes[1])
|
||||
exy2ez = sparse.hstack((Dbx, Dby)) / (1j * wavenumber)
|
||||
|
||||
if not numpy.any(numpy.equal(epsilon, None)):
|
||||
epsilon_parts = numpy.split(epsilon, 3)
|
||||
epsilon_xy = sparse.diags(numpy.hstack((epsilon_parts[0], epsilon_parts[1])))
|
||||
epsilon_z_inv = sparse.diags(1 / epsilon_parts[2])
|
||||
|
||||
exy2ez = epsilon_z_inv @ exy2ez @ epsilon_xy
|
||||
|
||||
n_pts = dxes[0][0].size * dxes[0][1].size
|
||||
op = sparse.vstack((sparse.eye(2 * n_pts),
|
||||
exy2ez))
|
||||
return op
|
||||
|
||||
|
||||
def e2h(wavenumber: complex,
|
||||
omega: complex,
|
||||
dxes: dx_lists_t,
|
||||
mu: vfield_t = None
|
||||
) -> sparse.spmatrix:
|
||||
"""
|
||||
Returns an operator which, when applied to a vectorized E eigenfield, produces
|
||||
the vectorized H eigenfield.
|
||||
|
||||
:param wavenumber: Wavenumber satisfying A @ v == wavenumber**2 * v
|
||||
:param omega: The angular frequency of the system
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types (2D)
|
||||
:param mu: Vectorized magnetic permeability grid (default 1 everywhere)
|
||||
:return: Sparse matrix representation of the operator
|
||||
"""
|
||||
op = curl_e(wavenumber, dxes) / (-1j * omega)
|
||||
if not numpy.any(numpy.equal(mu, None)):
|
||||
op = sparse.diags(1 / mu) @ op
|
||||
return op
|
||||
|
||||
|
||||
def h2e(wavenumber: complex,
|
||||
omega: complex,
|
||||
dxes: dx_lists_t,
|
||||
epsilon: vfield_t
|
||||
) -> sparse.spmatrix:
|
||||
"""
|
||||
Returns an operator which, when applied to a vectorized H eigenfield, produces
|
||||
the vectorized E eigenfield.
|
||||
|
||||
:param wavenumber: Wavenumber satisfying A @ v == wavenumber**2 * v
|
||||
:param omega: The angular frequency of the system
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types (2D)
|
||||
:param epsilon: Vectorized dielectric constant grid
|
||||
:return: Sparse matrix representation of the operator
|
||||
"""
|
||||
op = sparse.diags(1 / (1j * omega * epsilon)) @ curl_h(wavenumber, dxes)
|
||||
return op
|
||||
|
||||
|
||||
def curl_e(wavenumber: complex, dxes: dx_lists_t) -> sparse.spmatrix:
|
||||
"""
|
||||
Discretized curl operator for use with the waveguide E field.
|
||||
|
||||
:param wavenumber: Wavenumber satisfying A @ v == wavenumber**2 * v
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types (2D)
|
||||
:return: Sparse matrix representation of the operator
|
||||
"""
|
||||
n = 1
|
||||
for d in dxes[0]:
|
||||
n *= len(d)
|
||||
|
||||
Bz = -1j * wavenumber * sparse.eye(n)
|
||||
Dfx, Dfy = operators.deriv_forward(dxes[0])
|
||||
return operators.cross([Dfx, Dfy, Bz])
|
||||
|
||||
|
||||
def curl_h(wavenumber: complex, dxes: dx_lists_t) -> sparse.spmatrix:
|
||||
"""
|
||||
Discretized curl operator for use with the waveguide H field.
|
||||
|
||||
:param wavenumber: Wavenumber satisfying A @ v == wavenumber**2 * v
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types (2D)
|
||||
:return: Sparse matrix representation of the operator
|
||||
"""
|
||||
n = 1
|
||||
for d in dxes[1]:
|
||||
n *= len(d)
|
||||
|
||||
Bz = -1j * wavenumber * sparse.eye(n)
|
||||
Dbx, Dby = operators.deriv_back(dxes[1])
|
||||
return operators.cross([Dbx, Dby, Bz])
|
||||
|
||||
|
||||
def h_err(h: vfield_t,
|
||||
wavenumber: complex,
|
||||
omega: complex,
|
||||
dxes: dx_lists_t,
|
||||
epsilon: vfield_t,
|
||||
mu: vfield_t = None
|
||||
) -> float:
|
||||
"""
|
||||
Calculates the relative error in the H field
|
||||
|
||||
:param h: Vectorized H field
|
||||
:param wavenumber: Wavenumber satisfying A @ v == wavenumber**2 * v
|
||||
:param omega: The angular frequency of the system
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types (2D)
|
||||
:param epsilon: Vectorized dielectric constant grid
|
||||
:param mu: Vectorized magnetic permeability grid (default 1 everywhere)
|
||||
:return: Relative error norm(OP @ h) / norm(h)
|
||||
"""
|
||||
ce = curl_e(wavenumber, dxes)
|
||||
ch = curl_h(wavenumber, dxes)
|
||||
|
||||
eps_inv = sparse.diags(1 / epsilon)
|
||||
|
||||
if numpy.any(numpy.equal(mu, None)):
|
||||
op = ce @ eps_inv @ ch @ h - omega ** 2 * h
|
||||
else:
|
||||
op = ce @ eps_inv @ ch @ h - omega ** 2 * (mu * h)
|
||||
|
||||
return norm(op) / norm(h)
|
||||
|
||||
|
||||
def e_err(e: vfield_t,
|
||||
wavenumber: complex,
|
||||
omega: complex,
|
||||
dxes: dx_lists_t,
|
||||
epsilon: vfield_t,
|
||||
mu: vfield_t = None
|
||||
) -> float:
|
||||
"""
|
||||
Calculates the relative error in the E field
|
||||
|
||||
:param e: Vectorized E field
|
||||
:param wavenumber: Wavenumber satisfying A @ v == wavenumber**2 * v
|
||||
:param omega: The angular frequency of the system
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types (2D)
|
||||
:param epsilon: Vectorized dielectric constant grid
|
||||
:param mu: Vectorized magnetic permeability grid (default 1 everywhere)
|
||||
:return: Relative error norm(OP @ e) / norm(e)
|
||||
"""
|
||||
ce = curl_e(wavenumber, dxes)
|
||||
ch = curl_h(wavenumber, dxes)
|
||||
|
||||
if numpy.any(numpy.equal(mu, None)):
|
||||
op = ch @ ce @ e - omega ** 2 * (epsilon * e)
|
||||
else:
|
||||
mu_inv = sparse.diags(1 / mu)
|
||||
op = ch @ mu_inv @ ce @ e - omega ** 2 * (epsilon * e)
|
||||
|
||||
return norm(op) / norm(e)
|
||||
|
||||
|
||||
def cylindrical_operator(omega: complex,
|
||||
dxes: dx_lists_t,
|
||||
epsilon: vfield_t,
|
||||
r0: float,
|
||||
) -> sparse.spmatrix:
|
||||
"""
|
||||
Cylindrical coordinate waveguide operator of the form
|
||||
|
||||
TODO
|
||||
|
||||
for use with a field vector of the form [E_r, E_y].
|
||||
|
||||
This operator can be used to form an eigenvalue problem of the form
|
||||
A @ [E_r, E_y] = wavenumber**2 * [E_r, E_y]
|
||||
|
||||
which can then be solved for the eigenmodes of the system (an exp(-i * wavenumber * theta)
|
||||
theta-dependence is assumed for the fields).
|
||||
|
||||
:param omega: The angular frequency of the system
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types (2D)
|
||||
:param epsilon: Vectorized dielectric constant grid
|
||||
:param r0: Radius of curvature for the simulation. This should be the minimum value of
|
||||
r within the simulation domain.
|
||||
:return: Sparse matrix representation of the operator
|
||||
"""
|
||||
|
||||
Dfx, Dfy = operators.deriv_forward(dxes[0])
|
||||
Dbx, Dby = operators.deriv_back(dxes[1])
|
||||
|
||||
rx = r0 + numpy.cumsum(dxes[0][0])
|
||||
ry = r0 + dxes[0][0]/2.0 + numpy.cumsum(dxes[1][0])
|
||||
tx = rx/r0
|
||||
ty = ry/r0
|
||||
|
||||
Tx = sparse.diags(vec(tx[:, None].repeat(dxes[0][1].size, axis=1)))
|
||||
Ty = sparse.diags(vec(ty[:, None].repeat(dxes[1][1].size, axis=1)))
|
||||
|
||||
eps_parts = numpy.split(epsilon, 3)
|
||||
eps_x = sparse.diags(eps_parts[0])
|
||||
eps_y = sparse.diags(eps_parts[1])
|
||||
eps_z_inv = sparse.diags(1 / eps_parts[2])
|
||||
|
||||
pa = sparse.vstack((Dfx, Dfy)) @ Tx @ eps_z_inv @ sparse.hstack((Dbx, Dby))
|
||||
pb = sparse.vstack((Dfx, Dfy)) @ Tx @ eps_z_inv @ sparse.hstack((Dby, Dbx))
|
||||
a0 = Ty @ eps_x + omega**-2 * Dby @ Ty @ Dfy
|
||||
a1 = Tx @ eps_y + omega**-2 * Dbx @ Ty @ Dfx
|
||||
b0 = Dbx @ Ty @ Dfy
|
||||
b1 = Dby @ Ty @ Dfx
|
||||
|
||||
diag = sparse.block_diag
|
||||
op = (omega**2 * diag((Tx, Ty)) + pa) @ diag((a0, a1)) + \
|
||||
- (sparse.bmat(((None, Ty), (Tx, None))) + omega**-2 * pb) @ diag((b0, b1))
|
||||
|
||||
return op
|
||||
|
607
meanas/fdfd/waveguide_2d.py
Normal file
607
meanas/fdfd/waveguide_2d.py
Normal file
@ -0,0 +1,607 @@
|
||||
"""
|
||||
Operators and helper functions for waveguides with unchanging cross-section.
|
||||
|
||||
The propagation direction is chosen to be along the z axis, and all fields
|
||||
are given an implicit z-dependence of the form `exp(-1 * wavenumber * z)`.
|
||||
|
||||
As the z-dependence is known, all the functions in this file assume a 2D grid
|
||||
(i.e. `dxes = [[[dx_e_0, dx_e_1, ...], [dy_e_0, ...]], [[dx_h_0, ...], [dy_h_0, ...]]]`).
|
||||
"""
|
||||
# TODO update module docs
|
||||
|
||||
from typing import List, Tuple
|
||||
import numpy
|
||||
from numpy.linalg import norm
|
||||
import scipy.sparse as sparse
|
||||
|
||||
from .. import vec, unvec, dx_lists_t, field_t, vfield_t
|
||||
from ..eigensolvers import signed_eigensolve, rayleigh_quotient_iteration
|
||||
from . import operators
|
||||
|
||||
|
||||
__author__ = 'Jan Petykiewicz'
|
||||
|
||||
|
||||
def operator_e(omega: complex,
|
||||
dxes: dx_lists_t,
|
||||
epsilon: vfield_t,
|
||||
mu: vfield_t = None,
|
||||
) -> sparse.spmatrix:
|
||||
"""
|
||||
Waveguide operator of the form
|
||||
|
||||
omega**2 * mu * epsilon +
|
||||
mu * [[-Dy], [Dx]] / mu * [-Dy, Dx] +
|
||||
[[Dx], [Dy]] / epsilon * [Dx, Dy] * epsilon
|
||||
|
||||
for use with a field vector of the form `cat([E_x, E_y])`.
|
||||
|
||||
More precisely, the operator is
|
||||
$$ \\omega^2 \\mu_{yx} \\epsilon_{xy} +
|
||||
\\mu_{yx} \\begin{bmatrix} -D_{by} \\\\
|
||||
D_{bx} \\end{bmatrix} \\mu_z^{-1}
|
||||
\\begin{bmatrix} -D_{fy} & D_{fx} \\end{bmatrix} +
|
||||
\\begin{bmatrix} D_{fx} \\\\
|
||||
D_{fy} \\end{bmatrix} \\epsilon_z^{-1}
|
||||
\\begin{bmatrix} D_{bx} & D_{by} \\end{bmatrix} \\epsilon_{xy} $$
|
||||
|
||||
where
|
||||
\\( \\epsilon_{xy} = \\begin{bmatrix}
|
||||
\\epsilon_x & 0 \\\\
|
||||
0 & \\epsilon_y
|
||||
\\end{bmatrix} \\),
|
||||
\\( \\mu_{yx} = \\begin{bmatrix}
|
||||
\\mu_y & 0 \\\\
|
||||
0 & \\mu_x
|
||||
\\end{bmatrix} \\),
|
||||
\\( D_{fx} \\) and \\( D_{bx} \\) are the forward and backward derivatives along x,
|
||||
and each \\( \\epsilon_x, \\mu_y, \\) etc. is a diagonal matrix representing
|
||||
|
||||
|
||||
This operator can be used to form an eigenvalue problem of the form
|
||||
`operator_e(...) @ [E_x, E_y] = wavenumber**2 * [E_x, E_y]`
|
||||
|
||||
which can then be solved for the eigenmodes of the system (an `exp(-i * wavenumber * z)`
|
||||
z-dependence is assumed for the fields).
|
||||
|
||||
Args:
|
||||
omega: The angular frequency of the system.
|
||||
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.types` (2D)
|
||||
epsilon: Vectorized dielectric constant grid
|
||||
mu: Vectorized magnetic permeability grid (default 1 everywhere)
|
||||
|
||||
Returns:
|
||||
Sparse matrix representation of the operator.
|
||||
"""
|
||||
if numpy.any(numpy.equal(mu, None)):
|
||||
mu = numpy.ones_like(epsilon)
|
||||
|
||||
Dfx, Dfy = operators.deriv_forward(dxes[0])
|
||||
Dbx, Dby = operators.deriv_back(dxes[1])
|
||||
|
||||
eps_parts = numpy.split(epsilon, 3)
|
||||
eps_xy = sparse.diags(numpy.hstack((eps_parts[0], eps_parts[1])))
|
||||
eps_z_inv = sparse.diags(1 / eps_parts[2])
|
||||
|
||||
mu_parts = numpy.split(mu, 3)
|
||||
mu_yx = sparse.diags(numpy.hstack((mu_parts[1], mu_parts[0])))
|
||||
mu_z_inv = sparse.diags(1 / mu_parts[2])
|
||||
|
||||
op = omega * omega * mu_yx @ eps_xy + \
|
||||
mu_yx @ sparse.vstack((-Dby, Dbx)) @ mu_z_inv @ sparse.hstack((-Dfy, Dfx)) + \
|
||||
sparse.vstack((Dfx, Dfy)) @ eps_z_inv @ sparse.hstack((Dbx, Dby)) @ eps_xy
|
||||
return op
|
||||
|
||||
|
||||
def operator_h(omega: complex,
|
||||
dxes: dx_lists_t,
|
||||
epsilon: vfield_t,
|
||||
mu: vfield_t = None,
|
||||
) -> sparse.spmatrix:
|
||||
"""
|
||||
Waveguide operator of the form
|
||||
|
||||
omega**2 * epsilon * mu +
|
||||
epsilon * [[-Dy], [Dx]] / epsilon * [-Dy, Dx] +
|
||||
[[Dx], [Dy]] / mu * [Dx, Dy] * mu
|
||||
|
||||
for use with a field vector of the form `cat([H_x, H_y])`.
|
||||
|
||||
More precisely, the operator is
|
||||
$$ \\omega^2 \\epsilon_{yx} \\mu_{xy} +
|
||||
\\epsilon_{yx} \\begin{bmatrix} -D_{fy} \\\\
|
||||
D_{fx} \\end{bmatrix} \\epsilon_z^{-1}
|
||||
\\begin{bmatrix} -D_{by} & D_{bx} \\end{bmatrix} +
|
||||
\\begin{bmatrix} D_{bx} \\\\
|
||||
D_{by} \\end{bmatrix} \\mu_z^{-1}
|
||||
\\begin{bmatrix} D_{fx} & D_{fy} \\end{bmatrix} \\mu_{xy} $$
|
||||
|
||||
where
|
||||
\\( \\epsilon_{yx} = \\begin{bmatrix}
|
||||
\\epsilon_y & 0 \\\\
|
||||
0 & \\epsilon_x
|
||||
\\end{bmatrix} \\),
|
||||
\\( \\mu_{xy} = \\begin{bmatrix}
|
||||
\\mu_x & 0 \\\\
|
||||
0 & \\mu_y
|
||||
\\end{bmatrix} \\),
|
||||
\\( D_{fx} \\) and \\( D_{bx} \\) are the forward and backward derivatives along x,
|
||||
and each \\( \\epsilon_x, \\mu_y, \\) etc. is a diagonal matrix.
|
||||
|
||||
|
||||
This operator can be used to form an eigenvalue problem of the form
|
||||
`operator_h(...) @ [H_x, H_y] = wavenumber**2 * [H_x, H_y]`
|
||||
|
||||
which can then be solved for the eigenmodes of the system (an `exp(-i * wavenumber * z)`
|
||||
z-dependence is assumed for the fields).
|
||||
|
||||
Args:
|
||||
omega: The angular frequency of the system.
|
||||
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.types` (2D)
|
||||
epsilon: Vectorized dielectric constant grid
|
||||
mu: Vectorized magnetic permeability grid (default 1 everywhere)
|
||||
|
||||
Returns:
|
||||
Sparse matrix representation of the operator.
|
||||
"""
|
||||
if numpy.any(numpy.equal(mu, None)):
|
||||
mu = numpy.ones_like(epsilon)
|
||||
|
||||
Dfx, Dfy = operators.deriv_forward(dxes[0])
|
||||
Dbx, Dby = operators.deriv_back(dxes[1])
|
||||
|
||||
eps_parts = numpy.split(epsilon, 3)
|
||||
eps_yx = sparse.diags(numpy.hstack((eps_parts[1], eps_parts[0])))
|
||||
eps_z_inv = sparse.diags(1 / eps_parts[2])
|
||||
|
||||
mu_parts = numpy.split(mu, 3)
|
||||
mu_xy = sparse.diags(numpy.hstack((mu_parts[0], mu_parts[1])))
|
||||
mu_z_inv = sparse.diags(1 / mu_parts[2])
|
||||
|
||||
op = omega * omega * eps_yx @ mu_xy + \
|
||||
eps_yx @ sparse.vstack((-Dfy, Dfx)) @ eps_z_inv @ sparse.hstack((-Dby, Dbx)) + \
|
||||
sparse.vstack((Dbx, Dby)) @ mu_z_inv @ sparse.hstack((Dfx, Dfy)) @ mu_xy
|
||||
|
||||
return op
|
||||
|
||||
|
||||
def normalized_fields_e(e_xy: numpy.ndarray,
|
||||
wavenumber: complex,
|
||||
omega: complex,
|
||||
dxes: dx_lists_t,
|
||||
epsilon: vfield_t,
|
||||
mu: vfield_t = None,
|
||||
prop_phase: float = 0,
|
||||
) -> Tuple[vfield_t, vfield_t]:
|
||||
"""
|
||||
Given a vector `e_xy` containing the vectorized E_x and E_y fields,
|
||||
returns normalized, vectorized E and H fields for the system.
|
||||
|
||||
Args:
|
||||
e_xy: Vector containing E_x and E_y fields
|
||||
wavenumber: Wavenumber assuming fields have z-dependence of `exp(-i * wavenumber * z)`.
|
||||
It should satisfy `operator_e() @ e_xy == wavenumber**2 * e_xy`
|
||||
omega: The angular frequency of the system
|
||||
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.types` (2D)
|
||||
epsilon: Vectorized dielectric constant grid
|
||||
mu: Vectorized magnetic permeability grid (default 1 everywhere)
|
||||
prop_phase: Phase shift `(dz * corrected_wavenumber)` over 1 cell in propagation direction.
|
||||
Default 0 (continuous propagation direction, i.e. dz->0).
|
||||
|
||||
Returns:
|
||||
`(e, h)`, where each field is vectorized, normalized,
|
||||
and contains all three vector components.
|
||||
"""
|
||||
e = exy2e(wavenumber=wavenumber, dxes=dxes, epsilon=epsilon) @ e_xy
|
||||
h = exy2h(wavenumber=wavenumber, omega=omega, dxes=dxes, epsilon=epsilon, mu=mu) @ e_xy
|
||||
e_norm, h_norm = _normalized_fields(e=e, h=h, omega=omega, dxes=dxes, epsilon=epsilon,
|
||||
mu=mu, prop_phase=prop_phase)
|
||||
return e_norm, h_norm
|
||||
|
||||
|
||||
def normalized_fields_h(h_xy: numpy.ndarray,
|
||||
wavenumber: complex,
|
||||
omega: complex,
|
||||
dxes: dx_lists_t,
|
||||
epsilon: vfield_t,
|
||||
mu: vfield_t = None,
|
||||
prop_phase: float = 0,
|
||||
) -> Tuple[vfield_t, vfield_t]:
|
||||
"""
|
||||
Given a vector `h_xy` containing the vectorized H_x and H_y fields,
|
||||
returns normalized, vectorized E and H fields for the system.
|
||||
|
||||
Args:
|
||||
h_xy: Vector containing H_x and H_y fields
|
||||
wavenumber: Wavenumber assuming fields have z-dependence of `exp(-i * wavenumber * z)`.
|
||||
It should satisfy `operator_h() @ h_xy == wavenumber**2 * h_xy`
|
||||
omega: The angular frequency of the system
|
||||
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.types` (2D)
|
||||
epsilon: Vectorized dielectric constant grid
|
||||
mu: Vectorized magnetic permeability grid (default 1 everywhere)
|
||||
prop_phase: Phase shift `(dz * corrected_wavenumber)` over 1 cell in propagation direction.
|
||||
Default 0 (continuous propagation direction, i.e. dz->0).
|
||||
|
||||
Returns:
|
||||
`(e, h)`, where each field is vectorized, normalized,
|
||||
and contains all three vector components.
|
||||
"""
|
||||
e = hxy2e(wavenumber=wavenumber, omega=omega, dxes=dxes, epsilon=epsilon, mu=mu) @ h_xy
|
||||
h = hxy2h(wavenumber=wavenumber, dxes=dxes, mu=mu) @ h_xy
|
||||
e_norm, h_norm = _normalized_fields(e=e, h=h, omega=omega, dxes=dxes, epsilon=epsilon,
|
||||
mu=mu, prop_phase=prop_phase)
|
||||
return e_norm, h_norm
|
||||
|
||||
|
||||
def _normalized_fields(e: numpy.ndarray,
|
||||
h: numpy.ndarray,
|
||||
omega: complex,
|
||||
dxes: dx_lists_t,
|
||||
epsilon: vfield_t,
|
||||
mu: vfield_t = None,
|
||||
prop_phase: float = 0,
|
||||
) -> Tuple[vfield_t, vfield_t]:
|
||||
# TODO documentation
|
||||
shape = [s.size for s in dxes[0]]
|
||||
dxes_real = [[numpy.real(d) for d in numpy.meshgrid(*dxes[v], indexing='ij')] for v in (0, 1)]
|
||||
|
||||
E = unvec(e, shape)
|
||||
H = unvec(h, shape)
|
||||
|
||||
# Find time-averaged Sz and normalize to it
|
||||
# H phase is adjusted by a half-cell forward shift for Yee cell, and 1-cell reverse shift for Poynting
|
||||
phase = numpy.exp(-1j * -prop_phase / 2)
|
||||
Sz_a = E[0] * numpy.conj(H[1] * phase) * dxes_real[0][1] * dxes_real[1][0]
|
||||
Sz_b = E[1] * numpy.conj(H[0] * phase) * dxes_real[0][0] * dxes_real[1][1]
|
||||
Sz_tavg = numpy.real(Sz_a.sum() - Sz_b.sum()) * 0.5 # 0.5 since E, H are assumed to be peak (not RMS) amplitudes
|
||||
assert Sz_tavg > 0, 'Found a mode propagating in the wrong direction! Sz_tavg={}'.format(Sz_tavg)
|
||||
|
||||
energy = epsilon * e.conj() * e
|
||||
|
||||
norm_amplitude = 1 / numpy.sqrt(Sz_tavg)
|
||||
norm_angle = -numpy.angle(e[energy.argmax()]) # Will randomly add a negative sign when mode is symmetric
|
||||
|
||||
# Try to break symmetry to assign a consistent sign [experimental TODO]
|
||||
E_weighted = unvec(e * energy * numpy.exp(1j * norm_angle), shape)
|
||||
sign = numpy.sign(E_weighted[:, :max(shape[0]//2, 1), :max(shape[1]//2, 1)].real.sum())
|
||||
|
||||
norm_factor = sign * norm_amplitude * numpy.exp(1j * norm_angle)
|
||||
|
||||
e *= norm_factor
|
||||
h *= norm_factor
|
||||
|
||||
return e, h
|
||||
|
||||
|
||||
def exy2h(wavenumber: complex,
|
||||
omega: complex,
|
||||
dxes: dx_lists_t,
|
||||
epsilon: vfield_t,
|
||||
mu: vfield_t = None
|
||||
) -> sparse.spmatrix:
|
||||
"""
|
||||
Operator which transforms the vector `e_xy` containing the vectorized E_x and E_y fields,
|
||||
into a vectorized H containing all three H components
|
||||
|
||||
Args:
|
||||
wavenumber: Wavenumber assuming fields have z-dependence of `exp(-i * wavenumber * z)`.
|
||||
It should satisfy `operator_e() @ e_xy == wavenumber**2 * e_xy`
|
||||
omega: The angular frequency of the system
|
||||
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.types` (2D)
|
||||
epsilon: Vectorized dielectric constant grid
|
||||
mu: Vectorized magnetic permeability grid (default 1 everywhere)
|
||||
|
||||
Returns:
|
||||
Sparse matrix representing the operator.
|
||||
"""
|
||||
e2hop = e2h(wavenumber=wavenumber, omega=omega, dxes=dxes, mu=mu)
|
||||
return e2hop @ exy2e(wavenumber=wavenumber, dxes=dxes, epsilon=epsilon)
|
||||
|
||||
|
||||
def hxy2e(wavenumber: complex,
|
||||
omega: complex,
|
||||
dxes: dx_lists_t,
|
||||
epsilon: vfield_t,
|
||||
mu: vfield_t = None
|
||||
) -> sparse.spmatrix:
|
||||
"""
|
||||
Operator which transforms the vector `h_xy` containing the vectorized H_x and H_y fields,
|
||||
into a vectorized E containing all three E components
|
||||
|
||||
Args:
|
||||
wavenumber: Wavenumber assuming fields have z-dependence of `exp(-i * wavenumber * z)`.
|
||||
It should satisfy `operator_h() @ h_xy == wavenumber**2 * h_xy`
|
||||
omega: The angular frequency of the system
|
||||
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.types` (2D)
|
||||
epsilon: Vectorized dielectric constant grid
|
||||
mu: Vectorized magnetic permeability grid (default 1 everywhere)
|
||||
|
||||
Returns:
|
||||
Sparse matrix representing the operator.
|
||||
"""
|
||||
h2eop = h2e(wavenumber=wavenumber, omega=omega, dxes=dxes, epsilon=epsilon)
|
||||
return h2eop @ hxy2h(wavenumber=wavenumber, dxes=dxes, mu=mu)
|
||||
|
||||
|
||||
def hxy2h(wavenumber: complex,
|
||||
dxes: dx_lists_t,
|
||||
mu: vfield_t = None
|
||||
) -> sparse.spmatrix:
|
||||
"""
|
||||
Operator which transforms the vector `h_xy` containing the vectorized H_x and H_y fields,
|
||||
into a vectorized H containing all three H components
|
||||
|
||||
Args:
|
||||
wavenumber: Wavenumber assuming fields have z-dependence of `exp(-i * wavenumber * z)`.
|
||||
It should satisfy `operator_h() @ h_xy == wavenumber**2 * h_xy`
|
||||
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.types` (2D)
|
||||
mu: Vectorized magnetic permeability grid (default 1 everywhere)
|
||||
|
||||
Returns:
|
||||
Sparse matrix representing the operator.
|
||||
"""
|
||||
Dfx, Dfy = operators.deriv_forward(dxes[0])
|
||||
hxy2hz = sparse.hstack((Dfx, Dfy)) / (1j * wavenumber)
|
||||
|
||||
if not numpy.any(numpy.equal(mu, None)):
|
||||
mu_parts = numpy.split(mu, 3)
|
||||
mu_xy = sparse.diags(numpy.hstack((mu_parts[0], mu_parts[1])))
|
||||
mu_z_inv = sparse.diags(1 / mu_parts[2])
|
||||
|
||||
hxy2hz = mu_z_inv @ hxy2hz @ mu_xy
|
||||
|
||||
n_pts = dxes[1][0].size * dxes[1][1].size
|
||||
op = sparse.vstack((sparse.eye(2 * n_pts),
|
||||
hxy2hz))
|
||||
return op
|
||||
|
||||
|
||||
def exy2e(wavenumber: complex,
|
||||
dxes: dx_lists_t,
|
||||
epsilon: vfield_t,
|
||||
) -> sparse.spmatrix:
|
||||
"""
|
||||
Operator which transforms the vector `e_xy` containing the vectorized E_x and E_y fields,
|
||||
into a vectorized E containing all three E components
|
||||
|
||||
Args:
|
||||
wavenumber: Wavenumber assuming fields have z-dependence of `exp(-i * wavenumber * z)`
|
||||
It should satisfy `operator_e() @ e_xy == wavenumber**2 * e_xy`
|
||||
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.types` (2D)
|
||||
epsilon: Vectorized dielectric constant grid
|
||||
|
||||
Returns:
|
||||
Sparse matrix representing the operator.
|
||||
"""
|
||||
Dbx, Dby = operators.deriv_back(dxes[1])
|
||||
exy2ez = sparse.hstack((Dbx, Dby)) / (1j * wavenumber)
|
||||
|
||||
if not numpy.any(numpy.equal(epsilon, None)):
|
||||
epsilon_parts = numpy.split(epsilon, 3)
|
||||
epsilon_xy = sparse.diags(numpy.hstack((epsilon_parts[0], epsilon_parts[1])))
|
||||
epsilon_z_inv = sparse.diags(1 / epsilon_parts[2])
|
||||
|
||||
exy2ez = epsilon_z_inv @ exy2ez @ epsilon_xy
|
||||
|
||||
n_pts = dxes[0][0].size * dxes[0][1].size
|
||||
op = sparse.vstack((sparse.eye(2 * n_pts),
|
||||
exy2ez))
|
||||
return op
|
||||
|
||||
|
||||
def e2h(wavenumber: complex,
|
||||
omega: complex,
|
||||
dxes: dx_lists_t,
|
||||
mu: vfield_t = None
|
||||
) -> sparse.spmatrix:
|
||||
"""
|
||||
Returns an operator which, when applied to a vectorized E eigenfield, produces
|
||||
the vectorized H eigenfield.
|
||||
|
||||
Args:
|
||||
wavenumber: Wavenumber assuming fields have z-dependence of `exp(-i * wavenumber * z)`
|
||||
omega: The angular frequency of the system
|
||||
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.types` (2D)
|
||||
mu: Vectorized magnetic permeability grid (default 1 everywhere)
|
||||
|
||||
Returns:
|
||||
Sparse matrix representation of the operator.
|
||||
"""
|
||||
op = curl_e(wavenumber, dxes) / (-1j * omega)
|
||||
if not numpy.any(numpy.equal(mu, None)):
|
||||
op = sparse.diags(1 / mu) @ op
|
||||
return op
|
||||
|
||||
|
||||
def h2e(wavenumber: complex,
|
||||
omega: complex,
|
||||
dxes: dx_lists_t,
|
||||
epsilon: vfield_t
|
||||
) -> sparse.spmatrix:
|
||||
"""
|
||||
Returns an operator which, when applied to a vectorized H eigenfield, produces
|
||||
the vectorized E eigenfield.
|
||||
|
||||
Args:
|
||||
wavenumber: Wavenumber assuming fields have z-dependence of `exp(-i * wavenumber * z)`
|
||||
omega: The angular frequency of the system
|
||||
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.types` (2D)
|
||||
epsilon: Vectorized dielectric constant grid
|
||||
|
||||
Returns:
|
||||
Sparse matrix representation of the operator.
|
||||
"""
|
||||
op = sparse.diags(1 / (1j * omega * epsilon)) @ curl_h(wavenumber, dxes)
|
||||
return op
|
||||
|
||||
|
||||
def curl_e(wavenumber: complex, dxes: dx_lists_t) -> sparse.spmatrix:
|
||||
"""
|
||||
Discretized curl operator for use with the waveguide E field.
|
||||
|
||||
Args:
|
||||
wavenumber: Wavenumber assuming fields have z-dependence of `exp(-i * wavenumber * z)`
|
||||
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.types` (2D)
|
||||
|
||||
Return:
|
||||
Sparse matrix representation of the operator.
|
||||
"""
|
||||
n = 1
|
||||
for d in dxes[0]:
|
||||
n *= len(d)
|
||||
|
||||
Bz = -1j * wavenumber * sparse.eye(n)
|
||||
Dfx, Dfy = operators.deriv_forward(dxes[0])
|
||||
return operators.cross([Dfx, Dfy, Bz])
|
||||
|
||||
|
||||
def curl_h(wavenumber: complex, dxes: dx_lists_t) -> sparse.spmatrix:
|
||||
"""
|
||||
Discretized curl operator for use with the waveguide H field.
|
||||
|
||||
Args:
|
||||
wavenumber: Wavenumber assuming fields have z-dependence of `exp(-i * wavenumber * z)`
|
||||
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.types` (2D)
|
||||
|
||||
Return:
|
||||
Sparse matrix representation of the operator.
|
||||
"""
|
||||
n = 1
|
||||
for d in dxes[1]:
|
||||
n *= len(d)
|
||||
|
||||
Bz = -1j * wavenumber * sparse.eye(n)
|
||||
Dbx, Dby = operators.deriv_back(dxes[1])
|
||||
return operators.cross([Dbx, Dby, Bz])
|
||||
|
||||
|
||||
def h_err(h: vfield_t,
|
||||
wavenumber: complex,
|
||||
omega: complex,
|
||||
dxes: dx_lists_t,
|
||||
epsilon: vfield_t,
|
||||
mu: vfield_t = None
|
||||
) -> float:
|
||||
"""
|
||||
Calculates the relative error in the H field
|
||||
|
||||
Args:
|
||||
h: Vectorized H field
|
||||
wavenumber: Wavenumber assuming fields have z-dependence of `exp(-i * wavenumber * z)`
|
||||
omega: The angular frequency of the system
|
||||
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.types` (2D)
|
||||
epsilon: Vectorized dielectric constant grid
|
||||
mu: Vectorized magnetic permeability grid (default 1 everywhere)
|
||||
|
||||
Returns:
|
||||
Relative error `norm(A_h @ h) / norm(h)`.
|
||||
"""
|
||||
ce = curl_e(wavenumber, dxes)
|
||||
ch = curl_h(wavenumber, dxes)
|
||||
|
||||
eps_inv = sparse.diags(1 / epsilon)
|
||||
|
||||
if numpy.any(numpy.equal(mu, None)):
|
||||
op = ce @ eps_inv @ ch @ h - omega ** 2 * h
|
||||
else:
|
||||
op = ce @ eps_inv @ ch @ h - omega ** 2 * (mu * h)
|
||||
|
||||
return norm(op) / norm(h)
|
||||
|
||||
|
||||
def e_err(e: vfield_t,
|
||||
wavenumber: complex,
|
||||
omega: complex,
|
||||
dxes: dx_lists_t,
|
||||
epsilon: vfield_t,
|
||||
mu: vfield_t = None
|
||||
) -> float:
|
||||
"""
|
||||
Calculates the relative error in the E field
|
||||
|
||||
Args:
|
||||
e: Vectorized E field
|
||||
wavenumber: Wavenumber assuming fields have z-dependence of `exp(-i * wavenumber * z)`
|
||||
omega: The angular frequency of the system
|
||||
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.types` (2D)
|
||||
epsilon: Vectorized dielectric constant grid
|
||||
mu: Vectorized magnetic permeability grid (default 1 everywhere)
|
||||
|
||||
Returns:
|
||||
Relative error `norm(A_e @ e) / norm(e)`.
|
||||
"""
|
||||
ce = curl_e(wavenumber, dxes)
|
||||
ch = curl_h(wavenumber, dxes)
|
||||
|
||||
if numpy.any(numpy.equal(mu, None)):
|
||||
op = ch @ ce @ e - omega ** 2 * (epsilon * e)
|
||||
else:
|
||||
mu_inv = sparse.diags(1 / mu)
|
||||
op = ch @ mu_inv @ ce @ e - omega ** 2 * (epsilon * e)
|
||||
|
||||
return norm(op) / norm(e)
|
||||
|
||||
|
||||
def solve_modes(mode_numbers: List[int],
|
||||
omega: complex,
|
||||
dxes: dx_lists_t,
|
||||
epsilon: vfield_t,
|
||||
mu: vfield_t = None,
|
||||
mode_margin: int = 2,
|
||||
) -> Tuple[List[vfield_t], List[complex]]:
|
||||
"""
|
||||
Given a 2D region, attempts to solve for the eigenmode with the specified mode numbers.
|
||||
|
||||
Args:
|
||||
mode_numbers: List of 0-indexed mode numbers to solve for
|
||||
omega: Angular frequency of the simulation
|
||||
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.types`
|
||||
epsilon: Dielectric constant
|
||||
mu: Magnetic permeability (default 1 everywhere)
|
||||
mode_margin: The eigensolver will actually solve for `(max(mode_number) + mode_margin)`
|
||||
modes, but only return the target mode. Increasing this value can improve the solver's
|
||||
ability to find the correct mode. Default 2.
|
||||
|
||||
Returns:
|
||||
(e_xys, wavenumbers)
|
||||
"""
|
||||
|
||||
'''
|
||||
Solve for the largest-magnitude eigenvalue of the real operator
|
||||
'''
|
||||
dxes_real = [[numpy.real(dx) for dx in dxi] for dxi in dxes]
|
||||
A_r = waveguide.operator_e(numpy.real(omega), dxes_real, numpy.real(epsilon), numpy.real(mu))
|
||||
|
||||
eigvals, eigvecs = signed_eigensolve(A_r, max(mode_number) + mode_margin)
|
||||
e_xys = eigvecs[:, -(numpy.array(mode_number) + 1)]
|
||||
|
||||
'''
|
||||
Now solve for the eigenvector of the full operator, using the real operator's
|
||||
eigenvector as an initial guess for Rayleigh quotient iteration.
|
||||
'''
|
||||
A = waveguide.operator_e(omega, dxes, epsilon, mu)
|
||||
eigvals, e_xys = rayleigh_quotient_iteration(A, e_xys)
|
||||
|
||||
# Calculate the wave-vector (force the real part to be positive)
|
||||
wavenumbers = numpy.sqrt(eigvals)
|
||||
wavenumbers *= numpy.sign(numpy.real(wavenumbers))
|
||||
|
||||
return e_xys, wavenumbers
|
||||
|
||||
|
||||
def solve_mode(mode_number: int,
|
||||
*args,
|
||||
**kwargs
|
||||
) -> Tuple[vfield_t, complex]:
|
||||
"""
|
||||
Wrapper around `solve_modes()` that solves for a single mode.
|
||||
|
||||
Args:
|
||||
mode_number: 0-indexed mode number to solve for
|
||||
*args: passed to `solve_modes()`
|
||||
**kwargs: passed to `solve_modes()`
|
||||
|
||||
Returns:
|
||||
(e_xy, wavenumber)
|
||||
"""
|
||||
return solve_modes(mode_numbers=[mode_number], *args, **kwargs)
|
236
meanas/fdfd/waveguide_3d.py
Normal file
236
meanas/fdfd/waveguide_3d.py
Normal file
@ -0,0 +1,236 @@
|
||||
"""
|
||||
Tools for working with waveguide modes in 3D domains.
|
||||
|
||||
This module relies heavily on `waveguide_2d` and mostly just transforms
|
||||
its parameters into 2D equivalents and expands the results back into 3D.
|
||||
"""
|
||||
from typing import Dict, List, Tuple
|
||||
import numpy
|
||||
import scipy.sparse as sparse
|
||||
|
||||
from .. import vec, unvec, dx_lists_t, vfield_t, field_t
|
||||
from . import operators, waveguide_2d, functional
|
||||
|
||||
|
||||
def solve_mode(mode_number: int,
|
||||
omega: complex,
|
||||
dxes: dx_lists_t,
|
||||
axis: int,
|
||||
polarity: int,
|
||||
slices: List[slice],
|
||||
epsilon: field_t,
|
||||
mu: field_t = None,
|
||||
) -> Dict[str, complex or numpy.ndarray]:
|
||||
"""
|
||||
Given a 3D grid, selects a slice from the grid and attempts to
|
||||
solve for an eigenmode propagating through that slice.
|
||||
|
||||
Args:
|
||||
mode_number: Number of the mode, 0-indexed
|
||||
omega: Angular frequency of the simulation
|
||||
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.types`
|
||||
axis: Propagation axis (0=x, 1=y, 2=z)
|
||||
polarity: Propagation direction (+1 for +ve, -1 for -ve)
|
||||
slices: `epsilon[tuple(slices)]` is used to select the portion of the grid to use
|
||||
as the waveguide cross-section. `slices[axis]` should select only one item.
|
||||
epsilon: Dielectric constant
|
||||
mu: Magnetic permeability (default 1 everywhere)
|
||||
|
||||
Returns:
|
||||
`{'E': List[numpy.ndarray], 'H': List[numpy.ndarray], 'wavenumber': complex}`
|
||||
"""
|
||||
if mu is None:
|
||||
mu = numpy.ones_like(epsilon)
|
||||
|
||||
slices = tuple(slices)
|
||||
|
||||
'''
|
||||
Solve the 2D problem in the specified plane
|
||||
'''
|
||||
# Define rotation to set z as propagation direction
|
||||
order = numpy.roll(range(3), 2 - axis)
|
||||
reverse_order = numpy.roll(range(3), axis - 2)
|
||||
|
||||
# Find dx in propagation direction
|
||||
dxab_forward = numpy.array([dx[order[2]][slices[order[2]]] for dx in dxes])
|
||||
dx_prop = 0.5 * sum(dxab_forward)[0]
|
||||
|
||||
# Reduce to 2D and solve the 2D problem
|
||||
args_2d = {
|
||||
'omega': omega,
|
||||
'dxes': [[dx[i][slices[i]] for i in order[:2]] for dx in dxes],
|
||||
'epsilon': vec([epsilon[i][slices].transpose(order) for i in order]),
|
||||
'mu': vec([mu[i][slices].transpose(order) for i in order]),
|
||||
}
|
||||
e_xy, wavenumber_2d = waveguide_2d.solve_mode(mode_number, **args_2d)
|
||||
|
||||
'''
|
||||
Apply corrections and expand to 3D
|
||||
'''
|
||||
# Correct wavenumber to account for numerical dispersion.
|
||||
wavenumber = 2/dx_prop * numpy.arcsin(wavenumber_2d * dx_prop/2)
|
||||
|
||||
shape = [d.size for d in args_2d['dxes'][0]]
|
||||
ve, vh = waveguide.normalized_fields_e(e_xy, wavenumber=wavenumber_2d, **args_2d, prop_phase=dx_prop * wavenumber)
|
||||
e = unvec(ve, shape)
|
||||
h = unvec(vh, shape)
|
||||
|
||||
# Adjust for propagation direction
|
||||
h *= polarity
|
||||
|
||||
# Apply phase shift to H-field
|
||||
h[:2] *= numpy.exp(-1j * polarity * 0.5 * wavenumber * dx_prop)
|
||||
e[2] *= numpy.exp(-1j * polarity * 0.5 * wavenumber * dx_prop)
|
||||
|
||||
# Expand E, H to full epsilon space we were given
|
||||
E = numpy.zeros_like(epsilon, dtype=complex)
|
||||
H = numpy.zeros_like(epsilon, dtype=complex)
|
||||
for a, o in enumerate(reverse_order):
|
||||
E[(a, *slices)] = e[o][:, :, None].transpose(reverse_order)
|
||||
H[(a, *slices)] = h[o][:, :, None].transpose(reverse_order)
|
||||
|
||||
results = {
|
||||
'wavenumber': wavenumber,
|
||||
'wavenumber_2d': wavenumber_2d,
|
||||
'H': H,
|
||||
'E': E,
|
||||
}
|
||||
return results
|
||||
|
||||
|
||||
def compute_source(E: field_t,
|
||||
wavenumber: complex,
|
||||
omega: complex,
|
||||
dxes: dx_lists_t,
|
||||
axis: int,
|
||||
polarity: int,
|
||||
slices: List[slice],
|
||||
epsilon: field_t,
|
||||
mu: field_t = None,
|
||||
) -> field_t:
|
||||
"""
|
||||
Given an eigenmode obtained by `solve_mode`, returns the current source distribution
|
||||
necessary to position a unidirectional source at the slice location.
|
||||
|
||||
Args:
|
||||
E: E-field of the mode
|
||||
wavenumber: Wavenumber of the mode
|
||||
omega: Angular frequency of the simulation
|
||||
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.types`
|
||||
axis: Propagation axis (0=x, 1=y, 2=z)
|
||||
polarity: Propagation direction (+1 for +ve, -1 for -ve)
|
||||
slices: `epsilon[tuple(slices)]` is used to select the portion of the grid to use
|
||||
as the waveguide cross-section. `slices[axis]` should select only one item.
|
||||
mu: Magnetic permeability (default 1 everywhere)
|
||||
|
||||
Returns:
|
||||
J distribution for the unidirectional source
|
||||
"""
|
||||
E_expanded = expand_e(E=E, dxes=dxes, wavenumber=wavenumber, axis=axis,
|
||||
polarity=polarity, slices=slices)
|
||||
|
||||
smask = [slice(None)] * 4
|
||||
if polarity > 0:
|
||||
smask[axis + 1] = slice(slices[axis].start, None)
|
||||
else:
|
||||
smask[axis + 1] = slice(None, slices[axis].stop)
|
||||
|
||||
mask = numpy.zeros_like(E_expanded, dtype=int)
|
||||
mask[tuple(smask)] = 1
|
||||
|
||||
masked_e2j = operators.e_boundary_source(mask=vec(mask), omega=omega, dxes=dxes, epsilon=vec(epsilon), mu=vec(mu))
|
||||
J = unvec(masked_e2j @ vec(E_expanded), E.shape[1:])
|
||||
return J
|
||||
|
||||
|
||||
def compute_overlap_e(E: field_t,
|
||||
wavenumber: complex,
|
||||
dxes: dx_lists_t,
|
||||
axis: int,
|
||||
polarity: int,
|
||||
slices: List[slice],
|
||||
) -> field_t: # TODO DOCS
|
||||
"""
|
||||
Given an eigenmode obtained by `solve_mode`, calculates an overlap_e for the
|
||||
mode orthogonality relation Integrate(((E x H_mode) + (E_mode x H)) dot dn)
|
||||
[assumes reflection symmetry].
|
||||
|
||||
Args:
|
||||
E: E-field of the mode
|
||||
H: H-field of the mode (advanced by half of a Yee cell from E)
|
||||
wavenumber: Wavenumber of the mode
|
||||
omega: Angular frequency of the simulation
|
||||
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.types`
|
||||
axis: Propagation axis (0=x, 1=y, 2=z)
|
||||
polarity: Propagation direction (+1 for +ve, -1 for -ve)
|
||||
slices: `epsilon[tuple(slices)]` is used to select the portion of the grid to use
|
||||
as the waveguide cross-section. slices[axis] should select only one item.
|
||||
mu: Magnetic permeability (default 1 everywhere)
|
||||
|
||||
Returns:
|
||||
overlap_e such that `numpy.sum(overlap_e * other_e)` computes the overlap integral
|
||||
"""
|
||||
slices = tuple(slices)
|
||||
|
||||
Ee = expand_e(E=E, wavenumber=wavenumber, dxes=dxes,
|
||||
axis=axis, polarity=polarity, slices=slices)
|
||||
|
||||
start, stop = sorted((slices[axis].start, slices[axis].start - 2 * polarity))
|
||||
|
||||
slices2 = list(slices)
|
||||
slices2[axis] = slice(start, stop)
|
||||
slices2 = (slice(None), *slices2)
|
||||
|
||||
Etgt = numpy.zeros_like(Ee)
|
||||
Etgt[slices2] = Ee[slices2]
|
||||
|
||||
Etgt /= (Etgt.conj() * Etgt).sum()
|
||||
return Etgt
|
||||
|
||||
|
||||
def expand_e(E: field_t,
|
||||
wavenumber: complex,
|
||||
dxes: dx_lists_t,
|
||||
axis: int,
|
||||
polarity: int,
|
||||
slices: List[slice],
|
||||
) -> field_t:
|
||||
"""
|
||||
Given an eigenmode obtained by `solve_mode`, expands the E-field from the 2D
|
||||
slice where the mode was calculated to the entire domain (along the propagation
|
||||
axis). This assumes the epsilon cross-section remains constant throughout the
|
||||
entire domain; it is up to the caller to truncate the expansion to any regions
|
||||
where it is valid.
|
||||
|
||||
Args:
|
||||
E: E-field of the mode
|
||||
wavenumber: Wavenumber of the mode
|
||||
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.types`
|
||||
axis: Propagation axis (0=x, 1=y, 2=z)
|
||||
polarity: Propagation direction (+1 for +ve, -1 for -ve)
|
||||
slices: `epsilon[tuple(slices)]` is used to select the portion of the grid to use
|
||||
as the waveguide cross-section. slices[axis] should select only one item.
|
||||
|
||||
Returns:
|
||||
`E`, with the original field expanded along the specified `axis`.
|
||||
"""
|
||||
slices = tuple(slices)
|
||||
|
||||
# Determine phase factors for parallel slices
|
||||
a_shape = numpy.roll([1, -1, 1, 1], axis)
|
||||
a_E = numpy.real(dxes[0][axis]).cumsum()
|
||||
r_E = a_E - a_E[slices[axis]]
|
||||
iphi = polarity * -1j * wavenumber
|
||||
phase_E = numpy.exp(iphi * r_E).reshape(a_shape)
|
||||
|
||||
# Expand our slice to the entire grid using the phase factors
|
||||
E_expanded = numpy.zeros_like(E)
|
||||
|
||||
slices_exp = list(slices)
|
||||
slices_exp[axis] = slice(E.shape[axis + 1])
|
||||
slices_exp = (slice(None), *slices_exp)
|
||||
|
||||
slices_in = (slice(None), *slices)
|
||||
|
||||
E_expanded[slices_exp] = phase_E * numpy.array(E)[slices_in]
|
||||
return E_expanded
|
138
meanas/fdfd/waveguide_cyl.py
Normal file
138
meanas/fdfd/waveguide_cyl.py
Normal file
@ -0,0 +1,138 @@
|
||||
"""
|
||||
Operators and helper functions for cylindrical waveguides with unchanging cross-section.
|
||||
|
||||
WORK IN PROGRESS, CURRENTLY BROKEN
|
||||
|
||||
As the z-dependence is known, all the functions in this file assume a 2D grid
|
||||
(i.e. `dxes = [[[dr_e_0, dx_e_1, ...], [dy_e_0, ...]], [[dr_h_0, ...], [dy_h_0, ...]]]`).
|
||||
"""
|
||||
# TODO update module docs
|
||||
|
||||
from typing import List, Tuple, Dict
|
||||
import numpy
|
||||
from numpy.linalg import norm
|
||||
import scipy.sparse as sparse
|
||||
|
||||
from .. import vec, unvec, dx_lists_t, field_t, vfield_t
|
||||
from ..eigensolvers import signed_eigensolve, rayleigh_quotient_iteration
|
||||
from . import operators
|
||||
|
||||
|
||||
__author__ = 'Jan Petykiewicz'
|
||||
|
||||
|
||||
def cylindrical_operator(omega: complex,
|
||||
dxes: dx_lists_t,
|
||||
epsilon: vfield_t,
|
||||
r0: float,
|
||||
) -> sparse.spmatrix:
|
||||
"""
|
||||
Cylindrical coordinate waveguide operator of the form
|
||||
|
||||
TODO
|
||||
|
||||
for use with a field vector of the form `[E_r, E_y]`.
|
||||
|
||||
This operator can be used to form an eigenvalue problem of the form
|
||||
A @ [E_r, E_y] = wavenumber**2 * [E_r, E_y]
|
||||
|
||||
which can then be solved for the eigenmodes of the system
|
||||
(an `exp(-i * wavenumber * theta)` theta-dependence is assumed for the fields).
|
||||
|
||||
Args:
|
||||
omega: The angular frequency of the system
|
||||
dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.types` (2D)
|
||||
epsilon: Vectorized dielectric constant grid
|
||||
r0: Radius of curvature for the simulation. This should be the minimum value of
|
||||
r within the simulation domain.
|
||||
|
||||
Returns:
|
||||
Sparse matrix representation of the operator
|
||||
"""
|
||||
|
||||
Dfx, Dfy = operators.deriv_forward(dxes[0])
|
||||
Dbx, Dby = operators.deriv_back(dxes[1])
|
||||
|
||||
rx = r0 + numpy.cumsum(dxes[0][0])
|
||||
ry = r0 + dxes[0][0]/2.0 + numpy.cumsum(dxes[1][0])
|
||||
tx = rx/r0
|
||||
ty = ry/r0
|
||||
|
||||
Tx = sparse.diags(vec(tx[:, None].repeat(dxes[0][1].size, axis=1)))
|
||||
Ty = sparse.diags(vec(ty[:, None].repeat(dxes[1][1].size, axis=1)))
|
||||
|
||||
eps_parts = numpy.split(epsilon, 3)
|
||||
eps_x = sparse.diags(eps_parts[0])
|
||||
eps_y = sparse.diags(eps_parts[1])
|
||||
eps_z_inv = sparse.diags(1 / eps_parts[2])
|
||||
|
||||
pa = sparse.vstack((Dfx, Dfy)) @ Tx @ eps_z_inv @ sparse.hstack((Dbx, Dby))
|
||||
pb = sparse.vstack((Dfx, Dfy)) @ Tx @ eps_z_inv @ sparse.hstack((Dby, Dbx))
|
||||
a0 = Ty @ eps_x + omega**-2 * Dby @ Ty @ Dfy
|
||||
a1 = Tx @ eps_y + omega**-2 * Dbx @ Ty @ Dfx
|
||||
b0 = Dbx @ Ty @ Dfy
|
||||
b1 = Dby @ Ty @ Dfx
|
||||
|
||||
diag = sparse.block_diag
|
||||
op = (omega**2 * diag((Tx, Ty)) + pa) @ diag((a0, a1)) + \
|
||||
- (sparse.bmat(((None, Ty), (Tx, None))) + omega**-2 * pb) @ diag((b0, b1))
|
||||
|
||||
return op
|
||||
|
||||
|
||||
def solve_mode(mode_number: int,
|
||||
omega: complex,
|
||||
dxes: dx_lists_t,
|
||||
epsilon: vfield_t,
|
||||
r0: float,
|
||||
) -> Dict[str, complex or field_t]:
|
||||
"""
|
||||
TODO: fixup
|
||||
Given a 2d (r, y) slice of epsilon, attempts to solve for the eigenmode
|
||||
of the bent waveguide with the specified mode number.
|
||||
|
||||
Args:
|
||||
mode_number: Number of the mode, 0-indexed
|
||||
omega: Angular frequency of the simulation
|
||||
dxes: Grid parameters [dx_e, dx_h] as described in meanas.types.
|
||||
The first coordinate is assumed to be r, the second is y.
|
||||
epsilon: Dielectric constant
|
||||
r0: Radius of curvature for the simulation. This should be the minimum value of
|
||||
r within the simulation domain.
|
||||
|
||||
Returns:
|
||||
`{'E': List[numpy.ndarray], 'H': List[numpy.ndarray], 'wavenumber': complex}`
|
||||
"""
|
||||
|
||||
'''
|
||||
Solve for the largest-magnitude eigenvalue of the real operator
|
||||
'''
|
||||
dxes_real = [[numpy.real(dx) for dx in dxi] for dxi in dxes]
|
||||
|
||||
A_r = waveguide.cylindrical_operator(numpy.real(omega), dxes_real, numpy.real(epsilon), r0)
|
||||
eigvals, eigvecs = signed_eigensolve(A_r, mode_number + 3)
|
||||
e_xy = eigvecs[:, -(mode_number+1)]
|
||||
|
||||
'''
|
||||
Now solve for the eigenvector of the full operator, using the real operator's
|
||||
eigenvector as an initial guess for Rayleigh quotient iteration.
|
||||
'''
|
||||
A = waveguide.cylindrical_operator(omega, dxes, epsilon, r0)
|
||||
eigval, e_xy = rayleigh_quotient_iteration(A, e_xy)
|
||||
|
||||
# Calculate the wave-vector (force the real part to be positive)
|
||||
wavenumber = numpy.sqrt(eigval)
|
||||
wavenumber *= numpy.sign(numpy.real(wavenumber))
|
||||
|
||||
# TODO: Perform correction on wavenumber to account for numerical dispersion.
|
||||
|
||||
shape = [d.size for d in dxes[0]]
|
||||
e_xy = numpy.hstack((e_xy, numpy.zeros(shape[0] * shape[1])))
|
||||
fields = {
|
||||
'wavenumber': wavenumber,
|
||||
'E': unvec(e_xy, shape),
|
||||
# 'E': unvec(e, shape),
|
||||
# 'H': unvec(h, shape),
|
||||
}
|
||||
|
||||
return fields
|
@ -1,307 +0,0 @@
|
||||
from typing import Dict, List, Tuple
|
||||
import numpy
|
||||
import scipy.sparse as sparse
|
||||
|
||||
from .. import vec, unvec, dx_lists_t, vfield_t, field_t
|
||||
from . import operators, waveguide, functional
|
||||
from ..eigensolvers import signed_eigensolve, rayleigh_quotient_iteration
|
||||
|
||||
|
||||
def vsolve_waveguide_mode_2d(mode_number: int,
|
||||
omega: complex,
|
||||
dxes: dx_lists_t,
|
||||
epsilon: vfield_t,
|
||||
mu: vfield_t = None,
|
||||
mode_margin: int = 2,
|
||||
) -> Tuple[vfield_t, complex]:
|
||||
"""
|
||||
Given a 2d region, attempts to solve for the eigenmode with the specified mode number.
|
||||
|
||||
:param mode_number: Number of the mode, 0-indexed.
|
||||
:param omega: Angular frequency of the simulation
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types
|
||||
:param epsilon: Dielectric constant
|
||||
:param mu: Magnetic permeability (default 1 everywhere)
|
||||
:param mode_margin: The eigensolver will actually solve for (mode_number + mode_margin)
|
||||
modes, but only return the target mode. Increasing this value can improve the solver's
|
||||
ability to find the correct mode. Default 2.
|
||||
:return: (e_xy, wavenumber)
|
||||
"""
|
||||
|
||||
'''
|
||||
Solve for the largest-magnitude eigenvalue of the real operator
|
||||
'''
|
||||
dxes_real = [[numpy.real(dx) for dx in dxi] for dxi in dxes]
|
||||
A_r = waveguide.operator_e(numpy.real(omega), dxes_real, numpy.real(epsilon), numpy.real(mu))
|
||||
|
||||
eigvals, eigvecs = signed_eigensolve(A_r, mode_number + mode_margin)
|
||||
e_xy = eigvecs[:, -(mode_number + 1)]
|
||||
|
||||
'''
|
||||
Now solve for the eigenvector of the full operator, using the real operator's
|
||||
eigenvector as an initial guess for Rayleigh quotient iteration.
|
||||
'''
|
||||
A = waveguide.operator_e(omega, dxes, epsilon, mu)
|
||||
eigval, e_xy = rayleigh_quotient_iteration(A, e_xy)
|
||||
|
||||
# Calculate the wave-vector (force the real part to be positive)
|
||||
wavenumber = numpy.sqrt(eigval)
|
||||
wavenumber *= numpy.sign(numpy.real(wavenumber))
|
||||
|
||||
return e_xy, wavenumber
|
||||
|
||||
|
||||
|
||||
def solve_waveguide_mode(mode_number: int,
|
||||
omega: complex,
|
||||
dxes: dx_lists_t,
|
||||
axis: int,
|
||||
polarity: int,
|
||||
slices: List[slice],
|
||||
epsilon: field_t,
|
||||
mu: field_t = None,
|
||||
) -> Dict[str, complex or numpy.ndarray]:
|
||||
"""
|
||||
Given a 3D grid, selects a slice from the grid and attempts to
|
||||
solve for an eigenmode propagating through that slice.
|
||||
|
||||
:param mode_number: Number of the mode, 0-indexed
|
||||
:param omega: Angular frequency of the simulation
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types
|
||||
:param axis: Propagation axis (0=x, 1=y, 2=z)
|
||||
:param polarity: Propagation direction (+1 for +ve, -1 for -ve)
|
||||
:param slices: epsilon[tuple(slices)] is used to select the portion of the grid to use
|
||||
as the waveguide cross-section. slices[axis] should select only one
|
||||
:param epsilon: Dielectric constant
|
||||
:param mu: Magnetic permeability (default 1 everywhere)
|
||||
:return: {'E': List[numpy.ndarray], 'H': List[numpy.ndarray], 'wavenumber': complex}
|
||||
"""
|
||||
if mu is None:
|
||||
mu = numpy.ones_like(epsilon)
|
||||
|
||||
slices = tuple(slices)
|
||||
|
||||
'''
|
||||
Solve the 2D problem in the specified plane
|
||||
'''
|
||||
# Define rotation to set z as propagation direction
|
||||
order = numpy.roll(range(3), 2 - axis)
|
||||
reverse_order = numpy.roll(range(3), axis - 2)
|
||||
|
||||
# Find dx in propagation direction
|
||||
dxab_forward = numpy.array([dx[order[2]][slices[order[2]]] for dx in dxes])
|
||||
dx_prop = 0.5 * sum(dxab_forward)[0]
|
||||
|
||||
# Reduce to 2D and solve the 2D problem
|
||||
args_2d = {
|
||||
'omega': omega,
|
||||
'dxes': [[dx[i][slices[i]] for i in order[:2]] for dx in dxes],
|
||||
'epsilon': vec([epsilon[i][slices].transpose(order) for i in order]),
|
||||
'mu': vec([mu[i][slices].transpose(order) for i in order]),
|
||||
}
|
||||
e_xy, wavenumber_2d = vsolve_waveguide_mode_2d(mode_number, **args_2d)
|
||||
|
||||
'''
|
||||
Apply corrections and expand to 3D
|
||||
'''
|
||||
# Correct wavenumber to account for numerical dispersion.
|
||||
wavenumber = 2/dx_prop * numpy.arcsin(wavenumber_2d * dx_prop/2)
|
||||
print(wavenumber_2d / wavenumber)
|
||||
|
||||
shape = [d.size for d in args_2d['dxes'][0]]
|
||||
ve, vh = waveguide.normalized_fields_e(e_xy, wavenumber=wavenumber_2d, **args_2d, prop_phase=dx_prop * wavenumber)
|
||||
e = unvec(ve, shape)
|
||||
h = unvec(vh, shape)
|
||||
|
||||
# Adjust for propagation direction
|
||||
h *= polarity
|
||||
|
||||
# Apply phase shift to H-field
|
||||
h[:2] *= numpy.exp(-1j * polarity * 0.5 * wavenumber * dx_prop)
|
||||
e[2] *= numpy.exp(-1j * polarity * 0.5 * wavenumber * dx_prop)
|
||||
|
||||
# Expand E, H to full epsilon space we were given
|
||||
E = numpy.zeros_like(epsilon, dtype=complex)
|
||||
H = numpy.zeros_like(epsilon, dtype=complex)
|
||||
for a, o in enumerate(reverse_order):
|
||||
E[(a, *slices)] = e[o][:, :, None].transpose(reverse_order)
|
||||
H[(a, *slices)] = h[o][:, :, None].transpose(reverse_order)
|
||||
|
||||
results = {
|
||||
'wavenumber': wavenumber,
|
||||
'wavenumber_2d': wavenumber_2d,
|
||||
'H': H,
|
||||
'E': E,
|
||||
}
|
||||
return results
|
||||
|
||||
|
||||
def compute_source(E: field_t,
|
||||
wavenumber: complex,
|
||||
omega: complex,
|
||||
dxes: dx_lists_t,
|
||||
axis: int,
|
||||
polarity: int,
|
||||
slices: List[slice],
|
||||
epsilon: field_t,
|
||||
mu: field_t = None,
|
||||
) -> field_t:
|
||||
"""
|
||||
Given an eigenmode obtained by solve_waveguide_mode, returns the current source distribution
|
||||
necessary to position a unidirectional source at the slice location.
|
||||
|
||||
:param E: E-field of the mode
|
||||
:param wavenumber: Wavenumber of the mode
|
||||
:param omega: Angular frequency of the simulation
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types
|
||||
:param axis: Propagation axis (0=x, 1=y, 2=z)
|
||||
:param polarity: Propagation direction (+1 for +ve, -1 for -ve)
|
||||
:param slices: epsilon[tuple(slices)] is used to select the portion of the grid to use
|
||||
as the waveguide cross-section. slices[axis] should select only one
|
||||
:param mu: Magnetic permeability (default 1 everywhere)
|
||||
:return: J distribution for the unidirectional source
|
||||
"""
|
||||
E_expanded = expand_wgmode_e(E=E, dxes=dxes, wavenumber=wavenumber, axis=axis,
|
||||
polarity=polarity, slices=slices)
|
||||
|
||||
smask = [slice(None)] * 4
|
||||
if polarity > 0:
|
||||
smask[axis + 1] = slice(slices[axis].start, None)
|
||||
else:
|
||||
smask[axis + 1] = slice(None, slices[axis].stop)
|
||||
|
||||
mask = numpy.zeros_like(E_expanded, dtype=int)
|
||||
mask[tuple(smask)] = 1
|
||||
|
||||
masked_e2j = operators.e_boundary_source(mask=vec(mask), omega=omega, dxes=dxes, epsilon=vec(epsilon), mu=vec(mu))
|
||||
J = unvec(masked_e2j @ vec(E_expanded), E.shape[1:])
|
||||
return J
|
||||
|
||||
|
||||
def compute_overlap_e(E: field_t,
|
||||
wavenumber: complex,
|
||||
dxes: dx_lists_t,
|
||||
axis: int,
|
||||
polarity: int,
|
||||
slices: List[slice],
|
||||
) -> field_t: # TODO DOCS
|
||||
"""
|
||||
Given an eigenmode obtained by solve_waveguide_mode, calculates overlap_e for the
|
||||
mode orthogonality relation Integrate(((E x H_mode) + (E_mode x H)) dot dn)
|
||||
[assumes reflection symmetry].i
|
||||
|
||||
overlap_e makes use of the e2h operator to collapse the above expression into
|
||||
(vec(E) @ vec(overlap_e)), allowing for simple calculation of the mode overlap.
|
||||
|
||||
:param E: E-field of the mode
|
||||
:param H: H-field of the mode (advanced by half of a Yee cell from E)
|
||||
:param wavenumber: Wavenumber of the mode
|
||||
:param omega: Angular frequency of the simulation
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types
|
||||
:param axis: Propagation axis (0=x, 1=y, 2=z)
|
||||
:param polarity: Propagation direction (+1 for +ve, -1 for -ve)
|
||||
:param slices: epsilon[tuple(slices)] is used to select the portion of the grid to use
|
||||
as the waveguide cross-section. slices[axis] should select only one
|
||||
:param mu: Magnetic permeability (default 1 everywhere)
|
||||
:return: overlap_e for calculating the mode overlap
|
||||
"""
|
||||
slices = tuple(slices)
|
||||
|
||||
Ee = expand_wgmode_e(E=E, wavenumber=wavenumber, dxes=dxes,
|
||||
axis=axis, polarity=polarity, slices=slices)
|
||||
|
||||
start, stop = sorted((slices[axis].start, slices[axis].start - 2 * polarity))
|
||||
|
||||
slices2 = list(slices)
|
||||
slices2[axis] = slice(start, stop)
|
||||
slices2 = (slice(None), *slices2)
|
||||
|
||||
Etgt = numpy.zeros_like(Ee)
|
||||
Etgt[slices2] = Ee[slices2]
|
||||
|
||||
Etgt /= (Etgt.conj() * Etgt).sum()
|
||||
return Etgt
|
||||
|
||||
|
||||
def solve_waveguide_mode_cylindrical(mode_number: int,
|
||||
omega: complex,
|
||||
dxes: dx_lists_t,
|
||||
epsilon: vfield_t,
|
||||
r0: float,
|
||||
) -> Dict[str, complex or field_t]:
|
||||
"""
|
||||
TODO: fixup
|
||||
Given a 2d (r, y) slice of epsilon, attempts to solve for the eigenmode
|
||||
of the bent waveguide with the specified mode number.
|
||||
|
||||
:param mode_number: Number of the mode, 0-indexed
|
||||
:param omega: Angular frequency of the simulation
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types.
|
||||
The first coordinate is assumed to be r, the second is y.
|
||||
:param epsilon: Dielectric constant
|
||||
:param r0: Radius of curvature for the simulation. This should be the minimum value of
|
||||
r within the simulation domain.
|
||||
:return: {'E': List[numpy.ndarray], 'H': List[numpy.ndarray], 'wavenumber': complex}
|
||||
"""
|
||||
|
||||
'''
|
||||
Solve for the largest-magnitude eigenvalue of the real operator
|
||||
'''
|
||||
dxes_real = [[numpy.real(dx) for dx in dxi] for dxi in dxes]
|
||||
|
||||
A_r = waveguide.cylindrical_operator(numpy.real(omega), dxes_real, numpy.real(epsilon), r0)
|
||||
eigvals, eigvecs = signed_eigensolve(A_r, mode_number + 3)
|
||||
e_xy = eigvecs[:, -(mode_number+1)]
|
||||
|
||||
'''
|
||||
Now solve for the eigenvector of the full operator, using the real operator's
|
||||
eigenvector as an initial guess for Rayleigh quotient iteration.
|
||||
'''
|
||||
A = waveguide.cylindrical_operator(omega, dxes, epsilon, r0)
|
||||
eigval, e_xy = rayleigh_quotient_iteration(A, e_xy)
|
||||
|
||||
# Calculate the wave-vector (force the real part to be positive)
|
||||
wavenumber = numpy.sqrt(eigval)
|
||||
wavenumber *= numpy.sign(numpy.real(wavenumber))
|
||||
|
||||
# TODO: Perform correction on wavenumber to account for numerical dispersion.
|
||||
|
||||
shape = [d.size for d in dxes[0]]
|
||||
e_xy = numpy.hstack((e_xy, numpy.zeros(shape[0] * shape[1])))
|
||||
fields = {
|
||||
'wavenumber': wavenumber,
|
||||
'E': unvec(e_xy, shape),
|
||||
# 'E': unvec(e, shape),
|
||||
# 'H': unvec(h, shape),
|
||||
}
|
||||
|
||||
return fields
|
||||
|
||||
|
||||
def expand_wgmode_e(E: field_t,
|
||||
wavenumber: complex,
|
||||
dxes: dx_lists_t,
|
||||
axis: int,
|
||||
polarity: int,
|
||||
slices: List[slice],
|
||||
) -> field_t:
|
||||
slices = tuple(slices)
|
||||
|
||||
# Determine phase factors for parallel slices
|
||||
a_shape = numpy.roll([1, -1, 1, 1], axis)
|
||||
a_E = numpy.real(dxes[0][axis]).cumsum()
|
||||
r_E = a_E - a_E[slices[axis]]
|
||||
iphi = polarity * -1j * wavenumber
|
||||
phase_E = numpy.exp(iphi * r_E).reshape(a_shape)
|
||||
|
||||
# Expand our slice to the entire grid using the phase factors
|
||||
E_expanded = numpy.zeros_like(E)
|
||||
|
||||
slices_exp = list(slices)
|
||||
slices_exp[axis] = slice(E.shape[axis + 1])
|
||||
slices_exp = (slice(None), *slices_exp)
|
||||
|
||||
slices_in = (slice(None), *slices)
|
||||
|
||||
E_expanded[slices_exp] = phase_E * numpy.array(E)[slices_in]
|
||||
return E_expanded
|
109
meanas/fdmath/functional.py
Normal file
109
meanas/fdmath/functional.py
Normal file
@ -0,0 +1,109 @@
|
||||
"""
|
||||
Math functions for finite difference simulations
|
||||
|
||||
Basic discrete calculus etc.
|
||||
"""
|
||||
from typing import List, Callable, Tuple, Dict
|
||||
import numpy
|
||||
|
||||
from .. import field_t, field_updater
|
||||
|
||||
|
||||
def deriv_forward(dx_e: List[numpy.ndarray] = None) -> field_updater:
|
||||
"""
|
||||
Utility operators for taking discretized derivatives (backward variant).
|
||||
|
||||
Args:
|
||||
dx_e: Lists of cell sizes for all axes
|
||||
`[[dx_0, dx_1, ...], [dy_0, dy_1, ...], ...]`.
|
||||
|
||||
Returns:
|
||||
List of functions for taking forward derivatives along each axis.
|
||||
"""
|
||||
if dx_e:
|
||||
derivs = [lambda f: (numpy.roll(f, -1, axis=0) - f) / dx_e[0][:, None, None],
|
||||
lambda f: (numpy.roll(f, -1, axis=1) - f) / dx_e[1][None, :, None],
|
||||
lambda f: (numpy.roll(f, -1, axis=2) - f) / dx_e[2][None, None, :]]
|
||||
else:
|
||||
derivs = [lambda f: numpy.roll(f, -1, axis=0) - f,
|
||||
lambda f: numpy.roll(f, -1, axis=1) - f,
|
||||
lambda f: numpy.roll(f, -1, axis=2) - f]
|
||||
return derivs
|
||||
|
||||
|
||||
def deriv_back(dx_h: List[numpy.ndarray] = None) -> field_updater:
|
||||
"""
|
||||
Utility operators for taking discretized derivatives (forward variant).
|
||||
|
||||
Args:
|
||||
dx_h: Lists of cell sizes for all axes
|
||||
`[[dx_0, dx_1, ...], [dy_0, dy_1, ...], ...]`.
|
||||
|
||||
Returns:
|
||||
List of functions for taking forward derivatives along each axis.
|
||||
"""
|
||||
if dx_h:
|
||||
derivs = [lambda f: (f - numpy.roll(f, 1, axis=0)) / dx_h[0][:, None, None],
|
||||
lambda f: (f - numpy.roll(f, 1, axis=1)) / dx_h[1][None, :, None],
|
||||
lambda f: (f - numpy.roll(f, 1, axis=2)) / dx_h[2][None, None, :]]
|
||||
else:
|
||||
derivs = [lambda f: f - numpy.roll(f, 1, axis=0),
|
||||
lambda f: f - numpy.roll(f, 1, axis=1),
|
||||
lambda f: f - numpy.roll(f, 1, axis=2)]
|
||||
return derivs
|
||||
|
||||
|
||||
def curl_forward(dx_e: List[numpy.ndarray] = None) -> field_updater:
|
||||
"""
|
||||
Curl operator for use with the E field.
|
||||
|
||||
Args:
|
||||
dx_e: Lists of cell sizes for all axes
|
||||
`[[dx_0, dx_1, ...], [dy_0, dy_1, ...], ...]`.
|
||||
|
||||
Returns:
|
||||
Function `f` for taking the discrete forward curl of a field,
|
||||
`f(E)` -> curlE \\( = \\nabla_f \\times E \\)
|
||||
"""
|
||||
Dx, Dy, Dz = deriv_forward(dx_e)
|
||||
|
||||
def ce_fun(e: field_t) -> field_t:
|
||||
output = numpy.empty_like(e)
|
||||
output[0] = Dy(e[2])
|
||||
output[1] = Dz(e[0])
|
||||
output[2] = Dx(e[1])
|
||||
output[0] -= Dz(e[1])
|
||||
output[1] -= Dx(e[2])
|
||||
output[2] -= Dy(e[0])
|
||||
return output
|
||||
|
||||
return ce_fun
|
||||
|
||||
|
||||
def curl_back(dx_h: List[numpy.ndarray] = None) -> field_updater:
|
||||
"""
|
||||
Create a function which takes the backward curl of a field.
|
||||
|
||||
Args:
|
||||
dx_h: Lists of cell sizes for all axes
|
||||
`[[dx_0, dx_1, ...], [dy_0, dy_1, ...], ...]`.
|
||||
|
||||
Returns:
|
||||
Function `f` for taking the discrete backward curl of a field,
|
||||
`f(H)` -> curlH \\( = \\nabla_b \\times H \\)
|
||||
"""
|
||||
Dx, Dy, Dz = deriv_back(dx_h)
|
||||
|
||||
def ch_fun(h: field_t) -> field_t:
|
||||
output = numpy.empty_like(h)
|
||||
output[0] = Dy(h[2])
|
||||
output[1] = Dz(h[0])
|
||||
output[2] = Dx(h[1])
|
||||
output[0] -= Dz(h[1])
|
||||
output[1] -= Dx(h[2])
|
||||
output[2] -= Dy(h[0])
|
||||
return output
|
||||
|
||||
return ch_fun
|
||||
|
||||
|
231
meanas/fdmath/operators.py
Normal file
231
meanas/fdmath/operators.py
Normal file
@ -0,0 +1,231 @@
|
||||
"""
|
||||
Matrix operators for finite difference simulations
|
||||
|
||||
Basic discrete calculus etc.
|
||||
"""
|
||||
from typing import List, Callable, Tuple, Dict
|
||||
import numpy
|
||||
import scipy.sparse as sparse
|
||||
|
||||
from .. import field_t, vfield_t
|
||||
|
||||
|
||||
def rotation(axis: int, shape: List[int], shift_distance: int=1) -> sparse.spmatrix:
|
||||
"""
|
||||
Utility operator for performing a circular shift along a specified axis by a
|
||||
specified number of elements.
|
||||
|
||||
Args:
|
||||
axis: Axis to shift along. x=0, y=1, z=2
|
||||
shape: Shape of the grid being shifted
|
||||
shift_distance: Number of cells to shift by. May be negative. Default 1.
|
||||
|
||||
Returns:
|
||||
Sparse matrix for performing the circular shift.
|
||||
"""
|
||||
if len(shape) not in (2, 3):
|
||||
raise Exception('Invalid shape: {}'.format(shape))
|
||||
if axis not in range(len(shape)):
|
||||
raise Exception('Invalid direction: {}, shape is {}'.format(axis, shape))
|
||||
|
||||
shifts = [abs(shift_distance) if a == axis else 0 for a in range(3)]
|
||||
shifted_diags = [(numpy.arange(n) + s) % n for n, s in zip(shape, shifts)]
|
||||
ijk = numpy.meshgrid(*shifted_diags, indexing='ij')
|
||||
|
||||
n = numpy.prod(shape)
|
||||
i_ind = numpy.arange(n)
|
||||
j_ind = numpy.ravel_multi_index(ijk, shape, order='C')
|
||||
|
||||
vij = (numpy.ones(n), (i_ind, j_ind.ravel(order='C')))
|
||||
|
||||
d = sparse.csr_matrix(vij, shape=(n, n))
|
||||
|
||||
if shift_distance < 0:
|
||||
d = d.T
|
||||
|
||||
return d
|
||||
|
||||
|
||||
def shift_with_mirror(axis: int, shape: List[int], shift_distance: int=1) -> sparse.spmatrix:
|
||||
"""
|
||||
Utility operator for performing an n-element shift along a specified axis, with mirror
|
||||
boundary conditions applied to the cells beyond the receding edge.
|
||||
|
||||
Args:
|
||||
axis: Axis to shift along. x=0, y=1, z=2
|
||||
shape: Shape of the grid being shifted
|
||||
shift_distance: Number of cells to shift by. May be negative. Default 1.
|
||||
|
||||
Returns:
|
||||
Sparse matrix for performing the shift-with-mirror.
|
||||
"""
|
||||
if len(shape) not in (2, 3):
|
||||
raise Exception('Invalid shape: {}'.format(shape))
|
||||
if axis not in range(len(shape)):
|
||||
raise Exception('Invalid direction: {}, shape is {}'.format(axis, shape))
|
||||
if shift_distance >= shape[axis]:
|
||||
raise Exception('Shift ({}) is too large for axis {} of size {}'.format(
|
||||
shift_distance, axis, shape[axis]))
|
||||
|
||||
def mirrored_range(n, s):
|
||||
v = numpy.arange(n) + s
|
||||
v = numpy.where(v >= n, 2 * n - v - 1, v)
|
||||
v = numpy.where(v < 0, - 1 - v, v)
|
||||
return v
|
||||
|
||||
shifts = [shift_distance if a == axis else 0 for a in range(3)]
|
||||
shifted_diags = [mirrored_range(n, s) for n, s in zip(shape, shifts)]
|
||||
ijk = numpy.meshgrid(*shifted_diags, indexing='ij')
|
||||
|
||||
n = numpy.prod(shape)
|
||||
i_ind = numpy.arange(n)
|
||||
j_ind = numpy.ravel_multi_index(ijk, shape, order='C')
|
||||
|
||||
vij = (numpy.ones(n), (i_ind, j_ind.ravel(order='C')))
|
||||
|
||||
d = sparse.csr_matrix(vij, shape=(n, n))
|
||||
return d
|
||||
|
||||
|
||||
def deriv_forward(dx_e: List[numpy.ndarray]) -> List[sparse.spmatrix]:
|
||||
"""
|
||||
Utility operators for taking discretized derivatives (forward variant).
|
||||
|
||||
Args:
|
||||
dx_e: Lists of cell sizes for all axes
|
||||
`[[dx_0, dx_1, ...], [dy_0, dy_1, ...], ...]`.
|
||||
|
||||
Returns:
|
||||
List of operators for taking forward derivatives along each axis.
|
||||
"""
|
||||
shape = [s.size for s in dx_e]
|
||||
n = numpy.prod(shape)
|
||||
|
||||
dx_e_expanded = numpy.meshgrid(*dx_e, indexing='ij')
|
||||
|
||||
def deriv(axis):
|
||||
return rotation(axis, shape, 1) - sparse.eye(n)
|
||||
|
||||
Ds = [sparse.diags(+1 / dx.ravel(order='C')) @ deriv(a)
|
||||
for a, dx in enumerate(dx_e_expanded)]
|
||||
|
||||
return Ds
|
||||
|
||||
|
||||
def deriv_back(dx_h: List[numpy.ndarray]) -> List[sparse.spmatrix]:
|
||||
"""
|
||||
Utility operators for taking discretized derivatives (backward variant).
|
||||
|
||||
Args:
|
||||
dx_h: Lists of cell sizes for all axes
|
||||
`[[dx_0, dx_1, ...], [dy_0, dy_1, ...], ...]`.
|
||||
|
||||
Returns:
|
||||
List of operators for taking forward derivatives along each axis.
|
||||
"""
|
||||
shape = [s.size for s in dx_h]
|
||||
n = numpy.prod(shape)
|
||||
|
||||
dx_h_expanded = numpy.meshgrid(*dx_h, indexing='ij')
|
||||
|
||||
def deriv(axis):
|
||||
return rotation(axis, shape, -1) - sparse.eye(n)
|
||||
|
||||
Ds = [sparse.diags(-1 / dx.ravel(order='C')) @ deriv(a)
|
||||
for a, dx in enumerate(dx_h_expanded)]
|
||||
|
||||
return Ds
|
||||
|
||||
|
||||
def cross(B: List[sparse.spmatrix]) -> sparse.spmatrix:
|
||||
"""
|
||||
Cross product operator
|
||||
|
||||
Args:
|
||||
B: List `[Bx, By, Bz]` of sparse matrices corresponding to the x, y, z
|
||||
portions of the operator on the left side of the cross product.
|
||||
|
||||
Returns:
|
||||
Sparse matrix corresponding to (B x), where x is the cross product.
|
||||
"""
|
||||
n = B[0].shape[0]
|
||||
zero = sparse.csr_matrix((n, n))
|
||||
return sparse.bmat([[zero, -B[2], B[1]],
|
||||
[B[2], zero, -B[0]],
|
||||
[-B[1], B[0], zero]])
|
||||
|
||||
|
||||
def vec_cross(b: vfield_t) -> sparse.spmatrix:
|
||||
"""
|
||||
Vector cross product operator
|
||||
|
||||
Args:
|
||||
b: Vector on the left side of the cross product.
|
||||
|
||||
Returns:
|
||||
|
||||
Sparse matrix corresponding to (b x), where x is the cross product.
|
||||
|
||||
"""
|
||||
B = [sparse.diags(c) for c in numpy.split(b, 3)]
|
||||
return cross(B)
|
||||
|
||||
|
||||
def avg_forward(axis: int, shape: List[int]) -> sparse.spmatrix:
|
||||
"""
|
||||
Forward average operator `(x4 = (x4 + x5) / 2)`
|
||||
|
||||
Args:
|
||||
axis: Axis to average along (x=0, y=1, z=2)
|
||||
shape: Shape of the grid to average
|
||||
|
||||
Returns:
|
||||
Sparse matrix for forward average operation.
|
||||
"""
|
||||
if len(shape) not in (2, 3):
|
||||
raise Exception('Invalid shape: {}'.format(shape))
|
||||
|
||||
n = numpy.prod(shape)
|
||||
return 0.5 * (sparse.eye(n) + rotation(axis, shape))
|
||||
|
||||
|
||||
def avg_back(axis: int, shape: List[int]) -> sparse.spmatrix:
|
||||
"""
|
||||
Backward average operator `(x4 = (x4 + x3) / 2)`
|
||||
|
||||
Args:
|
||||
axis: Axis to average along (x=0, y=1, z=2)
|
||||
shape: Shape of the grid to average
|
||||
|
||||
Returns:
|
||||
Sparse matrix for backward average operation.
|
||||
"""
|
||||
return avg_forward(axis, shape).T
|
||||
|
||||
|
||||
def curl_forward(dx_e: List[numpy.ndarray]) -> sparse.spmatrix:
|
||||
"""
|
||||
Curl operator for use with the E field.
|
||||
|
||||
Args:
|
||||
dx_e: Lists of cell sizes for all axes
|
||||
`[[dx_0, dx_1, ...], [dy_0, dy_1, ...], ...]`.
|
||||
|
||||
Returns:
|
||||
Sparse matrix for taking the discretized curl of the E-field
|
||||
"""
|
||||
return cross(deriv_forward(dx_e))
|
||||
|
||||
|
||||
def curl_back(dx_h: List[numpy.ndarray]) -> sparse.spmatrix:
|
||||
"""
|
||||
Curl operator for use with the H field.
|
||||
|
||||
Args:
|
||||
dx_h: Lists of cell sizes for all axes
|
||||
`[[dx_0, dx_1, ...], [dy_0, dy_1, ...], ...]`.
|
||||
|
||||
Returns:
|
||||
Sparse matrix for taking the discretized curl of the H-field
|
||||
"""
|
||||
return cross(deriv_back(dx_h))
|
@ -1,5 +1,5 @@
|
||||
"""
|
||||
Basic FDTD functionality
|
||||
Utilities for running finite-difference time-domain (FDTD) simulations
|
||||
"""
|
||||
|
||||
from .base import maxwell_e, maxwell_h
|
||||
|
@ -5,70 +5,14 @@ from typing import List, Callable, Tuple, Dict
|
||||
import numpy
|
||||
|
||||
from .. import dx_lists_t, field_t, field_updater
|
||||
from ..fdmath.functional import curl_forward, curl_back
|
||||
|
||||
|
||||
__author__ = 'Jan Petykiewicz'
|
||||
|
||||
|
||||
def curl_h(dxes: dx_lists_t = None) -> field_updater:
|
||||
"""
|
||||
Curl operator for use with the H field.
|
||||
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types
|
||||
:return: Function for taking the discretized curl of the H-field, F(H) -> curlH
|
||||
"""
|
||||
if dxes:
|
||||
dxyz_b = numpy.meshgrid(*dxes[1], indexing='ij')
|
||||
|
||||
def dh(f, ax):
|
||||
return (f - numpy.roll(f, 1, axis=ax)) / dxyz_b[ax]
|
||||
else:
|
||||
def dh(f, ax):
|
||||
return f - numpy.roll(f, 1, axis=ax)
|
||||
|
||||
def ch_fun(h: field_t) -> field_t:
|
||||
output = numpy.empty_like(h)
|
||||
output[0] = dh(h[2], 1)
|
||||
output[1] = dh(h[0], 2)
|
||||
output[2] = dh(h[1], 0)
|
||||
output[0] -= dh(h[1], 2)
|
||||
output[1] -= dh(h[2], 0)
|
||||
output[2] -= dh(h[0], 1)
|
||||
return output
|
||||
|
||||
return ch_fun
|
||||
|
||||
|
||||
def curl_e(dxes: dx_lists_t = None) -> field_updater:
|
||||
"""
|
||||
Curl operator for use with the E field.
|
||||
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types
|
||||
:return: Function for taking the discretized curl of the E-field, F(E) -> curlE
|
||||
"""
|
||||
if dxes is not None:
|
||||
dxyz_a = numpy.meshgrid(*dxes[0], indexing='ij')
|
||||
|
||||
def de(f, ax):
|
||||
return (numpy.roll(f, -1, axis=ax) - f) / dxyz_a[ax]
|
||||
else:
|
||||
def de(f, ax):
|
||||
return numpy.roll(f, -1, axis=ax) - f
|
||||
|
||||
def ce_fun(e: field_t) -> field_t:
|
||||
output = numpy.empty_like(e)
|
||||
output[0] = de(e[2], 1)
|
||||
output[1] = de(e[0], 2)
|
||||
output[2] = de(e[1], 0)
|
||||
output[0] -= de(e[1], 2)
|
||||
output[1] -= de(e[2], 0)
|
||||
output[2] -= de(e[0], 1)
|
||||
return output
|
||||
|
||||
return ce_fun
|
||||
|
||||
|
||||
def maxwell_e(dt: float, dxes: dx_lists_t = None) -> field_updater:
|
||||
curl_h_fun = curl_h(dxes)
|
||||
curl_h_fun = curl_back(dxes[1])
|
||||
|
||||
def me_fun(e: field_t, h: field_t, epsilon: field_t):
|
||||
e += dt * curl_h_fun(h) / epsilon
|
||||
@ -78,7 +22,7 @@ def maxwell_e(dt: float, dxes: dx_lists_t = None) -> field_updater:
|
||||
|
||||
|
||||
def maxwell_h(dt: float, dxes: dx_lists_t = None) -> field_updater:
|
||||
curl_e_fun = curl_e(dxes)
|
||||
curl_e_fun = curl_forward(dxes[0])
|
||||
|
||||
def mh_fun(e: field_t, h: field_t):
|
||||
h -= dt * curl_e_fun(e)
|
||||
|
@ -35,6 +35,7 @@ def poynting_divergence(s: field_t = None,
|
||||
if s is None:
|
||||
s = poynting(e, h, dxes=dxes)
|
||||
|
||||
#TODO use deriv operators
|
||||
ds = ((s[0] - numpy.roll(s[0], 1, axis=0)) +
|
||||
(s[1] - numpy.roll(s[1], 1, axis=1)) +
|
||||
(s[2] - numpy.roll(s[2], 1, axis=2)))
|
||||
|
@ -0,0 +1,3 @@
|
||||
"""
|
||||
Tests (run with `python3 -m pytest -rxPXs | tee results.txt`)
|
||||
"""
|
@ -101,8 +101,8 @@ def j_distribution(request, shape, epsilon, dxes, omega, src_polarity):
|
||||
slices[dim] = slice(shape[dim + 1] // 2,
|
||||
shape[dim + 1] // 2 + 1)
|
||||
|
||||
j = fdfd.waveguide_mode.compute_source(E=e, wavenumber=wavenumber_corrected, omega=omega, dxes=dxes,
|
||||
axis=dim, polarity=src_polarity, slices=slices, epsilon=epsilon)
|
||||
j = fdfd.waveguide_3d.compute_source(E=e, wavenumber=wavenumber_corrected, omega=omega, dxes=dxes,
|
||||
axis=dim, polarity=src_polarity, slices=slices, epsilon=epsilon)
|
||||
yield j
|
||||
|
||||
|
||||
@ -145,4 +145,3 @@ def sim(request, shape, epsilon, dxes, j_distribution, omega, pec, pmc):
|
||||
)
|
||||
|
||||
return sim
|
||||
|
||||
|
@ -6,17 +6,20 @@ from typing import List, Callable
|
||||
|
||||
|
||||
# Field types
|
||||
field_t = numpy.ndarray # vector field with shape (3, X, Y, Z) (e.g. [E_x, E_y, E_z])
|
||||
vfield_t = numpy.ndarray # linearized vector field (vector of length 3*X*Y*Z)
|
||||
field_t = numpy.ndarray
|
||||
"""vector field with shape (3, X, Y, Z) (e.g. `[E_x, E_y, E_z]`)"""
|
||||
|
||||
vfield_t = numpy.ndarray
|
||||
"""Linearized vector field (vector of length 3*X*Y*Z)"""
|
||||
|
||||
dx_lists_t = List[List[numpy.ndarray]]
|
||||
'''
|
||||
'dxes' datastructure which contains grid cell width information in the following format:
|
||||
[[[dx_e_0, dx_e_1, ...], [dy_e_0, ...], [dz_e_0, ...]],
|
||||
[[dx_h_0, dx_h_1, ...], [dy_h_0, ...], [dz_h_0, ...]]]
|
||||
where dx_e_0 is the x-width of the x=0 cells, as used when calculating dE/dx,
|
||||
and dy_h_0 is the y-width of the y=0 cells, as used when calculating dH/dy, etc.
|
||||
`[[[dx_e_0, dx_e_1, ...], [dy_e_0, ...], [dz_e_0, ...]],
|
||||
[[dx_h_0, dx_h_1, ...], [dy_h_0, ...], [dz_h_0, ...]]]`
|
||||
where `dx_e_0` is the x-width of the `x=0` cells, as used when calculating dE/dx,
|
||||
and `dy_h_0` is the y-width of the `y=0` cells, as used when calculating dH/dy, etc.
|
||||
'''
|
||||
dx_lists_t = List[List[numpy.ndarray]]
|
||||
|
||||
|
||||
field_updater = Callable[[field_t], field_t]
|
||||
|
46
pdoc_templates/config.mako
Normal file
46
pdoc_templates/config.mako
Normal file
@ -0,0 +1,46 @@
|
||||
<%!
|
||||
# Template configuration. Copy over in your template directory
|
||||
# (used with --template-dir) and adapt as required.
|
||||
html_lang = 'en'
|
||||
show_inherited_members = False
|
||||
extract_module_toc_into_sidebar = True
|
||||
list_class_variables_in_index = True
|
||||
sort_identifiers = True
|
||||
show_type_annotations = True
|
||||
|
||||
# Show collapsed source code block next to each item.
|
||||
# Disabling this can improve rendering speed of large modules.
|
||||
show_source_code = True
|
||||
|
||||
# If set, format links to objects in online source code repository
|
||||
# according to this template. Supported keywords for interpolation
|
||||
# are: commit, path, start_line, end_line.
|
||||
#git_link_template = 'https://github.com/USER/PROJECT/blob/{commit}/{path}#L{start_line}-L{end_line}'
|
||||
#git_link_template = 'https://gitlab.com/USER/PROJECT/blob/{commit}/{path}#L{start_line}-L{end_line}'
|
||||
#git_link_template = 'https://bitbucket.org/USER/PROJECT/src/{commit}/{path}#lines-{start_line}:{end_line}'
|
||||
#git_link_template = 'https://CGIT_HOSTNAME/PROJECT/tree/{path}?id={commit}#n{start-line}'
|
||||
git_link_template = None
|
||||
|
||||
# A prefix to use for every HTML hyperlink in the generated documentation.
|
||||
# No prefix results in all links being relative.
|
||||
link_prefix = ''
|
||||
|
||||
# Enable syntax highlighting for code/source blocks by including Highlight.js
|
||||
syntax_highlighting = True
|
||||
|
||||
# Set the style keyword such as 'atom-one-light' or 'github-gist'
|
||||
# Options: https://github.com/highlightjs/highlight.js/tree/master/src/styles
|
||||
# Demo: https://highlightjs.org/static/demo/
|
||||
hljs_style = 'github'
|
||||
|
||||
# If set, insert Google Analytics tracking code. Value is GA
|
||||
# tracking id (UA-XXXXXX-Y).
|
||||
google_analytics = ''
|
||||
|
||||
# If set, render LaTeX math syntax within \(...\) (inline equations),
|
||||
# or within \[...\] or $$...$$ or `.. math::` (block equations)
|
||||
# as nicely-formatted math formulas using MathJax.
|
||||
# Note: in Python docstrings, either all backslashes need to be escaped (\\)
|
||||
# or you need to use raw r-strings.
|
||||
latex_math = True
|
||||
%>
|
389
pdoc_templates/css.mako
Normal file
389
pdoc_templates/css.mako
Normal file
@ -0,0 +1,389 @@
|
||||
<%!
|
||||
from pdoc.html_helpers import minify_css
|
||||
%>
|
||||
|
||||
<%def name="mobile()" filter="minify_css">
|
||||
.flex {
|
||||
display: flex !important;
|
||||
}
|
||||
|
||||
body {
|
||||
line-height: 1.5em;
|
||||
background: black;
|
||||
color: #DDD;
|
||||
}
|
||||
|
||||
#content {
|
||||
padding: 20px;
|
||||
}
|
||||
|
||||
#sidebar {
|
||||
padding: 30px;
|
||||
overflow: hidden;
|
||||
}
|
||||
|
||||
.http-server-breadcrumbs {
|
||||
font-size: 130%;
|
||||
margin: 0 0 15px 0;
|
||||
}
|
||||
|
||||
#footer {
|
||||
font-size: .75em;
|
||||
padding: 5px 30px;
|
||||
border-top: 1px solid #ddd;
|
||||
text-align: right;
|
||||
}
|
||||
#footer p {
|
||||
margin: 0 0 0 1em;
|
||||
display: inline-block;
|
||||
}
|
||||
#footer p:last-child {
|
||||
margin-right: 30px;
|
||||
}
|
||||
|
||||
h1, h2, h3, h4, h5 {
|
||||
font-weight: 300;
|
||||
}
|
||||
h1 {
|
||||
font-size: 2.5em;
|
||||
line-height: 1.1em;
|
||||
}
|
||||
h2 {
|
||||
font-size: 1.75em;
|
||||
margin: 1em 0 .50em 0;
|
||||
}
|
||||
h3 {
|
||||
font-size: 1.4em;
|
||||
margin: 25px 0 10px 0;
|
||||
}
|
||||
h4 {
|
||||
margin: 0;
|
||||
font-size: 105%;
|
||||
}
|
||||
|
||||
a {
|
||||
color: #999;
|
||||
text-decoration: none;
|
||||
transition: color .3s ease-in-out;
|
||||
}
|
||||
a:hover {
|
||||
color: #18d;
|
||||
}
|
||||
|
||||
.title code {
|
||||
font-weight: bold;
|
||||
}
|
||||
h2[id^="header-"] {
|
||||
margin-top: 2em;
|
||||
}
|
||||
.ident {
|
||||
color: #7ff;
|
||||
}
|
||||
|
||||
pre code {
|
||||
background: transparent;
|
||||
font-size: .8em;
|
||||
line-height: 1.4em;
|
||||
}
|
||||
code {
|
||||
background: #0d0d0e;
|
||||
padding: 1px 4px;
|
||||
overflow-wrap: break-word;
|
||||
}
|
||||
h1 code { background: transparent }
|
||||
|
||||
pre {
|
||||
background: #111;
|
||||
border: 0;
|
||||
border-top: 1px solid #ccc;
|
||||
border-bottom: 1px solid #ccc;
|
||||
margin: 1em 0;
|
||||
padding: 1ex;
|
||||
}
|
||||
|
||||
#http-server-module-list {
|
||||
display: flex;
|
||||
flex-flow: column;
|
||||
}
|
||||
#http-server-module-list div {
|
||||
display: flex;
|
||||
}
|
||||
#http-server-module-list dt {
|
||||
min-width: 10%;
|
||||
}
|
||||
#http-server-module-list p {
|
||||
margin-top: 0;
|
||||
}
|
||||
|
||||
.toc ul,
|
||||
#index {
|
||||
list-style-type: none;
|
||||
margin: 0;
|
||||
padding: 0;
|
||||
}
|
||||
#index code {
|
||||
background: transparent;
|
||||
}
|
||||
#index h3 {
|
||||
border-bottom: 1px solid #ddd;
|
||||
}
|
||||
#index ul {
|
||||
padding: 0;
|
||||
}
|
||||
#index h4 {
|
||||
font-weight: bold;
|
||||
}
|
||||
#index h4 + ul {
|
||||
margin-bottom:.6em;
|
||||
}
|
||||
/* Make TOC lists have 2+ columns when viewport is wide enough.
|
||||
Assuming ~20-character identifiers and ~30% wide sidebar. */
|
||||
@media (min-width: 200ex) { #index .two-column { column-count: 2 } }
|
||||
@media (min-width: 300ex) { #index .two-column { column-count: 3 } }
|
||||
|
||||
dl {
|
||||
margin-bottom: 2em;
|
||||
}
|
||||
dl dl:last-child {
|
||||
margin-bottom: 4em;
|
||||
}
|
||||
dd {
|
||||
margin: 0 0 1em 3em;
|
||||
}
|
||||
#header-classes + dl > dd {
|
||||
margin-bottom: 3em;
|
||||
}
|
||||
dd dd {
|
||||
margin-left: 2em;
|
||||
}
|
||||
dd p {
|
||||
margin: 10px 0;
|
||||
}
|
||||
.name {
|
||||
background: #111;
|
||||
font-weight: bold;
|
||||
font-size: .85em;
|
||||
padding: 5px 10px;
|
||||
display: inline-block;
|
||||
min-width: 40%;
|
||||
}
|
||||
.name:hover {
|
||||
background: #101010;
|
||||
}
|
||||
.name > span:first-child {
|
||||
white-space: nowrap;
|
||||
}
|
||||
.name.class > span:nth-child(2) {
|
||||
margin-left: .4em;
|
||||
}
|
||||
.inherited {
|
||||
color: #777;
|
||||
border-left: 5px solid #eee;
|
||||
padding-left: 1em;
|
||||
}
|
||||
.inheritance em {
|
||||
font-style: normal;
|
||||
font-weight: bold;
|
||||
}
|
||||
|
||||
/* Docstrings titles, e.g. in numpydoc format */
|
||||
.desc h2 {
|
||||
font-weight: 400;
|
||||
font-size: 1.25em;
|
||||
}
|
||||
.desc h3 {
|
||||
font-size: 1em;
|
||||
}
|
||||
.desc dt code {
|
||||
background: inherit; /* Don't grey-back parameters */
|
||||
}
|
||||
|
||||
.source summary,
|
||||
.git-link-div {
|
||||
color: #aaa;
|
||||
text-align: right;
|
||||
font-weight: 400;
|
||||
font-size: .8em;
|
||||
text-transform: uppercase;
|
||||
}
|
||||
.source summary > * {
|
||||
white-space: nowrap;
|
||||
cursor: pointer;
|
||||
}
|
||||
.git-link {
|
||||
color: inherit;
|
||||
margin-left: 1em;
|
||||
}
|
||||
.source pre {
|
||||
max-height: 500px;
|
||||
overflow: auto;
|
||||
margin: 0;
|
||||
}
|
||||
.source pre code {
|
||||
font-size: 12px;
|
||||
overflow: visible;
|
||||
}
|
||||
.hlist {
|
||||
list-style: none;
|
||||
}
|
||||
.hlist li {
|
||||
display: inline;
|
||||
}
|
||||
.hlist li:after {
|
||||
content: ',\2002';
|
||||
}
|
||||
.hlist li:last-child:after {
|
||||
content: none;
|
||||
}
|
||||
.hlist .hlist {
|
||||
display: inline;
|
||||
padding-left: 1em;
|
||||
}
|
||||
|
||||
img {
|
||||
max-width: 100%;
|
||||
}
|
||||
|
||||
.admonition {
|
||||
padding: .1em .5em;
|
||||
margin-bottom: 1em;
|
||||
}
|
||||
.admonition-title {
|
||||
font-weight: bold;
|
||||
}
|
||||
.admonition.note,
|
||||
.admonition.info,
|
||||
.admonition.important {
|
||||
background: #610;
|
||||
}
|
||||
.admonition.todo,
|
||||
.admonition.versionadded,
|
||||
.admonition.tip,
|
||||
.admonition.hint {
|
||||
background: #202;
|
||||
}
|
||||
.admonition.warning,
|
||||
.admonition.versionchanged,
|
||||
.admonition.deprecated {
|
||||
background: #02b;
|
||||
}
|
||||
.admonition.error,
|
||||
.admonition.danger,
|
||||
.admonition.caution {
|
||||
background: darkpink;
|
||||
}
|
||||
</%def>
|
||||
|
||||
<%def name="desktop()" filter="minify_css">
|
||||
@media screen and (min-width: 700px) {
|
||||
#sidebar {
|
||||
width: 30%;
|
||||
}
|
||||
#content {
|
||||
width: 70%;
|
||||
max-width: 100ch;
|
||||
padding: 3em 4em;
|
||||
border-left: 1px solid #ddd;
|
||||
}
|
||||
pre code {
|
||||
font-size: 1em;
|
||||
}
|
||||
.item .name {
|
||||
font-size: 1em;
|
||||
}
|
||||
main {
|
||||
display: flex;
|
||||
flex-direction: row-reverse;
|
||||
justify-content: flex-end;
|
||||
}
|
||||
.toc ul ul,
|
||||
#index ul {
|
||||
padding-left: 1.5em;
|
||||
}
|
||||
.toc > ul > li {
|
||||
margin-top: .5em;
|
||||
}
|
||||
}
|
||||
</%def>
|
||||
|
||||
<%def name="print()" filter="minify_css">
|
||||
@media print {
|
||||
#sidebar h1 {
|
||||
page-break-before: always;
|
||||
}
|
||||
.source {
|
||||
display: none;
|
||||
}
|
||||
}
|
||||
@media print {
|
||||
* {
|
||||
background: transparent !important;
|
||||
color: #000 !important; /* Black prints faster: h5bp.com/s */
|
||||
box-shadow: none !important;
|
||||
text-shadow: none !important;
|
||||
}
|
||||
|
||||
a[href]:after {
|
||||
content: " (" attr(href) ")";
|
||||
font-size: 90%;
|
||||
}
|
||||
/* Internal, documentation links, recognized by having a title,
|
||||
don't need the URL explicity stated. */
|
||||
a[href][title]:after {
|
||||
content: none;
|
||||
}
|
||||
|
||||
abbr[title]:after {
|
||||
content: " (" attr(title) ")";
|
||||
}
|
||||
|
||||
/*
|
||||
* Don't show links for images, or javascript/internal links
|
||||
*/
|
||||
|
||||
.ir a:after,
|
||||
a[href^="javascript:"]:after,
|
||||
a[href^="#"]:after {
|
||||
content: "";
|
||||
}
|
||||
|
||||
pre,
|
||||
blockquote {
|
||||
border: 1px solid #999;
|
||||
page-break-inside: avoid;
|
||||
}
|
||||
|
||||
thead {
|
||||
display: table-header-group; /* h5bp.com/t */
|
||||
}
|
||||
|
||||
tr,
|
||||
img {
|
||||
page-break-inside: avoid;
|
||||
}
|
||||
|
||||
img {
|
||||
max-width: 100% !important;
|
||||
}
|
||||
|
||||
@page {
|
||||
margin: 0.5cm;
|
||||
}
|
||||
|
||||
p,
|
||||
h2,
|
||||
h3 {
|
||||
orphans: 3;
|
||||
widows: 3;
|
||||
}
|
||||
|
||||
h1,
|
||||
h2,
|
||||
h3,
|
||||
h4,
|
||||
h5,
|
||||
h6 {
|
||||
page-break-after: avoid;
|
||||
}
|
||||
}
|
||||
</%def>
|
421
pdoc_templates/html.mako
Normal file
421
pdoc_templates/html.mako
Normal file
@ -0,0 +1,421 @@
|
||||
<%
|
||||
import os
|
||||
|
||||
import pdoc
|
||||
from pdoc.html_helpers import extract_toc, glimpse, to_html as _to_html, format_git_link
|
||||
|
||||
|
||||
def link(d, name=None, fmt='{}'):
|
||||
name = fmt.format(name or d.qualname + ('()' if isinstance(d, pdoc.Function) else ''))
|
||||
if not isinstance(d, pdoc.Doc) or isinstance(d, pdoc.External) and not external_links:
|
||||
return name
|
||||
url = d.url(relative_to=module, link_prefix=link_prefix,
|
||||
top_ancestor=not show_inherited_members)
|
||||
return '<a title="{}" href="{}">{}</a>'.format(d.refname, url, name)
|
||||
|
||||
|
||||
def to_html(text):
|
||||
return _to_html(text, module=module, link=link, latex_math=latex_math)
|
||||
%>
|
||||
|
||||
<%def name="ident(name)"><span class="ident">${name}</span></%def>
|
||||
|
||||
<%def name="show_source(d)">
|
||||
% if (show_source_code or git_link_template) and d.source and d.obj is not getattr(d.inherits, 'obj', None):
|
||||
<% git_link = format_git_link(git_link_template, d) %>
|
||||
% if show_source_code:
|
||||
<details class="source">
|
||||
<summary>
|
||||
<span>Expand source code</span>
|
||||
% if git_link:
|
||||
<a href="${git_link}" class="git-link">Browse git</a>
|
||||
%endif
|
||||
</summary>
|
||||
<pre><code class="python">${d.source | h}</code></pre>
|
||||
</details>
|
||||
% elif git_link:
|
||||
<div class="git-link-div"><a href="${git_link}" class="git-link">Browse git</a></div>
|
||||
%endif
|
||||
%endif
|
||||
</%def>
|
||||
|
||||
<%def name="show_desc(d, short=False)">
|
||||
<%
|
||||
inherits = ' inherited' if d.inherits else ''
|
||||
docstring = glimpse(d.docstring) if short or inherits else d.docstring
|
||||
%>
|
||||
% if d.inherits:
|
||||
<p class="inheritance">
|
||||
<em>Inherited from:</em>
|
||||
% if hasattr(d.inherits, 'cls'):
|
||||
<code>${link(d.inherits.cls)}</code>.<code>${link(d.inherits, d.name)}</code>
|
||||
% else:
|
||||
<code>${link(d.inherits)}</code>
|
||||
% endif
|
||||
</p>
|
||||
% endif
|
||||
<section class="desc${inherits}">${docstring | to_html}</section>
|
||||
% if not isinstance(d, pdoc.Module):
|
||||
${show_source(d)}
|
||||
% endif
|
||||
</%def>
|
||||
|
||||
<%def name="show_module_list(modules)">
|
||||
<h1>Python module list</h1>
|
||||
|
||||
% if not modules:
|
||||
<p>No modules found.</p>
|
||||
% else:
|
||||
<dl id="http-server-module-list">
|
||||
% for name, desc in modules:
|
||||
<div class="flex">
|
||||
<dt><a href="${link_prefix}${name}">${name}</a></dt>
|
||||
<dd>${desc | glimpse, to_html}</dd>
|
||||
</div>
|
||||
% endfor
|
||||
</dl>
|
||||
% endif
|
||||
</%def>
|
||||
|
||||
<%def name="show_column_list(items)">
|
||||
<%
|
||||
two_column = len(items) >= 6 and all(len(i.name) < 20 for i in items)
|
||||
%>
|
||||
<ul class="${'two-column' if two_column else ''}">
|
||||
% for item in items:
|
||||
<li><code>${link(item, item.name)}</code></li>
|
||||
% endfor
|
||||
</ul>
|
||||
</%def>
|
||||
|
||||
<%def name="show_module(module)">
|
||||
<%
|
||||
variables = module.variables(sort=sort_identifiers)
|
||||
classes = module.classes(sort=sort_identifiers)
|
||||
functions = module.functions(sort=sort_identifiers)
|
||||
submodules = module.submodules()
|
||||
%>
|
||||
|
||||
<%def name="show_func(f)">
|
||||
<dt id="${f.refname}"><code class="name flex">
|
||||
<%
|
||||
params = ', '.join(f.params(annotate=show_type_annotations, link=link))
|
||||
returns = show_type_annotations and f.return_annotation(link=link) or ''
|
||||
if returns:
|
||||
returns = ' ->\N{NBSP}' + returns
|
||||
%>
|
||||
<span>${f.funcdef()} ${ident(f.name)}</span>(<span>${params})${returns}</span>
|
||||
</code></dt>
|
||||
<dd>${show_desc(f)}</dd>
|
||||
</%def>
|
||||
|
||||
<header>
|
||||
% if http_server:
|
||||
<nav class="http-server-breadcrumbs">
|
||||
<a href="/">All packages</a>
|
||||
<% parts = module.name.split('.')[:-1] %>
|
||||
% for i, m in enumerate(parts):
|
||||
<% parent = '.'.join(parts[:i+1]) %>
|
||||
:: <a href="/${parent.replace('.', '/')}/">${parent}</a>
|
||||
% endfor
|
||||
</nav>
|
||||
% endif
|
||||
<h1 class="title">${'Namespace' if module.is_namespace else 'Module'} <code>${module.name}</code></h1>
|
||||
</header>
|
||||
|
||||
<section id="section-intro">
|
||||
${module.docstring | to_html}
|
||||
${show_source(module)}
|
||||
</section>
|
||||
|
||||
<section>
|
||||
% if submodules:
|
||||
<h2 class="section-title" id="header-submodules">Sub-modules</h2>
|
||||
<dl>
|
||||
% for m in submodules:
|
||||
<dt><code class="name">${link(m)}</code></dt>
|
||||
<dd>${show_desc(m, short=True)}</dd>
|
||||
% endfor
|
||||
</dl>
|
||||
% endif
|
||||
</section>
|
||||
|
||||
<section>
|
||||
% if variables:
|
||||
<h2 class="section-title" id="header-variables">Global variables</h2>
|
||||
<dl>
|
||||
% for v in variables:
|
||||
<dt id="${v.refname}"><code class="name">var ${ident(v.name)}</code></dt>
|
||||
<dd>${show_desc(v)}</dd>
|
||||
% endfor
|
||||
</dl>
|
||||
% endif
|
||||
</section>
|
||||
|
||||
<section>
|
||||
% if functions:
|
||||
<h2 class="section-title" id="header-functions">Functions</h2>
|
||||
<dl>
|
||||
% for f in functions:
|
||||
${show_func(f)}
|
||||
% endfor
|
||||
</dl>
|
||||
% endif
|
||||
</section>
|
||||
|
||||
<section>
|
||||
% if classes:
|
||||
<h2 class="section-title" id="header-classes">Classes</h2>
|
||||
<dl>
|
||||
% for c in classes:
|
||||
<%
|
||||
class_vars = c.class_variables(show_inherited_members, sort=sort_identifiers)
|
||||
smethods = c.functions(show_inherited_members, sort=sort_identifiers)
|
||||
inst_vars = c.instance_variables(show_inherited_members, sort=sort_identifiers)
|
||||
methods = c.methods(show_inherited_members, sort=sort_identifiers)
|
||||
mro = c.mro()
|
||||
subclasses = c.subclasses()
|
||||
params = ', '.join(c.params(annotate=show_type_annotations, link=link))
|
||||
%>
|
||||
<dt id="${c.refname}"><code class="flex name class">
|
||||
<span>class ${ident(c.name)}</span>
|
||||
% if params:
|
||||
<span>(</span><span>${params})</span>
|
||||
% endif
|
||||
</code></dt>
|
||||
|
||||
<dd>${show_desc(c)}
|
||||
|
||||
% if mro:
|
||||
<h3>Ancestors</h3>
|
||||
<ul class="hlist">
|
||||
% for cls in mro:
|
||||
<li>${link(cls)}</li>
|
||||
% endfor
|
||||
</ul>
|
||||
%endif
|
||||
|
||||
% if subclasses:
|
||||
<h3>Subclasses</h3>
|
||||
<ul class="hlist">
|
||||
% for sub in subclasses:
|
||||
<li>${link(sub)}</li>
|
||||
% endfor
|
||||
</ul>
|
||||
% endif
|
||||
% if class_vars:
|
||||
<h3>Class variables</h3>
|
||||
<dl>
|
||||
% for v in class_vars:
|
||||
<dt id="${v.refname}"><code class="name">var ${ident(v.name)}</code></dt>
|
||||
<dd>${show_desc(v)}</dd>
|
||||
% endfor
|
||||
</dl>
|
||||
% endif
|
||||
% if smethods:
|
||||
<h3>Static methods</h3>
|
||||
<dl>
|
||||
% for f in smethods:
|
||||
${show_func(f)}
|
||||
% endfor
|
||||
</dl>
|
||||
% endif
|
||||
% if inst_vars:
|
||||
<h3>Instance variables</h3>
|
||||
<dl>
|
||||
% for v in inst_vars:
|
||||
<dt id="${v.refname}"><code class="name">var ${ident(v.name)}</code></dt>
|
||||
<dd>${show_desc(v)}</dd>
|
||||
% endfor
|
||||
</dl>
|
||||
% endif
|
||||
% if methods:
|
||||
<h3>Methods</h3>
|
||||
<dl>
|
||||
% for f in methods:
|
||||
${show_func(f)}
|
||||
% endfor
|
||||
</dl>
|
||||
% endif
|
||||
|
||||
% if not show_inherited_members:
|
||||
<%
|
||||
members = c.inherited_members()
|
||||
%>
|
||||
% if members:
|
||||
<h3>Inherited members</h3>
|
||||
<ul class="hlist">
|
||||
% for cls, mems in members:
|
||||
<li><code><b>${link(cls)}</b></code>:
|
||||
<ul class="hlist">
|
||||
% for m in mems:
|
||||
<li><code>${link(m, name=m.name)}</code></li>
|
||||
% endfor
|
||||
</ul>
|
||||
|
||||
</li>
|
||||
% endfor
|
||||
</ul>
|
||||
% endif
|
||||
% endif
|
||||
|
||||
</dd>
|
||||
% endfor
|
||||
</dl>
|
||||
% endif
|
||||
</section>
|
||||
</%def>
|
||||
|
||||
<%def name="module_index(module)">
|
||||
<%
|
||||
variables = module.variables(sort=sort_identifiers)
|
||||
classes = module.classes(sort=sort_identifiers)
|
||||
functions = module.functions(sort=sort_identifiers)
|
||||
submodules = module.submodules()
|
||||
supermodule = module.supermodule
|
||||
%>
|
||||
<nav id="sidebar">
|
||||
|
||||
<%include file="logo.mako"/>
|
||||
|
||||
<h1>Index</h1>
|
||||
${extract_toc(module.docstring) if extract_module_toc_into_sidebar else ''}
|
||||
<ul id="index">
|
||||
% if supermodule:
|
||||
<li><h3>Super-module</h3>
|
||||
<ul>
|
||||
<li><code>${link(supermodule)}</code></li>
|
||||
</ul>
|
||||
</li>
|
||||
% endif
|
||||
|
||||
% if submodules:
|
||||
<li><h3><a href="#header-submodules">Sub-modules</a></h3>
|
||||
<ul>
|
||||
% for m in submodules:
|
||||
<li><code>${link(m)}</code></li>
|
||||
% endfor
|
||||
</ul>
|
||||
</li>
|
||||
% endif
|
||||
|
||||
% if variables:
|
||||
<li><h3><a href="#header-variables">Global variables</a></h3>
|
||||
${show_column_list(variables)}
|
||||
</li>
|
||||
% endif
|
||||
|
||||
% if functions:
|
||||
<li><h3><a href="#header-functions">Functions</a></h3>
|
||||
${show_column_list(functions)}
|
||||
</li>
|
||||
% endif
|
||||
|
||||
% if classes:
|
||||
<li><h3><a href="#header-classes">Classes</a></h3>
|
||||
<ul>
|
||||
% for c in classes:
|
||||
<li>
|
||||
<h4><code>${link(c)}</code></h4>
|
||||
<%
|
||||
members = c.functions(sort=sort_identifiers) + c.methods(sort=sort_identifiers)
|
||||
if list_class_variables_in_index:
|
||||
members += (c.instance_variables(sort=sort_identifiers) +
|
||||
c.class_variables(sort=sort_identifiers))
|
||||
if not show_inherited_members:
|
||||
members = [i for i in members if not i.inherits]
|
||||
if sort_identifiers:
|
||||
members = sorted(members)
|
||||
%>
|
||||
% if members:
|
||||
${show_column_list(members)}
|
||||
% endif
|
||||
</li>
|
||||
% endfor
|
||||
</ul>
|
||||
</li>
|
||||
% endif
|
||||
|
||||
</ul>
|
||||
</nav>
|
||||
</%def>
|
||||
|
||||
<!doctype html>
|
||||
<html lang="${html_lang}">
|
||||
<head>
|
||||
<meta charset="utf-8">
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1" />
|
||||
<meta name="generator" content="pdoc ${pdoc.__version__}" />
|
||||
|
||||
<%
|
||||
module_list = 'modules' in context.keys() # Whether we're showing module list in server mode
|
||||
%>
|
||||
|
||||
% if module_list:
|
||||
<title>Python module list</title>
|
||||
<meta name="description" content="A list of documented Python modules." />
|
||||
% else:
|
||||
<title>${module.name} API documentation</title>
|
||||
<meta name="description" content="${module.docstring | glimpse, trim, h}" />
|
||||
% endif
|
||||
|
||||
<link href='https://mpxd.net/scripts/normalize.css/normalize.css' rel='stylesheet'>
|
||||
<link href='https://mpxd.net/scripts/sanitize.css/sanitize.css' rel='stylesheet'>
|
||||
% if syntax_highlighting:
|
||||
<link href="https://mpxd.net/scripts/highlightjs/styles/${hljs_style}.min.css" rel="stylesheet">
|
||||
%endif
|
||||
|
||||
<%namespace name="css" file="css.mako" />
|
||||
<style>${css.mobile()}</style>
|
||||
<style media="screen and (min-width: 700px)">${css.desktop()}</style>
|
||||
<style media="print">${css.print()}</style>
|
||||
|
||||
% if google_analytics:
|
||||
<script>
|
||||
window.ga=window.ga||function(){(ga.q=ga.q||[]).push(arguments)};ga.l=+new Date;
|
||||
ga('create', '${google_analytics}', 'auto'); ga('send', 'pageview');
|
||||
</script><script async src='https://www.google-analytics.com/analytics.js'></script>
|
||||
% endif
|
||||
|
||||
% if latex_math:
|
||||
<script async src='https://mpxd.net/scripts/MathJax/MathJax.js?config=TeX-AMS_CHTML'></script>
|
||||
% endif
|
||||
|
||||
<%include file="head.mako"/>
|
||||
</head>
|
||||
<body>
|
||||
<main>
|
||||
% if module_list:
|
||||
<article id="content">
|
||||
${show_module_list(modules)}
|
||||
</article>
|
||||
% else:
|
||||
<article id="content">
|
||||
${show_module(module)}
|
||||
</article>
|
||||
${module_index(module)}
|
||||
% endif
|
||||
</main>
|
||||
|
||||
<footer id="footer">
|
||||
<%include file="credits.mako"/>
|
||||
<p>Generated by <a href="https://pdoc3.github.io/pdoc"><cite>pdoc</cite> ${pdoc.__version__}</a>.</p>
|
||||
</footer>
|
||||
|
||||
% if syntax_highlighting:
|
||||
<script src="https://mpxd.net/scripts/highlightjs/highlight.pack.js"></script>
|
||||
<script>hljs.initHighlightingOnLoad()</script>
|
||||
% endif
|
||||
|
||||
% if http_server and module: ## Auto-reload on file change in dev mode
|
||||
<script>
|
||||
setInterval(() =>
|
||||
fetch(window.location.href, {
|
||||
method: "HEAD",
|
||||
cache: "no-store",
|
||||
headers: {"If-None-Match": "${os.stat(module.obj.__file__).st_mtime}"},
|
||||
}).then(response => response.ok && window.location.reload()), 700);
|
||||
</script>
|
||||
% endif
|
||||
</body>
|
||||
</html>
|
Loading…
Reference in New Issue
Block a user