move stuff under fdmath
This commit is contained in:
		
							parent
							
								
									1242e8794b
								
							
						
					
					
						commit
						a956323b94
					
				@ -3,14 +3,18 @@ import numpy
 | 
			
		||||
from numpy.linalg import norm
 | 
			
		||||
 | 
			
		||||
import meanas
 | 
			
		||||
from meanas import vec, unvec, fdtd
 | 
			
		||||
from meanas.fdfd import waveguide_mode, functional, scpml, operators
 | 
			
		||||
from meanas import fdtd
 | 
			
		||||
from meanas.fdmath import vec, unvec
 | 
			
		||||
from meanas.fdfd import waveguide_3d, functional, scpml, operators
 | 
			
		||||
from meanas.fdfd.solvers import generic as generic_solver
 | 
			
		||||
 | 
			
		||||
import gridlock
 | 
			
		||||
 | 
			
		||||
from matplotlib import pyplot
 | 
			
		||||
 | 
			
		||||
import logging
 | 
			
		||||
 | 
			
		||||
logging.basicConfig(level=logging.DEBUG)
 | 
			
		||||
 | 
			
		||||
__author__ = 'Jan Petykiewicz'
 | 
			
		||||
 | 
			
		||||
@ -134,10 +138,10 @@ def test1(solver=generic_solver):
 | 
			
		||||
        'polarity': +1,
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    wg_results = waveguide_mode.solve_waveguide_mode(mode_number=0, omega=omega, epsilon=grid.grids, **wg_args)
 | 
			
		||||
    J = waveguide_mode.compute_source(E=wg_results['E'], wavenumber=wg_results['wavenumber'],
 | 
			
		||||
                                      omega=omega, epsilon=grid.grids, **wg_args)
 | 
			
		||||
    e_overlap = waveguide_mode.compute_overlap_e(E=wg_results['E'], wavenumber=wg_results['wavenumber'], **wg_args)
 | 
			
		||||
    wg_results = waveguide_3d.solve_mode(mode_number=0, omega=omega, epsilon=grid.grids, **wg_args)
 | 
			
		||||
    J = waveguide_3d.compute_source(E=wg_results['E'], wavenumber=wg_results['wavenumber'],
 | 
			
		||||
                                    omega=omega, epsilon=grid.grids, **wg_args)
 | 
			
		||||
    e_overlap = waveguide_3d.compute_overlap_e(E=wg_results['E'], wavenumber=wg_results['wavenumber'], **wg_args)
 | 
			
		||||
 | 
			
		||||
    pecg = gridlock.Grid(edge_coords, initial=0.0, num_grids=3)
 | 
			
		||||
    # pecg.draw_cuboid(center=[700, 0, 0], dimensions=[80, 1e8, 1e8], eps=1)
 | 
			
		||||
 | 
			
		||||
@ -6,9 +6,6 @@ See the readme or `import meanas; help(meanas)` for more info.
 | 
			
		||||
 | 
			
		||||
import pathlib
 | 
			
		||||
 | 
			
		||||
from .types import dx_lists_t, field_t, vfield_t, field_updater
 | 
			
		||||
from .vectorization import vec, unvec
 | 
			
		||||
 | 
			
		||||
__author__ = 'Jan Petykiewicz'
 | 
			
		||||
 | 
			
		||||
with open(pathlib.Path(__file__).parent / 'VERSION', 'r') as f:
 | 
			
		||||
 | 
			
		||||
@ -37,20 +37,17 @@ def power_iteration(operator: sparse.spmatrix,
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def rayleigh_quotient_iteration(operator: sparse.spmatrix or spalg.LinearOperator,
 | 
			
		||||
                                guess_vectors: numpy.ndarray,
 | 
			
		||||
                                guess_vector: numpy.ndarray,
 | 
			
		||||
                                iterations: int = 40,
 | 
			
		||||
                                tolerance: float = 1e-13,
 | 
			
		||||
                                solver=None,
 | 
			
		||||
                                solver = None,
 | 
			
		||||
                                ) -> Tuple[complex, numpy.ndarray]:
 | 
			
		||||
    """
 | 
			
		||||
    Use Rayleigh quotient iteration to refine an eigenvector guess.
 | 
			
		||||
 | 
			
		||||
    TODO:
 | 
			
		||||
        Need to test this for more than one guess_vectors.
 | 
			
		||||
 | 
			
		||||
    Args:
 | 
			
		||||
        operator: Matrix to analyze.
 | 
			
		||||
        guess_vectors: Eigenvectors to refine.
 | 
			
		||||
        guess_vector: Eigenvector to refine.
 | 
			
		||||
        iterations: Maximum number of iterations to perform. Default 40.
 | 
			
		||||
        tolerance: Stop iteration if `(A - I*eigenvalue) @ v < num_vectors * tolerance`,
 | 
			
		||||
                    Default 1e-13.
 | 
			
		||||
@ -73,16 +70,16 @@ def rayleigh_quotient_iteration(operator: sparse.spmatrix or spalg.LinearOperato
 | 
			
		||||
        if solver is None:
 | 
			
		||||
            solver = lambda A, b: spalg.bicgstab(A, b)[0]
 | 
			
		||||
 | 
			
		||||
    v = numpy.atleast_2d(guess_vectors)
 | 
			
		||||
    v = numpy.squeeze(guess_vector)
 | 
			
		||||
    v /= norm(v)
 | 
			
		||||
    for _ in range(iterations):
 | 
			
		||||
        eigval = v.conj() @ (operator @ v)
 | 
			
		||||
        if norm(operator @ v - eigval * v) < v.shape[1] * tolerance:
 | 
			
		||||
        if norm(operator @ v - eigval * v) < tolerance:
 | 
			
		||||
            break
 | 
			
		||||
 | 
			
		||||
        shifted_operator = operator - shift(eigval)
 | 
			
		||||
        v = solver(shifted_operator, v)
 | 
			
		||||
        v /= norm(v, axis=0)
 | 
			
		||||
        v /= norm(v)
 | 
			
		||||
    return eigval, v
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -83,7 +83,7 @@ import scipy.optimize
 | 
			
		||||
from scipy.linalg import norm
 | 
			
		||||
import scipy.sparse.linalg as spalg
 | 
			
		||||
 | 
			
		||||
from .. import field_t
 | 
			
		||||
from ..fdmath import fdfield_t
 | 
			
		||||
 | 
			
		||||
logger = logging.getLogger(__name__)
 | 
			
		||||
 | 
			
		||||
@ -154,8 +154,8 @@ def generate_kmn(k0: numpy.ndarray,
 | 
			
		||||
 | 
			
		||||
def maxwell_operator(k0: numpy.ndarray,
 | 
			
		||||
                     G_matrix: numpy.ndarray,
 | 
			
		||||
                     epsilon: field_t,
 | 
			
		||||
                     mu: field_t = None
 | 
			
		||||
                     epsilon: fdfield_t,
 | 
			
		||||
                     mu: fdfield_t = None
 | 
			
		||||
                     ) -> Callable[[numpy.ndarray], numpy.ndarray]:
 | 
			
		||||
    """
 | 
			
		||||
    Generate the Maxwell operator
 | 
			
		||||
@ -227,8 +227,8 @@ def maxwell_operator(k0: numpy.ndarray,
 | 
			
		||||
 | 
			
		||||
def hmn_2_exyz(k0: numpy.ndarray,
 | 
			
		||||
               G_matrix: numpy.ndarray,
 | 
			
		||||
               epsilon: field_t,
 | 
			
		||||
               ) -> Callable[[numpy.ndarray], field_t]:
 | 
			
		||||
               epsilon: fdfield_t,
 | 
			
		||||
               ) -> Callable[[numpy.ndarray], fdfield_t]:
 | 
			
		||||
    """
 | 
			
		||||
    Generate an operator which converts a vectorized spatial-frequency-space
 | 
			
		||||
     h_mn into an E-field distribution, i.e.
 | 
			
		||||
@ -249,7 +249,7 @@ def hmn_2_exyz(k0: numpy.ndarray,
 | 
			
		||||
 | 
			
		||||
    k_mag, m, n = generate_kmn(k0, G_matrix, shape)
 | 
			
		||||
 | 
			
		||||
    def operator(h: numpy.ndarray) -> field_t:
 | 
			
		||||
    def operator(h: numpy.ndarray) -> fdfield_t:
 | 
			
		||||
        hin_m, hin_n = [hi.reshape(shape) for hi in numpy.split(h, 2)]
 | 
			
		||||
        d_xyz = (n * hin_m -
 | 
			
		||||
                 m * hin_n) * k_mag
 | 
			
		||||
@ -262,8 +262,8 @@ def hmn_2_exyz(k0: numpy.ndarray,
 | 
			
		||||
 | 
			
		||||
def hmn_2_hxyz(k0: numpy.ndarray,
 | 
			
		||||
               G_matrix: numpy.ndarray,
 | 
			
		||||
               epsilon: field_t
 | 
			
		||||
               ) -> Callable[[numpy.ndarray], field_t]:
 | 
			
		||||
               epsilon: fdfield_t
 | 
			
		||||
               ) -> Callable[[numpy.ndarray], fdfield_t]:
 | 
			
		||||
    """
 | 
			
		||||
    Generate an operator which converts a vectorized spatial-frequency-space
 | 
			
		||||
     h_mn into an H-field distribution, i.e.
 | 
			
		||||
@ -293,8 +293,8 @@ def hmn_2_hxyz(k0: numpy.ndarray,
 | 
			
		||||
 | 
			
		||||
def inverse_maxwell_operator_approx(k0: numpy.ndarray,
 | 
			
		||||
                                    G_matrix: numpy.ndarray,
 | 
			
		||||
                                    epsilon: field_t,
 | 
			
		||||
                                    mu: field_t = None
 | 
			
		||||
                                    epsilon: fdfield_t,
 | 
			
		||||
                                    mu: fdfield_t = None
 | 
			
		||||
                                    ) -> Callable[[numpy.ndarray], numpy.ndarray]:
 | 
			
		||||
    """
 | 
			
		||||
    Generate an approximate inverse of the Maxwell operator,
 | 
			
		||||
@ -366,8 +366,8 @@ def find_k(frequency: float,
 | 
			
		||||
           tolerance: float,
 | 
			
		||||
           direction: numpy.ndarray,
 | 
			
		||||
           G_matrix: numpy.ndarray,
 | 
			
		||||
           epsilon: field_t,
 | 
			
		||||
           mu: field_t = None,
 | 
			
		||||
           epsilon: fdfield_t,
 | 
			
		||||
           mu: fdfield_t = None,
 | 
			
		||||
           band: int = 0,
 | 
			
		||||
           k_min: float = 0,
 | 
			
		||||
           k_max: float = 0.5,
 | 
			
		||||
@ -409,8 +409,8 @@ def find_k(frequency: float,
 | 
			
		||||
def eigsolve(num_modes: int,
 | 
			
		||||
             k0: numpy.ndarray,
 | 
			
		||||
             G_matrix: numpy.ndarray,
 | 
			
		||||
             epsilon: field_t,
 | 
			
		||||
             mu: field_t = None,
 | 
			
		||||
             epsilon: fdfield_t,
 | 
			
		||||
             mu: fdfield_t = None,
 | 
			
		||||
             tolerance: float = 1e-20,
 | 
			
		||||
             max_iters: int = 10000,
 | 
			
		||||
             reset_iters: int = 100,
 | 
			
		||||
 | 
			
		||||
@ -6,11 +6,11 @@ import numpy
 | 
			
		||||
from numpy.fft import fft2, fftshift, fftfreq, ifft2, ifftshift
 | 
			
		||||
from numpy import pi
 | 
			
		||||
 | 
			
		||||
from .. import field_t
 | 
			
		||||
from .. import fdfield_t
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def near_to_farfield(E_near: field_t,
 | 
			
		||||
                     H_near: field_t,
 | 
			
		||||
def near_to_farfield(E_near: fdfield_t,
 | 
			
		||||
                     H_near: fdfield_t,
 | 
			
		||||
                     dx: float,
 | 
			
		||||
                     dy: float,
 | 
			
		||||
                     padded_size: List[int] = None
 | 
			
		||||
@ -117,8 +117,8 @@ def near_to_farfield(E_near: field_t,
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def far_to_nearfield(E_far: field_t,
 | 
			
		||||
                     H_far: field_t,
 | 
			
		||||
def far_to_nearfield(E_far: fdfield_t,
 | 
			
		||||
                     H_far: fdfield_t,
 | 
			
		||||
                     dkx: float,
 | 
			
		||||
                     dky: float,
 | 
			
		||||
                     padded_size: List[int] = None
 | 
			
		||||
 | 
			
		||||
@ -2,32 +2,30 @@
 | 
			
		||||
Functional versions of many FDFD operators. These can be useful for performing
 | 
			
		||||
 FDFD calculations without needing to construct large matrices in memory.
 | 
			
		||||
 | 
			
		||||
The functions generated here expect `field_t` inputs with shape (3, X, Y, Z),
 | 
			
		||||
The functions generated here expect `fdfield_t` inputs with shape (3, X, Y, Z),
 | 
			
		||||
e.g. E = [E_x, E_y, E_z] where each component has shape (X, Y, Z)
 | 
			
		||||
"""
 | 
			
		||||
from typing import List, Callable, Tuple
 | 
			
		||||
import numpy
 | 
			
		||||
 | 
			
		||||
from .. import dx_lists_t, field_t
 | 
			
		||||
from ..fdmath import dx_lists_t, fdfield_t, fdfield_updater_t
 | 
			
		||||
from ..fdmath.functional import curl_forward, curl_back
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
__author__ = 'Jan Petykiewicz'
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
field_transform_t = Callable[[field_t], field_t]
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def e_full(omega: complex,
 | 
			
		||||
           dxes: dx_lists_t,
 | 
			
		||||
           epsilon: field_t,
 | 
			
		||||
           mu: field_t = None
 | 
			
		||||
           ) -> field_transform_t:
 | 
			
		||||
           epsilon: fdfield_t,
 | 
			
		||||
           mu: fdfield_t = None
 | 
			
		||||
           ) -> fdfield_updater_t:
 | 
			
		||||
    """
 | 
			
		||||
    Wave operator for use with E-field. See `operators.e_full` for details.
 | 
			
		||||
 | 
			
		||||
    Args:
 | 
			
		||||
        omega: Angular frequency of the simulation
 | 
			
		||||
        dxes: Grid parameters [dx_e, dx_h] as described in meanas.types
 | 
			
		||||
        dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types`
 | 
			
		||||
        epsilon: Dielectric constant
 | 
			
		||||
        mu: Magnetic permeability (default 1 everywhere)
 | 
			
		||||
 | 
			
		||||
@ -54,16 +52,16 @@ def e_full(omega: complex,
 | 
			
		||||
 | 
			
		||||
def eh_full(omega: complex,
 | 
			
		||||
            dxes: dx_lists_t,
 | 
			
		||||
            epsilon: field_t,
 | 
			
		||||
            mu: field_t = None
 | 
			
		||||
            ) -> Callable[[field_t, field_t], Tuple[field_t, field_t]]:
 | 
			
		||||
            epsilon: fdfield_t,
 | 
			
		||||
            mu: fdfield_t = None
 | 
			
		||||
            ) -> Callable[[fdfield_t, fdfield_t], Tuple[fdfield_t, fdfield_t]]:
 | 
			
		||||
    """
 | 
			
		||||
    Wave operator for full (both E and H) field representation.
 | 
			
		||||
    See `operators.eh_full`.
 | 
			
		||||
 | 
			
		||||
    Args:
 | 
			
		||||
        omega: Angular frequency of the simulation
 | 
			
		||||
        dxes: Grid parameters [dx_e, dx_h] as described in meanas.types
 | 
			
		||||
        dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types`
 | 
			
		||||
        epsilon: Dielectric constant
 | 
			
		||||
        mu: Magnetic permeability (default 1 everywhere)
 | 
			
		||||
 | 
			
		||||
@ -90,15 +88,15 @@ def eh_full(omega: complex,
 | 
			
		||||
 | 
			
		||||
def e2h(omega: complex,
 | 
			
		||||
        dxes: dx_lists_t,
 | 
			
		||||
        mu: field_t = None,
 | 
			
		||||
        ) -> field_transform_t:
 | 
			
		||||
        mu: fdfield_t = None,
 | 
			
		||||
        ) -> fdfield_updater_t:
 | 
			
		||||
    """
 | 
			
		||||
    Utility operator for converting the `E` field into the `H` field.
 | 
			
		||||
    For use with `e_full` -- assumes that there is no magnetic current `M`.
 | 
			
		||||
 | 
			
		||||
    Args:
 | 
			
		||||
        omega: Angular frequency of the simulation
 | 
			
		||||
        dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.types`
 | 
			
		||||
        dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types`
 | 
			
		||||
        mu: Magnetic permeability (default 1 everywhere)
 | 
			
		||||
 | 
			
		||||
    Return:
 | 
			
		||||
@ -121,8 +119,8 @@ def e2h(omega: complex,
 | 
			
		||||
 | 
			
		||||
def m2j(omega: complex,
 | 
			
		||||
        dxes: dx_lists_t,
 | 
			
		||||
        mu: field_t = None,
 | 
			
		||||
        ) -> field_transform_t:
 | 
			
		||||
        mu: fdfield_t = None,
 | 
			
		||||
        ) -> fdfield_updater_t:
 | 
			
		||||
    """
 | 
			
		||||
    Utility operator for converting magnetic current `M` distribution
 | 
			
		||||
    into equivalent electric current distribution `J`.
 | 
			
		||||
@ -130,7 +128,7 @@ def m2j(omega: complex,
 | 
			
		||||
 | 
			
		||||
    Args:
 | 
			
		||||
        omega: Angular frequency of the simulation
 | 
			
		||||
        dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.types`
 | 
			
		||||
        dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types`
 | 
			
		||||
        mu: Magnetic permeability (default 1 everywhere)
 | 
			
		||||
 | 
			
		||||
    Returns:
 | 
			
		||||
@ -153,12 +151,12 @@ def m2j(omega: complex,
 | 
			
		||||
        return m2j_mu
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def e_tfsf_source(TF_region: field_t,
 | 
			
		||||
def e_tfsf_source(TF_region: fdfield_t,
 | 
			
		||||
                  omega: complex,
 | 
			
		||||
                  dxes: dx_lists_t,
 | 
			
		||||
                  epsilon: field_t,
 | 
			
		||||
                  mu: field_t = None,
 | 
			
		||||
                  ) -> field_transform_t:
 | 
			
		||||
                  epsilon: fdfield_t,
 | 
			
		||||
                  mu: fdfield_t = None,
 | 
			
		||||
                  ) -> fdfield_updater_t:
 | 
			
		||||
    """
 | 
			
		||||
    Operator that turns an E-field distribution into a total-field/scattered-field
 | 
			
		||||
    (TFSF) source.
 | 
			
		||||
@ -168,7 +166,7 @@ def e_tfsf_source(TF_region: field_t,
 | 
			
		||||
                   (i.e. in the scattered-field region).
 | 
			
		||||
                   Should have the same shape as the simulation grid, e.g. `epsilon[0].shape`.
 | 
			
		||||
        omega: Angular frequency of the simulation
 | 
			
		||||
        dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.types`
 | 
			
		||||
        dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types`
 | 
			
		||||
        epsilon: Dielectric constant distribution
 | 
			
		||||
        mu: Magnetic permeability (default 1 everywhere)
 | 
			
		||||
 | 
			
		||||
@ -184,7 +182,7 @@ def e_tfsf_source(TF_region: field_t,
 | 
			
		||||
        return neg_iwj / (-1j * omega)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def poynting_e_cross_h(dxes: dx_lists_t) -> Callable[[field_t, field_t], field_t]:
 | 
			
		||||
def poynting_e_cross_h(dxes: dx_lists_t) -> Callable[[fdfield_t, fdfield_t], fdfield_t]:
 | 
			
		||||
    """
 | 
			
		||||
    Generates a function that takes the single-frequency `E` and `H` fields
 | 
			
		||||
    and calculates the cross product `E` x `H` = \\( E \\times H \\) as required
 | 
			
		||||
@ -201,12 +199,12 @@ def poynting_e_cross_h(dxes: dx_lists_t) -> Callable[[field_t, field_t], field_t
 | 
			
		||||
        instead.
 | 
			
		||||
 | 
			
		||||
    Args:
 | 
			
		||||
        dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.types`
 | 
			
		||||
        dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types`
 | 
			
		||||
 | 
			
		||||
    Returns:
 | 
			
		||||
        Function `f` that returns E x H as required for the poynting vector.
 | 
			
		||||
    """
 | 
			
		||||
    def exh(e: field_t, h: field_t):
 | 
			
		||||
    def exh(e: fdfield_t, h: fdfield_t):
 | 
			
		||||
        s = numpy.empty_like(e)
 | 
			
		||||
        ex = e[0] * dxes[0][0][:, None, None]
 | 
			
		||||
        ey = e[1] * dxes[0][1][None, :, None]
 | 
			
		||||
 | 
			
		||||
@ -9,7 +9,7 @@ E- and H-field values are defined on a Yee cell; `epsilon` values should be calc
 | 
			
		||||
 cells centered at each E component (`mu` at each H component).
 | 
			
		||||
 | 
			
		||||
Many of these functions require a `dxes` parameter, of type `dx_lists_t`; see
 | 
			
		||||
the `meanas.types` submodule for details.
 | 
			
		||||
the `meanas.fdmath.types` submodule for details.
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
The following operators are included:
 | 
			
		||||
@ -31,7 +31,7 @@ from typing import List, Tuple
 | 
			
		||||
import numpy
 | 
			
		||||
import scipy.sparse as sparse
 | 
			
		||||
 | 
			
		||||
from .. import vec, dx_lists_t, vfield_t
 | 
			
		||||
from ..fdmath import vec, dx_lists_t, vfdfield_t
 | 
			
		||||
from ..fdmath.operators import shift_with_mirror, rotation, curl_forward, curl_back
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -40,10 +40,10 @@ __author__ = 'Jan Petykiewicz'
 | 
			
		||||
 | 
			
		||||
def e_full(omega: complex,
 | 
			
		||||
           dxes: dx_lists_t,
 | 
			
		||||
           epsilon: vfield_t,
 | 
			
		||||
           mu: vfield_t = None,
 | 
			
		||||
           pec: vfield_t = None,
 | 
			
		||||
           pmc: vfield_t = None,
 | 
			
		||||
           epsilon: vfdfield_t,
 | 
			
		||||
           mu: vfdfield_t = None,
 | 
			
		||||
           pec: vfdfield_t = None,
 | 
			
		||||
           pmc: vfdfield_t = None,
 | 
			
		||||
           ) -> sparse.spmatrix:
 | 
			
		||||
    """
 | 
			
		||||
    Wave operator
 | 
			
		||||
@ -60,7 +60,7 @@ def e_full(omega: complex,
 | 
			
		||||
 | 
			
		||||
    Args:
 | 
			
		||||
        omega: Angular frequency of the simulation
 | 
			
		||||
        dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.types`
 | 
			
		||||
        dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types`
 | 
			
		||||
        epsilon: Vectorized dielectric constant
 | 
			
		||||
        mu: Vectorized magnetic permeability (default 1 everywhere).
 | 
			
		||||
        pec: Vectorized mask specifying PEC cells. Any cells where `pec != 0` are interpreted
 | 
			
		||||
@ -107,7 +107,7 @@ def e_full_preconditioners(dxes: dx_lists_t
 | 
			
		||||
    The preconditioner matrices are diagonal and complex, with `Pr = 1 / Pl`
 | 
			
		||||
 | 
			
		||||
    Args:
 | 
			
		||||
        dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.types`
 | 
			
		||||
        dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types`
 | 
			
		||||
 | 
			
		||||
    Returns:
 | 
			
		||||
        Preconditioner matrices `(Pl, Pr)`.
 | 
			
		||||
@ -124,10 +124,10 @@ def e_full_preconditioners(dxes: dx_lists_t
 | 
			
		||||
 | 
			
		||||
def h_full(omega: complex,
 | 
			
		||||
           dxes: dx_lists_t,
 | 
			
		||||
           epsilon: vfield_t,
 | 
			
		||||
           mu: vfield_t = None,
 | 
			
		||||
           pec: vfield_t = None,
 | 
			
		||||
           pmc: vfield_t = None,
 | 
			
		||||
           epsilon: vfdfield_t,
 | 
			
		||||
           mu: vfdfield_t = None,
 | 
			
		||||
           pec: vfdfield_t = None,
 | 
			
		||||
           pmc: vfdfield_t = None,
 | 
			
		||||
           ) -> sparse.spmatrix:
 | 
			
		||||
    """
 | 
			
		||||
    Wave operator
 | 
			
		||||
@ -142,7 +142,7 @@ def h_full(omega: complex,
 | 
			
		||||
 | 
			
		||||
    Args:
 | 
			
		||||
        omega: Angular frequency of the simulation
 | 
			
		||||
        dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.types`
 | 
			
		||||
        dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types`
 | 
			
		||||
        epsilon: Vectorized dielectric constant
 | 
			
		||||
        mu: Vectorized magnetic permeability (default 1 everywhere)
 | 
			
		||||
        pec: Vectorized mask specifying PEC cells. Any cells where `pec != 0` are interpreted
 | 
			
		||||
@ -180,10 +180,10 @@ def h_full(omega: complex,
 | 
			
		||||
 | 
			
		||||
def eh_full(omega: complex,
 | 
			
		||||
            dxes: dx_lists_t,
 | 
			
		||||
            epsilon: vfield_t,
 | 
			
		||||
            mu: vfield_t = None,
 | 
			
		||||
            pec: vfield_t = None,
 | 
			
		||||
            pmc: vfield_t = None
 | 
			
		||||
            epsilon: vfdfield_t,
 | 
			
		||||
            mu: vfdfield_t = None,
 | 
			
		||||
            pec: vfdfield_t = None,
 | 
			
		||||
            pmc: vfdfield_t = None
 | 
			
		||||
            ) -> sparse.spmatrix:
 | 
			
		||||
    """
 | 
			
		||||
    Wave operator for `[E, H]` field representation. This operator implements Maxwell's
 | 
			
		||||
@ -210,7 +210,7 @@ def eh_full(omega: complex,
 | 
			
		||||
 | 
			
		||||
    Args:
 | 
			
		||||
        omega: Angular frequency of the simulation
 | 
			
		||||
        dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.types`
 | 
			
		||||
        dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types`
 | 
			
		||||
        epsilon: Vectorized dielectric constant
 | 
			
		||||
        mu: Vectorized magnetic permeability (default 1 everywhere)
 | 
			
		||||
        pec: Vectorized mask specifying PEC cells. Any cells where `pec != 0` are interpreted
 | 
			
		||||
@ -249,8 +249,8 @@ def eh_full(omega: complex,
 | 
			
		||||
 | 
			
		||||
def e2h(omega: complex,
 | 
			
		||||
        dxes: dx_lists_t,
 | 
			
		||||
        mu: vfield_t = None,
 | 
			
		||||
        pmc: vfield_t = None,
 | 
			
		||||
        mu: vfdfield_t = None,
 | 
			
		||||
        pmc: vfdfield_t = None,
 | 
			
		||||
        ) -> sparse.spmatrix:
 | 
			
		||||
    """
 | 
			
		||||
    Utility operator for converting the E field into the H field.
 | 
			
		||||
@ -258,7 +258,7 @@ def e2h(omega: complex,
 | 
			
		||||
 | 
			
		||||
    Args:
 | 
			
		||||
        omega: Angular frequency of the simulation
 | 
			
		||||
        dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.types`
 | 
			
		||||
        dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types`
 | 
			
		||||
        mu: Vectorized magnetic permeability (default 1 everywhere)
 | 
			
		||||
        pmc: Vectorized mask specifying PMC cells. Any cells where `pmc != 0` are interpreted
 | 
			
		||||
          as containing a perfect magnetic conductor (PMC).
 | 
			
		||||
@ -280,7 +280,7 @@ def e2h(omega: complex,
 | 
			
		||||
 | 
			
		||||
def m2j(omega: complex,
 | 
			
		||||
        dxes: dx_lists_t,
 | 
			
		||||
        mu: vfield_t = None
 | 
			
		||||
        mu: vfdfield_t = None
 | 
			
		||||
        ) -> sparse.spmatrix:
 | 
			
		||||
    """
 | 
			
		||||
    Operator for converting a magnetic current M into an electric current J.
 | 
			
		||||
@ -288,7 +288,7 @@ def m2j(omega: complex,
 | 
			
		||||
 | 
			
		||||
    Args:
 | 
			
		||||
        omega: Angular frequency of the simulation
 | 
			
		||||
        dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.types`
 | 
			
		||||
        dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types`
 | 
			
		||||
        mu: Vectorized magnetic permeability (default 1 everywhere)
 | 
			
		||||
 | 
			
		||||
    Returns:
 | 
			
		||||
@ -302,14 +302,14 @@ def m2j(omega: complex,
 | 
			
		||||
    return op
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def poynting_e_cross(e: vfield_t, dxes: dx_lists_t) -> sparse.spmatrix:
 | 
			
		||||
def poynting_e_cross(e: vfdfield_t, dxes: dx_lists_t) -> sparse.spmatrix:
 | 
			
		||||
    """
 | 
			
		||||
    Operator for computing the Poynting vector, containing the
 | 
			
		||||
    (E x) portion of the Poynting vector.
 | 
			
		||||
 | 
			
		||||
    Args:
 | 
			
		||||
        e: Vectorized E-field for the ExH cross product
 | 
			
		||||
        dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.types`
 | 
			
		||||
        dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types`
 | 
			
		||||
 | 
			
		||||
    Returns:
 | 
			
		||||
        Sparse matrix containing (E x) portion of Poynting cross product.
 | 
			
		||||
@ -331,13 +331,13 @@ def poynting_e_cross(e: vfield_t, dxes: dx_lists_t) -> sparse.spmatrix:
 | 
			
		||||
    return P
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def poynting_h_cross(h: vfield_t, dxes: dx_lists_t) -> sparse.spmatrix:
 | 
			
		||||
def poynting_h_cross(h: vfdfield_t, dxes: dx_lists_t) -> sparse.spmatrix:
 | 
			
		||||
    """
 | 
			
		||||
    Operator for computing the Poynting vector, containing the (H x) portion of the Poynting vector.
 | 
			
		||||
 | 
			
		||||
    Args:
 | 
			
		||||
        h: Vectorized H-field for the HxE cross product
 | 
			
		||||
        dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.types`
 | 
			
		||||
        dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types`
 | 
			
		||||
 | 
			
		||||
    Returns:
 | 
			
		||||
        Sparse matrix containing (H x) portion of Poynting cross product.
 | 
			
		||||
@ -358,11 +358,11 @@ def poynting_h_cross(h: vfield_t, dxes: dx_lists_t) -> sparse.spmatrix:
 | 
			
		||||
    return P
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def e_tfsf_source(TF_region: vfield_t,
 | 
			
		||||
def e_tfsf_source(TF_region: vfdfield_t,
 | 
			
		||||
                  omega: complex,
 | 
			
		||||
                  dxes: dx_lists_t,
 | 
			
		||||
                  epsilon: vfield_t,
 | 
			
		||||
                  mu: vfield_t = None,
 | 
			
		||||
                  epsilon: vfdfield_t,
 | 
			
		||||
                  mu: vfdfield_t = None,
 | 
			
		||||
                  ) -> sparse.spmatrix:
 | 
			
		||||
    """
 | 
			
		||||
    Operator that turns a desired E-field distribution into a
 | 
			
		||||
@ -374,7 +374,7 @@ def e_tfsf_source(TF_region: vfield_t,
 | 
			
		||||
        TF_region: Mask, which is set to 1 inside the total-field region and 0 in the
 | 
			
		||||
                   scattered-field region
 | 
			
		||||
        omega: Angular frequency of the simulation
 | 
			
		||||
        dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.types`
 | 
			
		||||
        dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types`
 | 
			
		||||
        epsilon: Vectorized dielectric constant
 | 
			
		||||
        mu: Vectorized magnetic permeability (default 1 everywhere).
 | 
			
		||||
 | 
			
		||||
@ -388,11 +388,11 @@ def e_tfsf_source(TF_region: vfield_t,
 | 
			
		||||
    return (A @ Q - Q @ A) / (-1j * omega)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def e_boundary_source(mask: vfield_t,
 | 
			
		||||
def e_boundary_source(mask: vfdfield_t,
 | 
			
		||||
                      omega: complex,
 | 
			
		||||
                      dxes: dx_lists_t,
 | 
			
		||||
                      epsilon: vfield_t,
 | 
			
		||||
                      mu: vfield_t = None,
 | 
			
		||||
                      epsilon: vfdfield_t,
 | 
			
		||||
                      mu: vfdfield_t = None,
 | 
			
		||||
                      periodic_mask_edges: bool = False,
 | 
			
		||||
                      ) -> sparse.spmatrix:
 | 
			
		||||
    """
 | 
			
		||||
@ -405,7 +405,7 @@ def e_boundary_source(mask: vfield_t,
 | 
			
		||||
              i.e. any points where shifting the mask by one cell in any direction
 | 
			
		||||
              would change its value.
 | 
			
		||||
        omega: Angular frequency of the simulation
 | 
			
		||||
        dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.types`
 | 
			
		||||
        dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types`
 | 
			
		||||
        epsilon: Vectorized dielectric constant
 | 
			
		||||
        mu: Vectorized magnetic permeability (default 1 everywhere).
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -5,14 +5,14 @@ Functions for creating stretched coordinate perfectly matched layer (PML) absorb
 | 
			
		||||
from typing import List, Callable
 | 
			
		||||
import numpy
 | 
			
		||||
 | 
			
		||||
from .. import dx_lists_t
 | 
			
		||||
from ..fdmath import dx_lists_t
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
__author__ = 'Jan Petykiewicz'
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
s_function_t = Callable[[float], float]
 | 
			
		||||
"""Typedef for s-functions"""
 | 
			
		||||
"""Typedef for s-functions, see `prepare_s_function()`"""
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def prepare_s_function(ln_R: float = -16,
 | 
			
		||||
@ -63,7 +63,7 @@ def uniform_grid_scpml(shape: numpy.ndarray or List[int],
 | 
			
		||||
                    Default uses `prepare_s_function()` with no parameters.
 | 
			
		||||
 | 
			
		||||
    Returns:
 | 
			
		||||
        Complex cell widths (dx_lists_t) as discussed in `meanas.types`.
 | 
			
		||||
        Complex cell widths (dx_lists_t) as discussed in `meanas.fdmath.types`.
 | 
			
		||||
    """
 | 
			
		||||
    if s_function is None:
 | 
			
		||||
        s_function = prepare_s_function()
 | 
			
		||||
@ -102,7 +102,7 @@ def stretch_with_scpml(dxes: dx_lists_t,
 | 
			
		||||
        Stretch dxes to contain a stretched-coordinate PML (SCPML) in one direction along one axis.
 | 
			
		||||
 | 
			
		||||
        Args:
 | 
			
		||||
            dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.types`
 | 
			
		||||
            dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types`
 | 
			
		||||
            axis: axis to stretch (0=x, 1=y, 2=z)
 | 
			
		||||
            polarity: direction to stretch (-1 for -ve, +1 for +ve)
 | 
			
		||||
            omega: Angular frequency for the simulation
 | 
			
		||||
@ -113,7 +113,7 @@ def stretch_with_scpml(dxes: dx_lists_t,
 | 
			
		||||
                        of pml parameters. Default uses `prepare_s_function()` with no parameters.
 | 
			
		||||
 | 
			
		||||
        Returns:
 | 
			
		||||
            Complex cell widths (dx_lists_t) as discussed in `meanas.types`.
 | 
			
		||||
            Complex cell widths (dx_lists_t) as discussed in `meanas.fdmath.types`.
 | 
			
		||||
            Multiple calls to this function may be necessary if multiple absorpbing boundaries are needed.
 | 
			
		||||
    """
 | 
			
		||||
    if s_function is None:
 | 
			
		||||
 | 
			
		||||
@ -9,6 +9,7 @@ import numpy
 | 
			
		||||
from numpy.linalg import norm
 | 
			
		||||
import scipy.sparse.linalg
 | 
			
		||||
 | 
			
		||||
from ..fdmath import dx_lists_t, vfdfield_t
 | 
			
		||||
from . import operators
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -60,16 +61,16 @@ def _scipy_qmr(A: scipy.sparse.csr_matrix,
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def generic(omega: complex,
 | 
			
		||||
            dxes: List[List[numpy.ndarray]],
 | 
			
		||||
            J: numpy.ndarray,
 | 
			
		||||
            epsilon: numpy.ndarray,
 | 
			
		||||
            mu: numpy.ndarray = None,
 | 
			
		||||
            pec: numpy.ndarray = None,
 | 
			
		||||
            pmc: numpy.ndarray = None,
 | 
			
		||||
            dxes: dx_lists_t,
 | 
			
		||||
            J: vfdfield_t,
 | 
			
		||||
            epsilon: vfdfield_t,
 | 
			
		||||
            mu: vfdfield_t = None,
 | 
			
		||||
            pec: vfdfield_t = None,
 | 
			
		||||
            pmc: vfdfield_t = None,
 | 
			
		||||
            adjoint: bool = False,
 | 
			
		||||
            matrix_solver: Callable[..., numpy.ndarray] = _scipy_qmr,
 | 
			
		||||
            matrix_solver_opts: Dict[str, Any] = None,
 | 
			
		||||
            ) -> numpy.ndarray:
 | 
			
		||||
            ) -> vfdfield_t:
 | 
			
		||||
    """
 | 
			
		||||
    Conjugate gradient FDFD solver using CSR sparse matrices.
 | 
			
		||||
 | 
			
		||||
@ -78,7 +79,7 @@ def generic(omega: complex,
 | 
			
		||||
    Args:
 | 
			
		||||
        omega: Complex frequency to solve at.
 | 
			
		||||
        dxes: `[[dx_e, dy_e, dz_e], [dx_h, dy_h, dz_h]]` (complex cell sizes) as
 | 
			
		||||
            discussed in `meanas.types`
 | 
			
		||||
            discussed in `meanas.fdmath.types`
 | 
			
		||||
        J: Electric current distribution (at E-field locations)
 | 
			
		||||
        epsilon: Dielectric constant distribution (at E-field locations)
 | 
			
		||||
        mu: Magnetic permeability distribution (at H-field locations)
 | 
			
		||||
 | 
			
		||||
@ -14,7 +14,8 @@ import numpy
 | 
			
		||||
from numpy.linalg import norm
 | 
			
		||||
import scipy.sparse as sparse
 | 
			
		||||
 | 
			
		||||
from .. import vec, unvec, dx_lists_t, field_t, vfield_t
 | 
			
		||||
from ..fdmath.operators import deriv_forward, deriv_back, curl_forward, curl_back, cross
 | 
			
		||||
from ..fdmath import vec, unvec, dx_lists_t, fdfield_t, vfdfield_t
 | 
			
		||||
from ..eigensolvers import signed_eigensolve, rayleigh_quotient_iteration
 | 
			
		||||
from . import operators
 | 
			
		||||
 | 
			
		||||
@ -24,8 +25,8 @@ __author__ = 'Jan Petykiewicz'
 | 
			
		||||
 | 
			
		||||
def operator_e(omega: complex,
 | 
			
		||||
               dxes: dx_lists_t,
 | 
			
		||||
               epsilon: vfield_t,
 | 
			
		||||
               mu: vfield_t = None,
 | 
			
		||||
               epsilon: vfdfield_t,
 | 
			
		||||
               mu: vfdfield_t = None,
 | 
			
		||||
               ) -> sparse.spmatrix:
 | 
			
		||||
    """
 | 
			
		||||
    Waveguide operator of the form
 | 
			
		||||
@ -66,7 +67,7 @@ def operator_e(omega: complex,
 | 
			
		||||
 | 
			
		||||
    Args:
 | 
			
		||||
        omega: The angular frequency of the system.
 | 
			
		||||
        dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.types` (2D)
 | 
			
		||||
        dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types` (2D)
 | 
			
		||||
        epsilon: Vectorized dielectric constant grid
 | 
			
		||||
        mu: Vectorized magnetic permeability grid (default 1 everywhere)
 | 
			
		||||
 | 
			
		||||
@ -76,8 +77,8 @@ def operator_e(omega: complex,
 | 
			
		||||
    if numpy.any(numpy.equal(mu, None)):
 | 
			
		||||
        mu = numpy.ones_like(epsilon)
 | 
			
		||||
 | 
			
		||||
    Dfx, Dfy = operators.deriv_forward(dxes[0])
 | 
			
		||||
    Dbx, Dby = operators.deriv_back(dxes[1])
 | 
			
		||||
    Dfx, Dfy = deriv_forward(dxes[0])
 | 
			
		||||
    Dbx, Dby = deriv_back(dxes[1])
 | 
			
		||||
 | 
			
		||||
    eps_parts = numpy.split(epsilon, 3)
 | 
			
		||||
    eps_xy = sparse.diags(numpy.hstack((eps_parts[0], eps_parts[1])))
 | 
			
		||||
@ -95,8 +96,8 @@ def operator_e(omega: complex,
 | 
			
		||||
 | 
			
		||||
def operator_h(omega: complex,
 | 
			
		||||
               dxes: dx_lists_t,
 | 
			
		||||
               epsilon: vfield_t,
 | 
			
		||||
               mu: vfield_t = None,
 | 
			
		||||
               epsilon: vfdfield_t,
 | 
			
		||||
               mu: vfdfield_t = None,
 | 
			
		||||
               ) -> sparse.spmatrix:
 | 
			
		||||
    """
 | 
			
		||||
    Waveguide operator of the form
 | 
			
		||||
@ -137,7 +138,7 @@ def operator_h(omega: complex,
 | 
			
		||||
 | 
			
		||||
    Args:
 | 
			
		||||
        omega: The angular frequency of the system.
 | 
			
		||||
        dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.types` (2D)
 | 
			
		||||
        dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types` (2D)
 | 
			
		||||
        epsilon: Vectorized dielectric constant grid
 | 
			
		||||
        mu: Vectorized magnetic permeability grid (default 1 everywhere)
 | 
			
		||||
 | 
			
		||||
@ -169,10 +170,10 @@ def normalized_fields_e(e_xy: numpy.ndarray,
 | 
			
		||||
                        wavenumber: complex,
 | 
			
		||||
                        omega: complex,
 | 
			
		||||
                        dxes: dx_lists_t,
 | 
			
		||||
                        epsilon: vfield_t,
 | 
			
		||||
                        mu: vfield_t = None,
 | 
			
		||||
                        epsilon: vfdfield_t,
 | 
			
		||||
                        mu: vfdfield_t = None,
 | 
			
		||||
                        prop_phase: float = 0,
 | 
			
		||||
                        ) -> Tuple[vfield_t, vfield_t]:
 | 
			
		||||
                        ) -> Tuple[vfdfield_t, vfdfield_t]:
 | 
			
		||||
    """
 | 
			
		||||
    Given a vector `e_xy` containing the vectorized E_x and E_y fields,
 | 
			
		||||
     returns normalized, vectorized E and H fields for the system.
 | 
			
		||||
@ -182,7 +183,7 @@ def normalized_fields_e(e_xy: numpy.ndarray,
 | 
			
		||||
        wavenumber: Wavenumber assuming fields have z-dependence of `exp(-i * wavenumber * z)`.
 | 
			
		||||
                    It should satisfy `operator_e() @ e_xy == wavenumber**2 * e_xy`
 | 
			
		||||
        omega: The angular frequency of the system
 | 
			
		||||
        dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.types` (2D)
 | 
			
		||||
        dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types` (2D)
 | 
			
		||||
        epsilon: Vectorized dielectric constant grid
 | 
			
		||||
        mu: Vectorized magnetic permeability grid (default 1 everywhere)
 | 
			
		||||
        prop_phase: Phase shift `(dz * corrected_wavenumber)` over 1 cell in propagation direction.
 | 
			
		||||
@ -203,10 +204,10 @@ def normalized_fields_h(h_xy: numpy.ndarray,
 | 
			
		||||
                        wavenumber: complex,
 | 
			
		||||
                        omega: complex,
 | 
			
		||||
                        dxes: dx_lists_t,
 | 
			
		||||
                        epsilon: vfield_t,
 | 
			
		||||
                        mu: vfield_t = None,
 | 
			
		||||
                        epsilon: vfdfield_t,
 | 
			
		||||
                        mu: vfdfield_t = None,
 | 
			
		||||
                        prop_phase: float = 0,
 | 
			
		||||
                        ) -> Tuple[vfield_t, vfield_t]:
 | 
			
		||||
                        ) -> Tuple[vfdfield_t, vfdfield_t]:
 | 
			
		||||
    """
 | 
			
		||||
    Given a vector `h_xy` containing the vectorized H_x and H_y fields,
 | 
			
		||||
     returns normalized, vectorized E and H fields for the system.
 | 
			
		||||
@ -216,7 +217,7 @@ def normalized_fields_h(h_xy: numpy.ndarray,
 | 
			
		||||
        wavenumber: Wavenumber assuming fields have z-dependence of `exp(-i * wavenumber * z)`.
 | 
			
		||||
                    It should satisfy `operator_h() @ h_xy == wavenumber**2 * h_xy`
 | 
			
		||||
        omega: The angular frequency of the system
 | 
			
		||||
        dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.types` (2D)
 | 
			
		||||
        dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types` (2D)
 | 
			
		||||
        epsilon: Vectorized dielectric constant grid
 | 
			
		||||
        mu: Vectorized magnetic permeability grid (default 1 everywhere)
 | 
			
		||||
        prop_phase: Phase shift `(dz * corrected_wavenumber)` over 1 cell in propagation direction.
 | 
			
		||||
@ -237,10 +238,10 @@ def _normalized_fields(e: numpy.ndarray,
 | 
			
		||||
                       h: numpy.ndarray,
 | 
			
		||||
                       omega: complex,
 | 
			
		||||
                       dxes: dx_lists_t,
 | 
			
		||||
                       epsilon: vfield_t,
 | 
			
		||||
                       mu: vfield_t = None,
 | 
			
		||||
                       epsilon: vfdfield_t,
 | 
			
		||||
                       mu: vfdfield_t = None,
 | 
			
		||||
                       prop_phase: float = 0,
 | 
			
		||||
                       ) -> Tuple[vfield_t, vfield_t]:
 | 
			
		||||
                       ) -> Tuple[vfdfield_t, vfdfield_t]:
 | 
			
		||||
    # TODO documentation
 | 
			
		||||
    shape = [s.size for s in dxes[0]]
 | 
			
		||||
    dxes_real = [[numpy.real(d) for d in numpy.meshgrid(*dxes[v], indexing='ij')] for v in (0, 1)]
 | 
			
		||||
@ -276,8 +277,8 @@ def _normalized_fields(e: numpy.ndarray,
 | 
			
		||||
def exy2h(wavenumber: complex,
 | 
			
		||||
          omega: complex,
 | 
			
		||||
          dxes: dx_lists_t,
 | 
			
		||||
          epsilon: vfield_t,
 | 
			
		||||
          mu: vfield_t = None
 | 
			
		||||
          epsilon: vfdfield_t,
 | 
			
		||||
          mu: vfdfield_t = None
 | 
			
		||||
          ) -> sparse.spmatrix:
 | 
			
		||||
    """
 | 
			
		||||
    Operator which transforms the vector `e_xy` containing the vectorized E_x and E_y fields,
 | 
			
		||||
@ -287,7 +288,7 @@ def exy2h(wavenumber: complex,
 | 
			
		||||
        wavenumber: Wavenumber assuming fields have z-dependence of `exp(-i * wavenumber * z)`.
 | 
			
		||||
                    It should satisfy `operator_e() @ e_xy == wavenumber**2 * e_xy`
 | 
			
		||||
        omega: The angular frequency of the system
 | 
			
		||||
        dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.types` (2D)
 | 
			
		||||
        dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types` (2D)
 | 
			
		||||
        epsilon: Vectorized dielectric constant grid
 | 
			
		||||
        mu: Vectorized magnetic permeability grid (default 1 everywhere)
 | 
			
		||||
 | 
			
		||||
@ -301,8 +302,8 @@ def exy2h(wavenumber: complex,
 | 
			
		||||
def hxy2e(wavenumber: complex,
 | 
			
		||||
          omega: complex,
 | 
			
		||||
          dxes: dx_lists_t,
 | 
			
		||||
          epsilon: vfield_t,
 | 
			
		||||
          mu: vfield_t = None
 | 
			
		||||
          epsilon: vfdfield_t,
 | 
			
		||||
          mu: vfdfield_t = None
 | 
			
		||||
          ) -> sparse.spmatrix:
 | 
			
		||||
    """
 | 
			
		||||
    Operator which transforms the vector `h_xy` containing the vectorized H_x and H_y fields,
 | 
			
		||||
@ -312,7 +313,7 @@ def hxy2e(wavenumber: complex,
 | 
			
		||||
        wavenumber: Wavenumber assuming fields have z-dependence of `exp(-i * wavenumber * z)`.
 | 
			
		||||
                    It should satisfy `operator_h() @ h_xy == wavenumber**2 * h_xy`
 | 
			
		||||
        omega: The angular frequency of the system
 | 
			
		||||
        dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.types` (2D)
 | 
			
		||||
        dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types` (2D)
 | 
			
		||||
        epsilon: Vectorized dielectric constant grid
 | 
			
		||||
        mu: Vectorized magnetic permeability grid (default 1 everywhere)
 | 
			
		||||
 | 
			
		||||
@ -325,7 +326,7 @@ def hxy2e(wavenumber: complex,
 | 
			
		||||
 | 
			
		||||
def hxy2h(wavenumber: complex,
 | 
			
		||||
          dxes: dx_lists_t,
 | 
			
		||||
          mu: vfield_t = None
 | 
			
		||||
          mu: vfdfield_t = None
 | 
			
		||||
          ) -> sparse.spmatrix:
 | 
			
		||||
    """
 | 
			
		||||
    Operator which transforms the vector `h_xy` containing the vectorized H_x and H_y fields,
 | 
			
		||||
@ -334,13 +335,13 @@ def hxy2h(wavenumber: complex,
 | 
			
		||||
    Args:
 | 
			
		||||
        wavenumber: Wavenumber assuming fields have z-dependence of `exp(-i * wavenumber * z)`.
 | 
			
		||||
                    It should satisfy `operator_h() @ h_xy == wavenumber**2 * h_xy`
 | 
			
		||||
        dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.types` (2D)
 | 
			
		||||
        dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types` (2D)
 | 
			
		||||
        mu: Vectorized magnetic permeability grid (default 1 everywhere)
 | 
			
		||||
 | 
			
		||||
    Returns:
 | 
			
		||||
        Sparse matrix representing the operator.
 | 
			
		||||
    """
 | 
			
		||||
    Dfx, Dfy = operators.deriv_forward(dxes[0])
 | 
			
		||||
    Dfx, Dfy = deriv_forward(dxes[0])
 | 
			
		||||
    hxy2hz = sparse.hstack((Dfx, Dfy)) / (1j * wavenumber)
 | 
			
		||||
 | 
			
		||||
    if not numpy.any(numpy.equal(mu, None)):
 | 
			
		||||
@ -358,7 +359,7 @@ def hxy2h(wavenumber: complex,
 | 
			
		||||
 | 
			
		||||
def exy2e(wavenumber: complex,
 | 
			
		||||
          dxes: dx_lists_t,
 | 
			
		||||
          epsilon: vfield_t,
 | 
			
		||||
          epsilon: vfdfield_t,
 | 
			
		||||
          ) -> sparse.spmatrix:
 | 
			
		||||
    """
 | 
			
		||||
    Operator which transforms the vector `e_xy` containing the vectorized E_x and E_y fields,
 | 
			
		||||
@ -367,13 +368,13 @@ def exy2e(wavenumber: complex,
 | 
			
		||||
    Args:
 | 
			
		||||
        wavenumber: Wavenumber assuming fields have z-dependence of `exp(-i * wavenumber * z)`
 | 
			
		||||
                    It should satisfy `operator_e() @ e_xy == wavenumber**2 * e_xy`
 | 
			
		||||
        dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.types` (2D)
 | 
			
		||||
        dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types` (2D)
 | 
			
		||||
        epsilon: Vectorized dielectric constant grid
 | 
			
		||||
 | 
			
		||||
    Returns:
 | 
			
		||||
        Sparse matrix representing the operator.
 | 
			
		||||
    """
 | 
			
		||||
    Dbx, Dby = operators.deriv_back(dxes[1])
 | 
			
		||||
    Dbx, Dby = deriv_back(dxes[1])
 | 
			
		||||
    exy2ez = sparse.hstack((Dbx, Dby)) / (1j * wavenumber)
 | 
			
		||||
 | 
			
		||||
    if not numpy.any(numpy.equal(epsilon, None)):
 | 
			
		||||
@ -392,7 +393,7 @@ def exy2e(wavenumber: complex,
 | 
			
		||||
def e2h(wavenumber: complex,
 | 
			
		||||
        omega: complex,
 | 
			
		||||
        dxes: dx_lists_t,
 | 
			
		||||
        mu: vfield_t = None
 | 
			
		||||
        mu: vfdfield_t = None
 | 
			
		||||
        ) -> sparse.spmatrix:
 | 
			
		||||
    """
 | 
			
		||||
    Returns an operator which, when applied to a vectorized E eigenfield, produces
 | 
			
		||||
@ -401,7 +402,7 @@ def e2h(wavenumber: complex,
 | 
			
		||||
    Args:
 | 
			
		||||
        wavenumber: Wavenumber assuming fields have z-dependence of `exp(-i * wavenumber * z)`
 | 
			
		||||
        omega: The angular frequency of the system
 | 
			
		||||
        dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.types` (2D)
 | 
			
		||||
        dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types` (2D)
 | 
			
		||||
        mu: Vectorized magnetic permeability grid (default 1 everywhere)
 | 
			
		||||
 | 
			
		||||
    Returns:
 | 
			
		||||
@ -416,7 +417,7 @@ def e2h(wavenumber: complex,
 | 
			
		||||
def h2e(wavenumber: complex,
 | 
			
		||||
        omega: complex,
 | 
			
		||||
        dxes: dx_lists_t,
 | 
			
		||||
        epsilon: vfield_t
 | 
			
		||||
        epsilon: vfdfield_t
 | 
			
		||||
        ) -> sparse.spmatrix:
 | 
			
		||||
    """
 | 
			
		||||
    Returns an operator which, when applied to a vectorized H eigenfield, produces
 | 
			
		||||
@ -425,7 +426,7 @@ def h2e(wavenumber: complex,
 | 
			
		||||
    Args:
 | 
			
		||||
        wavenumber: Wavenumber assuming fields have z-dependence of `exp(-i * wavenumber * z)`
 | 
			
		||||
        omega: The angular frequency of the system
 | 
			
		||||
        dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.types` (2D)
 | 
			
		||||
        dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types` (2D)
 | 
			
		||||
        epsilon: Vectorized dielectric constant grid
 | 
			
		||||
 | 
			
		||||
    Returns:
 | 
			
		||||
@ -441,7 +442,7 @@ def curl_e(wavenumber: complex, dxes: dx_lists_t) -> sparse.spmatrix:
 | 
			
		||||
 | 
			
		||||
    Args:
 | 
			
		||||
        wavenumber: Wavenumber assuming fields have z-dependence of `exp(-i * wavenumber * z)`
 | 
			
		||||
        dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.types` (2D)
 | 
			
		||||
        dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types` (2D)
 | 
			
		||||
 | 
			
		||||
    Return:
 | 
			
		||||
        Sparse matrix representation of the operator.
 | 
			
		||||
@ -450,9 +451,10 @@ def curl_e(wavenumber: complex, dxes: dx_lists_t) -> sparse.spmatrix:
 | 
			
		||||
    for d in dxes[0]:
 | 
			
		||||
        n *= len(d)
 | 
			
		||||
 | 
			
		||||
    print(wavenumber, n)
 | 
			
		||||
    Bz = -1j * wavenumber * sparse.eye(n)
 | 
			
		||||
    Dfx, Dfy = operators.deriv_forward(dxes[0])
 | 
			
		||||
    return operators.cross([Dfx, Dfy, Bz])
 | 
			
		||||
    Dfx, Dfy = deriv_forward(dxes[0])
 | 
			
		||||
    return cross([Dfx, Dfy, Bz])
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def curl_h(wavenumber: complex, dxes: dx_lists_t) -> sparse.spmatrix:
 | 
			
		||||
@ -461,7 +463,7 @@ def curl_h(wavenumber: complex, dxes: dx_lists_t) -> sparse.spmatrix:
 | 
			
		||||
 | 
			
		||||
    Args:
 | 
			
		||||
        wavenumber: Wavenumber assuming fields have z-dependence of `exp(-i * wavenumber * z)`
 | 
			
		||||
        dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.types` (2D)
 | 
			
		||||
        dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types` (2D)
 | 
			
		||||
 | 
			
		||||
    Return:
 | 
			
		||||
        Sparse matrix representation of the operator.
 | 
			
		||||
@ -471,16 +473,16 @@ def curl_h(wavenumber: complex, dxes: dx_lists_t) -> sparse.spmatrix:
 | 
			
		||||
        n *= len(d)
 | 
			
		||||
 | 
			
		||||
    Bz = -1j * wavenumber * sparse.eye(n)
 | 
			
		||||
    Dbx, Dby = operators.deriv_back(dxes[1])
 | 
			
		||||
    return operators.cross([Dbx, Dby, Bz])
 | 
			
		||||
    Dbx, Dby = deriv_back(dxes[1])
 | 
			
		||||
    return cross([Dbx, Dby, Bz])
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def h_err(h: vfield_t,
 | 
			
		||||
def h_err(h: vfdfield_t,
 | 
			
		||||
          wavenumber: complex,
 | 
			
		||||
          omega: complex,
 | 
			
		||||
          dxes: dx_lists_t,
 | 
			
		||||
          epsilon: vfield_t,
 | 
			
		||||
          mu: vfield_t = None
 | 
			
		||||
          epsilon: vfdfield_t,
 | 
			
		||||
          mu: vfdfield_t = None
 | 
			
		||||
          ) -> float:
 | 
			
		||||
    """
 | 
			
		||||
    Calculates the relative error in the H field
 | 
			
		||||
@ -489,7 +491,7 @@ def h_err(h: vfield_t,
 | 
			
		||||
        h: Vectorized H field
 | 
			
		||||
        wavenumber: Wavenumber assuming fields have z-dependence of `exp(-i * wavenumber * z)`
 | 
			
		||||
        omega: The angular frequency of the system
 | 
			
		||||
        dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.types` (2D)
 | 
			
		||||
        dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types` (2D)
 | 
			
		||||
        epsilon: Vectorized dielectric constant grid
 | 
			
		||||
        mu: Vectorized magnetic permeability grid (default 1 everywhere)
 | 
			
		||||
 | 
			
		||||
@ -509,12 +511,12 @@ def h_err(h: vfield_t,
 | 
			
		||||
    return norm(op) / norm(h)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def e_err(e: vfield_t,
 | 
			
		||||
def e_err(e: vfdfield_t,
 | 
			
		||||
          wavenumber: complex,
 | 
			
		||||
          omega: complex,
 | 
			
		||||
          dxes: dx_lists_t,
 | 
			
		||||
          epsilon: vfield_t,
 | 
			
		||||
          mu: vfield_t = None
 | 
			
		||||
          epsilon: vfdfield_t,
 | 
			
		||||
          mu: vfdfield_t = None
 | 
			
		||||
          ) -> float:
 | 
			
		||||
    """
 | 
			
		||||
    Calculates the relative error in the E field
 | 
			
		||||
@ -523,7 +525,7 @@ def e_err(e: vfield_t,
 | 
			
		||||
        e: Vectorized E field
 | 
			
		||||
        wavenumber: Wavenumber assuming fields have z-dependence of `exp(-i * wavenumber * z)`
 | 
			
		||||
        omega: The angular frequency of the system
 | 
			
		||||
        dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.types` (2D)
 | 
			
		||||
        dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types` (2D)
 | 
			
		||||
        epsilon: Vectorized dielectric constant grid
 | 
			
		||||
        mu: Vectorized magnetic permeability grid (default 1 everywhere)
 | 
			
		||||
 | 
			
		||||
@ -545,17 +547,17 @@ def e_err(e: vfield_t,
 | 
			
		||||
def solve_modes(mode_numbers: List[int],
 | 
			
		||||
                omega: complex,
 | 
			
		||||
                dxes: dx_lists_t,
 | 
			
		||||
                epsilon: vfield_t,
 | 
			
		||||
                mu: vfield_t = None,
 | 
			
		||||
                epsilon: vfdfield_t,
 | 
			
		||||
                mu: vfdfield_t = None,
 | 
			
		||||
                mode_margin: int = 2,
 | 
			
		||||
                ) -> Tuple[List[vfield_t], List[complex]]:
 | 
			
		||||
                ) -> Tuple[List[vfdfield_t], List[complex]]:
 | 
			
		||||
    """
 | 
			
		||||
    Given a 2D region, attempts to solve for the eigenmode with the specified mode numbers.
 | 
			
		||||
 | 
			
		||||
    Args:
 | 
			
		||||
       mode_numbers: List of 0-indexed mode numbers to solve for
 | 
			
		||||
       omega: Angular frequency of the simulation
 | 
			
		||||
       dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.types`
 | 
			
		||||
       dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types`
 | 
			
		||||
       epsilon: Dielectric constant
 | 
			
		||||
       mu: Magnetic permeability (default 1 everywhere)
 | 
			
		||||
       mode_margin: The eigensolver will actually solve for `(max(mode_number) + mode_margin)`
 | 
			
		||||
@ -570,17 +572,18 @@ def solve_modes(mode_numbers: List[int],
 | 
			
		||||
    Solve for the largest-magnitude eigenvalue of the real operator
 | 
			
		||||
    '''
 | 
			
		||||
    dxes_real = [[numpy.real(dx) for dx in dxi] for dxi in dxes]
 | 
			
		||||
    A_r = waveguide.operator_e(numpy.real(omega), dxes_real, numpy.real(epsilon), numpy.real(mu))
 | 
			
		||||
    A_r = operator_e(numpy.real(omega), dxes_real, numpy.real(epsilon), numpy.real(mu))
 | 
			
		||||
 | 
			
		||||
    eigvals, eigvecs = signed_eigensolve(A_r, max(mode_number) + mode_margin)
 | 
			
		||||
    e_xys = eigvecs[:, -(numpy.array(mode_number) + 1)]
 | 
			
		||||
    eigvals, eigvecs = signed_eigensolve(A_r, max(mode_numbers) + mode_margin)
 | 
			
		||||
    e_xys = eigvecs[:, -(numpy.array(mode_numbers) + 1)]
 | 
			
		||||
 | 
			
		||||
    '''
 | 
			
		||||
    Now solve for the eigenvector of the full operator, using the real operator's
 | 
			
		||||
     eigenvector as an initial guess for Rayleigh quotient iteration.
 | 
			
		||||
    '''
 | 
			
		||||
    A = waveguide.operator_e(omega, dxes, epsilon, mu)
 | 
			
		||||
    eigvals, e_xys = rayleigh_quotient_iteration(A, e_xys)
 | 
			
		||||
    A = operator_e(omega, dxes, epsilon, mu)
 | 
			
		||||
    for nn in range(len(mode_numbers)):
 | 
			
		||||
        eigvals[nn], e_xys[:, nn] = rayleigh_quotient_iteration(A, e_xys[:, nn])
 | 
			
		||||
 | 
			
		||||
    # Calculate the wave-vector (force the real part to be positive)
 | 
			
		||||
    wavenumbers = numpy.sqrt(eigvals)
 | 
			
		||||
@ -592,7 +595,7 @@ def solve_modes(mode_numbers: List[int],
 | 
			
		||||
def solve_mode(mode_number: int,
 | 
			
		||||
               *args,
 | 
			
		||||
               **kwargs
 | 
			
		||||
               ) -> Tuple[vfield_t, complex]:
 | 
			
		||||
               ) -> Tuple[vfdfield_t, complex]:
 | 
			
		||||
    """
 | 
			
		||||
    Wrapper around `solve_modes()` that solves for a single mode.
 | 
			
		||||
 | 
			
		||||
@ -604,4 +607,5 @@ def solve_mode(mode_number: int,
 | 
			
		||||
    Returns:
 | 
			
		||||
        (e_xy, wavenumber)
 | 
			
		||||
    """
 | 
			
		||||
    return solve_modes(mode_numbers=[mode_number], *args, **kwargs)
 | 
			
		||||
    e_xys, wavenumbers = solve_modes(mode_numbers=[mode_number], *args, **kwargs)
 | 
			
		||||
    return e_xys[:, 0], wavenumbers[0]
 | 
			
		||||
 | 
			
		||||
@ -8,7 +8,7 @@ from typing import Dict, List, Tuple
 | 
			
		||||
import numpy
 | 
			
		||||
import scipy.sparse as sparse
 | 
			
		||||
 | 
			
		||||
from .. import vec, unvec, dx_lists_t, vfield_t, field_t
 | 
			
		||||
from ..fdmath import vec, unvec, dx_lists_t, vfdfield_t, fdfield_t
 | 
			
		||||
from . import operators, waveguide_2d, functional
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -18,8 +18,8 @@ def solve_mode(mode_number: int,
 | 
			
		||||
               axis: int,
 | 
			
		||||
               polarity: int,
 | 
			
		||||
               slices: List[slice],
 | 
			
		||||
               epsilon: field_t,
 | 
			
		||||
               mu: field_t = None,
 | 
			
		||||
               epsilon: fdfield_t,
 | 
			
		||||
               mu: fdfield_t = None,
 | 
			
		||||
               ) -> Dict[str, complex or numpy.ndarray]:
 | 
			
		||||
    """
 | 
			
		||||
    Given a 3D grid, selects a slice from the grid and attempts to
 | 
			
		||||
@ -28,7 +28,7 @@ def solve_mode(mode_number: int,
 | 
			
		||||
    Args:
 | 
			
		||||
        mode_number: Number of the mode, 0-indexed
 | 
			
		||||
        omega: Angular frequency of the simulation
 | 
			
		||||
        dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.types`
 | 
			
		||||
        dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types`
 | 
			
		||||
        axis: Propagation axis (0=x, 1=y, 2=z)
 | 
			
		||||
        polarity: Propagation direction (+1 for +ve, -1 for -ve)
 | 
			
		||||
        slices: `epsilon[tuple(slices)]` is used to select the portion of the grid to use
 | 
			
		||||
@ -71,7 +71,7 @@ def solve_mode(mode_number: int,
 | 
			
		||||
    wavenumber = 2/dx_prop * numpy.arcsin(wavenumber_2d * dx_prop/2)
 | 
			
		||||
 | 
			
		||||
    shape = [d.size for d in args_2d['dxes'][0]]
 | 
			
		||||
    ve, vh = waveguide.normalized_fields_e(e_xy, wavenumber=wavenumber_2d, **args_2d, prop_phase=dx_prop * wavenumber)
 | 
			
		||||
    ve, vh = waveguide_2d.normalized_fields_e(e_xy, wavenumber=wavenumber_2d, **args_2d, prop_phase=dx_prop * wavenumber)
 | 
			
		||||
    e = unvec(ve, shape)
 | 
			
		||||
    h = unvec(vh, shape)
 | 
			
		||||
 | 
			
		||||
@ -98,16 +98,16 @@ def solve_mode(mode_number: int,
 | 
			
		||||
    return results
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def compute_source(E: field_t,
 | 
			
		||||
def compute_source(E: fdfield_t,
 | 
			
		||||
                   wavenumber: complex,
 | 
			
		||||
                   omega: complex,
 | 
			
		||||
                   dxes: dx_lists_t,
 | 
			
		||||
                   axis: int,
 | 
			
		||||
                   polarity: int,
 | 
			
		||||
                   slices: List[slice],
 | 
			
		||||
                   epsilon: field_t,
 | 
			
		||||
                   mu: field_t = None,
 | 
			
		||||
                   ) -> field_t:
 | 
			
		||||
                   epsilon: fdfield_t,
 | 
			
		||||
                   mu: fdfield_t = None,
 | 
			
		||||
                   ) -> fdfield_t:
 | 
			
		||||
    """
 | 
			
		||||
    Given an eigenmode obtained by `solve_mode`, returns the current source distribution
 | 
			
		||||
    necessary to position a unidirectional source at the slice location.
 | 
			
		||||
@ -116,7 +116,7 @@ def compute_source(E: field_t,
 | 
			
		||||
        E: E-field of the mode
 | 
			
		||||
        wavenumber: Wavenumber of the mode
 | 
			
		||||
        omega: Angular frequency of the simulation
 | 
			
		||||
        dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.types`
 | 
			
		||||
        dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types`
 | 
			
		||||
        axis: Propagation axis (0=x, 1=y, 2=z)
 | 
			
		||||
        polarity: Propagation direction (+1 for +ve, -1 for -ve)
 | 
			
		||||
        slices: `epsilon[tuple(slices)]` is used to select the portion of the grid to use
 | 
			
		||||
@ -143,13 +143,13 @@ def compute_source(E: field_t,
 | 
			
		||||
    return J
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def compute_overlap_e(E: field_t,
 | 
			
		||||
def compute_overlap_e(E: fdfield_t,
 | 
			
		||||
                      wavenumber: complex,
 | 
			
		||||
                      dxes: dx_lists_t,
 | 
			
		||||
                      axis: int,
 | 
			
		||||
                      polarity: int,
 | 
			
		||||
                      slices: List[slice],
 | 
			
		||||
                      ) -> field_t:                 # TODO DOCS
 | 
			
		||||
                      ) -> fdfield_t:                 # TODO DOCS
 | 
			
		||||
    """
 | 
			
		||||
    Given an eigenmode obtained by `solve_mode`, calculates an overlap_e for the
 | 
			
		||||
    mode orthogonality relation Integrate(((E x H_mode) + (E_mode x H)) dot dn)
 | 
			
		||||
@ -160,7 +160,7 @@ def compute_overlap_e(E: field_t,
 | 
			
		||||
        H: H-field of the mode (advanced by half of a Yee cell from E)
 | 
			
		||||
        wavenumber: Wavenumber of the mode
 | 
			
		||||
        omega: Angular frequency of the simulation
 | 
			
		||||
        dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.types`
 | 
			
		||||
        dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types`
 | 
			
		||||
        axis: Propagation axis (0=x, 1=y, 2=z)
 | 
			
		||||
        polarity: Propagation direction (+1 for +ve, -1 for -ve)
 | 
			
		||||
        slices: `epsilon[tuple(slices)]` is used to select the portion of the grid to use
 | 
			
		||||
@ -188,13 +188,13 @@ def compute_overlap_e(E: field_t,
 | 
			
		||||
    return Etgt
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def expand_e(E: field_t,
 | 
			
		||||
def expand_e(E: fdfield_t,
 | 
			
		||||
             wavenumber: complex,
 | 
			
		||||
             dxes: dx_lists_t,
 | 
			
		||||
             axis: int,
 | 
			
		||||
             polarity: int,
 | 
			
		||||
             slices: List[slice],
 | 
			
		||||
             ) -> field_t:
 | 
			
		||||
             ) -> fdfield_t:
 | 
			
		||||
    """
 | 
			
		||||
    Given an eigenmode obtained by `solve_mode`, expands the E-field from the 2D
 | 
			
		||||
    slice where the mode was calculated to the entire domain (along the propagation
 | 
			
		||||
@ -205,7 +205,7 @@ def expand_e(E: field_t,
 | 
			
		||||
    Args:
 | 
			
		||||
        E: E-field of the mode
 | 
			
		||||
        wavenumber: Wavenumber of the mode
 | 
			
		||||
        dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.types`
 | 
			
		||||
        dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types`
 | 
			
		||||
        axis: Propagation axis (0=x, 1=y, 2=z)
 | 
			
		||||
        polarity: Propagation direction (+1 for +ve, -1 for -ve)
 | 
			
		||||
        slices: `epsilon[tuple(slices)]` is used to select the portion of the grid to use
 | 
			
		||||
 | 
			
		||||
@ -13,7 +13,7 @@ import numpy
 | 
			
		||||
from numpy.linalg import norm
 | 
			
		||||
import scipy.sparse as sparse
 | 
			
		||||
 | 
			
		||||
from .. import vec, unvec, dx_lists_t, field_t, vfield_t
 | 
			
		||||
from ..fdmath import vec, unvec, dx_lists_t, fdfield_t, vfdfield_t
 | 
			
		||||
from ..eigensolvers import signed_eigensolve, rayleigh_quotient_iteration
 | 
			
		||||
from . import operators
 | 
			
		||||
 | 
			
		||||
@ -23,7 +23,7 @@ __author__ = 'Jan Petykiewicz'
 | 
			
		||||
 | 
			
		||||
def cylindrical_operator(omega: complex,
 | 
			
		||||
                         dxes: dx_lists_t,
 | 
			
		||||
                         epsilon: vfield_t,
 | 
			
		||||
                         epsilon: vfdfield_t,
 | 
			
		||||
                         r0: float,
 | 
			
		||||
                         ) -> sparse.spmatrix:
 | 
			
		||||
    """
 | 
			
		||||
@ -41,7 +41,7 @@ def cylindrical_operator(omega: complex,
 | 
			
		||||
 | 
			
		||||
    Args:
 | 
			
		||||
        omega: The angular frequency of the system
 | 
			
		||||
        dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.types` (2D)
 | 
			
		||||
        dxes: Grid parameters `[dx_e, dx_h]` as described in `meanas.fdmath.types` (2D)
 | 
			
		||||
        epsilon: Vectorized dielectric constant grid
 | 
			
		||||
        r0: Radius of curvature for the simulation. This should be the minimum value of
 | 
			
		||||
            r within the simulation domain.
 | 
			
		||||
@ -83,9 +83,9 @@ def cylindrical_operator(omega: complex,
 | 
			
		||||
def solve_mode(mode_number: int,
 | 
			
		||||
               omega: complex,
 | 
			
		||||
               dxes: dx_lists_t,
 | 
			
		||||
               epsilon: vfield_t,
 | 
			
		||||
               epsilon: vfdfield_t,
 | 
			
		||||
               r0: float,
 | 
			
		||||
               ) -> Dict[str, complex or field_t]:
 | 
			
		||||
               ) -> Dict[str, complex or fdfield_t]:
 | 
			
		||||
    """
 | 
			
		||||
    TODO: fixup
 | 
			
		||||
    Given a 2d (r, y) slice of epsilon, attempts to solve for the eigenmode
 | 
			
		||||
@ -94,7 +94,7 @@ def solve_mode(mode_number: int,
 | 
			
		||||
    Args:
 | 
			
		||||
        mode_number: Number of the mode, 0-indexed
 | 
			
		||||
        omega: Angular frequency of the simulation
 | 
			
		||||
        dxes: Grid parameters [dx_e, dx_h] as described in meanas.types.
 | 
			
		||||
        dxes: Grid parameters [dx_e, dx_h] as described in meanas.fdmath.types.
 | 
			
		||||
              The first coordinate is assumed to be r, the second is y.
 | 
			
		||||
        epsilon: Dielectric constant
 | 
			
		||||
        r0: Radius of curvature for the simulation. This should be the minimum value of
 | 
			
		||||
 | 
			
		||||
@ -91,4 +91,12 @@ and
 | 
			
		||||
  while \\( \\hat{h} \\) and \\( \\tilde{h} \\) are located at \\((m \pm \\frac{1}{2}, n \\pm \\frac{1}{2}, p \\pm \\frac{1}{2})\\)
 | 
			
		||||
  with components at \\((m, n \\pm \\frac{1}{2}, p \\pm \\frac{1}{2})\\) etc.
 | 
			
		||||
 | 
			
		||||
TODO: Explain fdfield_t vs vfdfield_t  / operators vs functional
 | 
			
		||||
TODO: explain dxes
 | 
			
		||||
 | 
			
		||||
"""
 | 
			
		||||
 | 
			
		||||
from .types import fdfield_t, vfdfield_t, dx_lists_t, fdfield_updater_t
 | 
			
		||||
from .vectorization import vec, unvec
 | 
			
		||||
from . import operators, functional, types, vectorization
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -6,10 +6,10 @@ Basic discrete calculus etc.
 | 
			
		||||
from typing import List, Callable, Tuple, Dict
 | 
			
		||||
import numpy
 | 
			
		||||
 | 
			
		||||
from .. import field_t, field_updater
 | 
			
		||||
from .types import fdfield_t, fdfield_updater_t
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def deriv_forward(dx_e: List[numpy.ndarray] = None) -> field_updater:
 | 
			
		||||
def deriv_forward(dx_e: List[numpy.ndarray] = None) -> fdfield_updater_t:
 | 
			
		||||
    """
 | 
			
		||||
    Utility operators for taking discretized derivatives (backward variant).
 | 
			
		||||
 | 
			
		||||
@ -31,7 +31,7 @@ def deriv_forward(dx_e: List[numpy.ndarray] = None) -> field_updater:
 | 
			
		||||
    return derivs
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def deriv_back(dx_h: List[numpy.ndarray] = None) -> field_updater:
 | 
			
		||||
def deriv_back(dx_h: List[numpy.ndarray] = None) -> fdfield_updater_t:
 | 
			
		||||
    """
 | 
			
		||||
    Utility operators for taking discretized derivatives (forward variant).
 | 
			
		||||
 | 
			
		||||
@ -53,7 +53,7 @@ def deriv_back(dx_h: List[numpy.ndarray] = None) -> field_updater:
 | 
			
		||||
    return derivs
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def curl_forward(dx_e: List[numpy.ndarray] = None) -> field_updater:
 | 
			
		||||
def curl_forward(dx_e: List[numpy.ndarray] = None) -> fdfield_updater_t:
 | 
			
		||||
    """
 | 
			
		||||
    Curl operator for use with the E field.
 | 
			
		||||
 | 
			
		||||
@ -67,7 +67,7 @@ def curl_forward(dx_e: List[numpy.ndarray] = None) -> field_updater:
 | 
			
		||||
    """
 | 
			
		||||
    Dx, Dy, Dz = deriv_forward(dx_e)
 | 
			
		||||
 | 
			
		||||
    def ce_fun(e: field_t) -> field_t:
 | 
			
		||||
    def ce_fun(e: fdfield_t) -> fdfield_t:
 | 
			
		||||
        output = numpy.empty_like(e)
 | 
			
		||||
        output[0] = Dy(e[2])
 | 
			
		||||
        output[1] = Dz(e[0])
 | 
			
		||||
@ -80,7 +80,7 @@ def curl_forward(dx_e: List[numpy.ndarray] = None) -> field_updater:
 | 
			
		||||
    return ce_fun
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def curl_back(dx_h: List[numpy.ndarray] = None) -> field_updater:
 | 
			
		||||
def curl_back(dx_h: List[numpy.ndarray] = None) -> fdfield_updater_t:
 | 
			
		||||
    """
 | 
			
		||||
    Create a function which takes the backward curl of a field.
 | 
			
		||||
 | 
			
		||||
@ -94,7 +94,7 @@ def curl_back(dx_h: List[numpy.ndarray] = None) -> field_updater:
 | 
			
		||||
    """
 | 
			
		||||
    Dx, Dy, Dz = deriv_back(dx_h)
 | 
			
		||||
 | 
			
		||||
    def ch_fun(h: field_t) -> field_t:
 | 
			
		||||
    def ch_fun(h: fdfield_t) -> fdfield_t:
 | 
			
		||||
        output = numpy.empty_like(h)
 | 
			
		||||
        output[0] = Dy(h[2])
 | 
			
		||||
        output[1] = Dz(h[0])
 | 
			
		||||
 | 
			
		||||
@ -7,7 +7,7 @@ from typing import List, Callable, Tuple, Dict
 | 
			
		||||
import numpy
 | 
			
		||||
import scipy.sparse as sparse
 | 
			
		||||
 | 
			
		||||
from .. import field_t, vfield_t
 | 
			
		||||
from .types import fdfield_t, vfdfield_t
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def rotation(axis: int, shape: List[int], shift_distance: int=1) -> sparse.spmatrix:
 | 
			
		||||
@ -155,7 +155,7 @@ def cross(B: List[sparse.spmatrix]) -> sparse.spmatrix:
 | 
			
		||||
                        [-B[1], B[0], zero]])
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def vec_cross(b: vfield_t) -> sparse.spmatrix:
 | 
			
		||||
def vec_cross(b: vfdfield_t) -> sparse.spmatrix:
 | 
			
		||||
    """
 | 
			
		||||
    Vector cross product operator
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -8,7 +8,7 @@ from typing import List, Callable
 | 
			
		||||
# Field types
 | 
			
		||||
# TODO: figure out a better way to set the docstrings without creating actual subclasses?
 | 
			
		||||
#   Probably not a big issue since they're only used for type hinting
 | 
			
		||||
class field_t(numpy.ndarray):
 | 
			
		||||
class fdfield_t(numpy.ndarray):
 | 
			
		||||
    """
 | 
			
		||||
    Vector field with shape (3, X, Y, Z) (e.g. `[E_x, E_y, E_z]`)
 | 
			
		||||
 | 
			
		||||
@ -16,7 +16,7 @@ class field_t(numpy.ndarray):
 | 
			
		||||
    """
 | 
			
		||||
    pass
 | 
			
		||||
 | 
			
		||||
class vfield_t(numpy.ndarray):
 | 
			
		||||
class vfdfield_t(numpy.ndarray):
 | 
			
		||||
    """
 | 
			
		||||
    Linearized vector field (single vector of length 3*X*Y*Z)
 | 
			
		||||
 | 
			
		||||
@ -37,4 +37,4 @@ dx_lists_t = List[List[numpy.ndarray]]
 | 
			
		||||
'''
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
field_updater = Callable[[field_t], field_t]
 | 
			
		||||
fdfield_updater_t = Callable[[fdfield_t], fdfield_t]
 | 
			
		||||
@ -7,13 +7,13 @@ Vectorized versions of the field use row-major (ie., C-style) ordering.
 | 
			
		||||
from typing import List
 | 
			
		||||
import numpy
 | 
			
		||||
 | 
			
		||||
from .types import field_t, vfield_t
 | 
			
		||||
from .types import fdfield_t, vfdfield_t
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
__author__ = 'Jan Petykiewicz'
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def vec(f: field_t) -> vfield_t:
 | 
			
		||||
def vec(f: fdfield_t) -> vfdfield_t:
 | 
			
		||||
    """
 | 
			
		||||
    Create a 1D ndarray from a 3D vector field which spans a 1-3D region.
 | 
			
		||||
 | 
			
		||||
@ -28,7 +28,7 @@ def vec(f: field_t) -> vfield_t:
 | 
			
		||||
    return numpy.ravel(f, order='C')
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def unvec(v: vfield_t, shape: numpy.ndarray) -> field_t:
 | 
			
		||||
def unvec(v: vfdfield_t, shape: numpy.ndarray) -> fdfield_t:
 | 
			
		||||
    """
 | 
			
		||||
    Perform the inverse of vec(): take a 1D ndarray and output a 3D field
 | 
			
		||||
     of form [f_x, f_y, f_z] where each of f_* is a len(shape)-dimensional
 | 
			
		||||
@ -4,27 +4,33 @@ Basic FDTD field updates
 | 
			
		||||
from typing import List, Callable, Tuple, Dict
 | 
			
		||||
import numpy
 | 
			
		||||
 | 
			
		||||
from .. import dx_lists_t, field_t, field_updater
 | 
			
		||||
from ..fdmath import dx_lists_t, fdfield_t, fdfield_updater_t
 | 
			
		||||
from ..fdmath.functional import curl_forward, curl_back
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
__author__ = 'Jan Petykiewicz'
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def maxwell_e(dt: float, dxes: dx_lists_t = None) -> field_updater:
 | 
			
		||||
    curl_h_fun = curl_back(dxes[1])
 | 
			
		||||
def maxwell_e(dt: float, dxes: dx_lists_t = None) -> fdfield_updater_t:
 | 
			
		||||
    if dxes is not None:
 | 
			
		||||
        curl_h_fun = curl_back(dxes[1])
 | 
			
		||||
    else:
 | 
			
		||||
        curl_h_fun = curl_back()
 | 
			
		||||
 | 
			
		||||
    def me_fun(e: field_t, h: field_t, epsilon: field_t):
 | 
			
		||||
    def me_fun(e: fdfield_t, h: fdfield_t, epsilon: fdfield_t):
 | 
			
		||||
        e += dt * curl_h_fun(h) / epsilon
 | 
			
		||||
        return e
 | 
			
		||||
 | 
			
		||||
    return me_fun
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def maxwell_h(dt: float, dxes: dx_lists_t = None) -> field_updater:
 | 
			
		||||
    curl_e_fun = curl_forward(dxes[0])
 | 
			
		||||
def maxwell_h(dt: float, dxes: dx_lists_t = None) -> fdfield_updater_t:
 | 
			
		||||
    if dxes is not None:
 | 
			
		||||
        curl_e_fun = curl_forward(dxes[0])
 | 
			
		||||
    else:
 | 
			
		||||
        curl_e_fun = curl_forward()
 | 
			
		||||
 | 
			
		||||
    def mh_fun(e: field_t, h: field_t):
 | 
			
		||||
    def mh_fun(e: fdfield_t, h: fdfield_t):
 | 
			
		||||
        h -= dt * curl_e_fun(e)
 | 
			
		||||
        return h
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -5,12 +5,12 @@ Boundary conditions
 | 
			
		||||
from typing import List, Callable, Tuple, Dict
 | 
			
		||||
import numpy
 | 
			
		||||
 | 
			
		||||
from .. import dx_lists_t, field_t, field_updater
 | 
			
		||||
from ..fdmath import dx_lists_t, fdfield_t, fdfield_updater_t
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def conducting_boundary(direction: int,
 | 
			
		||||
                        polarity: int
 | 
			
		||||
                        ) -> Tuple[field_updater, field_updater]:
 | 
			
		||||
                        ) -> Tuple[fdfield_updater_t, fdfield_updater_t]:
 | 
			
		||||
    dirs = [0, 1, 2]
 | 
			
		||||
    if direction not in dirs:
 | 
			
		||||
        raise Exception('Invalid direction: {}'.format(direction))
 | 
			
		||||
@ -23,13 +23,13 @@ def conducting_boundary(direction: int,
 | 
			
		||||
        boundary_slice[direction] = 0
 | 
			
		||||
        shifted1_slice[direction] = 1
 | 
			
		||||
 | 
			
		||||
        def en(e: field_t):
 | 
			
		||||
        def en(e: fdfield_t):
 | 
			
		||||
            e[direction][boundary_slice] = 0
 | 
			
		||||
            e[u][boundary_slice] = e[u][shifted1_slice]
 | 
			
		||||
            e[v][boundary_slice] = e[v][shifted1_slice]
 | 
			
		||||
            return e
 | 
			
		||||
 | 
			
		||||
        def hn(h: field_t):
 | 
			
		||||
        def hn(h: fdfield_t):
 | 
			
		||||
            h[direction][boundary_slice] = h[direction][shifted1_slice]
 | 
			
		||||
            h[u][boundary_slice] = 0
 | 
			
		||||
            h[v][boundary_slice] = 0
 | 
			
		||||
@ -45,14 +45,14 @@ def conducting_boundary(direction: int,
 | 
			
		||||
        shifted1_slice[direction] = -2
 | 
			
		||||
        shifted2_slice[direction] = -3
 | 
			
		||||
 | 
			
		||||
        def ep(e: field_t):
 | 
			
		||||
        def ep(e: fdfield_t):
 | 
			
		||||
            e[direction][boundary_slice] = -e[direction][shifted2_slice]
 | 
			
		||||
            e[direction][shifted1_slice] = 0
 | 
			
		||||
            e[u][boundary_slice] = e[u][shifted1_slice]
 | 
			
		||||
            e[v][boundary_slice] = e[v][shifted1_slice]
 | 
			
		||||
            return e
 | 
			
		||||
 | 
			
		||||
        def hp(h: field_t):
 | 
			
		||||
        def hp(h: fdfield_t):
 | 
			
		||||
            h[direction][boundary_slice] = h[direction][shifted1_slice]
 | 
			
		||||
            h[u][boundary_slice] = -h[u][shifted2_slice]
 | 
			
		||||
            h[u][shifted1_slice] = 0
 | 
			
		||||
 | 
			
		||||
@ -2,12 +2,13 @@
 | 
			
		||||
from typing import List, Callable, Tuple, Dict
 | 
			
		||||
import numpy
 | 
			
		||||
 | 
			
		||||
from .. import dx_lists_t, field_t, field_updater, fdmath
 | 
			
		||||
from ..fdmath import dx_lists_t, fdfield_t, fdfield_updater_t
 | 
			
		||||
from ..fdmath.functional import deriv_back, deriv_forward
 | 
			
		||||
 | 
			
		||||
def poynting(e: field_t,
 | 
			
		||||
             h: field_t,
 | 
			
		||||
def poynting(e: fdfield_t,
 | 
			
		||||
             h: fdfield_t,
 | 
			
		||||
             dxes: dx_lists_t = None,
 | 
			
		||||
             ) -> field_t:
 | 
			
		||||
             ) -> fdfield_t:
 | 
			
		||||
    if dxes is None:
 | 
			
		||||
        dxes = tuple(tuple(numpy.ones(1) for _ in range(3)) for _ in range(2))
 | 
			
		||||
 | 
			
		||||
@ -25,51 +26,51 @@ def poynting(e: field_t,
 | 
			
		||||
    return s
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def poynting_divergence(s: field_t = None,
 | 
			
		||||
def poynting_divergence(s: fdfield_t = None,
 | 
			
		||||
                        *,
 | 
			
		||||
                        e: field_t = None,
 | 
			
		||||
                        h: field_t = None,
 | 
			
		||||
                        e: fdfield_t = None,
 | 
			
		||||
                        h: fdfield_t = None,
 | 
			
		||||
                        dxes: dx_lists_t = None,
 | 
			
		||||
                        ) -> field_t:
 | 
			
		||||
                        ) -> fdfield_t:
 | 
			
		||||
    if s is None:
 | 
			
		||||
        s = poynting(e, h, dxes=dxes)
 | 
			
		||||
 | 
			
		||||
    Dx, Dy, Dz = fdmath.functional.deriv_back()
 | 
			
		||||
    Dx, Dy, Dz = deriv_back()
 | 
			
		||||
    ds = Dx(s[0]) + Dy(s[1]) + Dz(s[2])
 | 
			
		||||
    return ds
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def energy_hstep(e0: field_t,
 | 
			
		||||
                 h1: field_t,
 | 
			
		||||
                 e2: field_t,
 | 
			
		||||
                 epsilon: field_t = None,
 | 
			
		||||
                 mu: field_t = None,
 | 
			
		||||
def energy_hstep(e0: fdfield_t,
 | 
			
		||||
                 h1: fdfield_t,
 | 
			
		||||
                 e2: fdfield_t,
 | 
			
		||||
                 epsilon: fdfield_t = None,
 | 
			
		||||
                 mu: fdfield_t = None,
 | 
			
		||||
                 dxes: dx_lists_t = None,
 | 
			
		||||
                 ) -> field_t:
 | 
			
		||||
                 ) -> fdfield_t:
 | 
			
		||||
    u = dxmul(e0 * e2, h1 * h1, epsilon, mu, dxes)
 | 
			
		||||
    return u
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def energy_estep(h0: field_t,
 | 
			
		||||
                 e1: field_t,
 | 
			
		||||
                 h2: field_t,
 | 
			
		||||
                 epsilon: field_t = None,
 | 
			
		||||
                 mu: field_t = None,
 | 
			
		||||
def energy_estep(h0: fdfield_t,
 | 
			
		||||
                 e1: fdfield_t,
 | 
			
		||||
                 h2: fdfield_t,
 | 
			
		||||
                 epsilon: fdfield_t = None,
 | 
			
		||||
                 mu: fdfield_t = None,
 | 
			
		||||
                 dxes: dx_lists_t = None,
 | 
			
		||||
                 ) -> field_t:
 | 
			
		||||
                 ) -> fdfield_t:
 | 
			
		||||
    u = dxmul(e1 * e1, h0 * h2, epsilon, mu, dxes)
 | 
			
		||||
    return u
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def delta_energy_h2e(dt: float,
 | 
			
		||||
                     e0: field_t,
 | 
			
		||||
                     h1: field_t,
 | 
			
		||||
                     e2: field_t,
 | 
			
		||||
                     h3: field_t,
 | 
			
		||||
                     epsilon: field_t = None,
 | 
			
		||||
                     mu: field_t = None,
 | 
			
		||||
                     e0: fdfield_t,
 | 
			
		||||
                     h1: fdfield_t,
 | 
			
		||||
                     e2: fdfield_t,
 | 
			
		||||
                     h3: fdfield_t,
 | 
			
		||||
                     epsilon: fdfield_t = None,
 | 
			
		||||
                     mu: fdfield_t = None,
 | 
			
		||||
                     dxes: dx_lists_t = None,
 | 
			
		||||
                     ) -> field_t:
 | 
			
		||||
                     ) -> fdfield_t:
 | 
			
		||||
    """
 | 
			
		||||
    This is just from (e2 * e2 + h3 * h1) - (h1 * h1 + e0 * e2)
 | 
			
		||||
    """
 | 
			
		||||
@ -80,14 +81,14 @@ def delta_energy_h2e(dt: float,
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def delta_energy_e2h(dt: float,
 | 
			
		||||
                     h0: field_t,
 | 
			
		||||
                     e1: field_t,
 | 
			
		||||
                     h2: field_t,
 | 
			
		||||
                     e3: field_t,
 | 
			
		||||
                     epsilon: field_t = None,
 | 
			
		||||
                     mu: field_t = None,
 | 
			
		||||
                     h0: fdfield_t,
 | 
			
		||||
                     e1: fdfield_t,
 | 
			
		||||
                     h2: fdfield_t,
 | 
			
		||||
                     e3: fdfield_t,
 | 
			
		||||
                     epsilon: fdfield_t = None,
 | 
			
		||||
                     mu: fdfield_t = None,
 | 
			
		||||
                     dxes: dx_lists_t = None,
 | 
			
		||||
                     ) -> field_t:
 | 
			
		||||
                     ) -> fdfield_t:
 | 
			
		||||
    """
 | 
			
		||||
    This is just from (h2 * h2 + e3 * e1) - (e1 * e1 + h0 * h2)
 | 
			
		||||
    """
 | 
			
		||||
@ -97,7 +98,7 @@ def delta_energy_e2h(dt: float,
 | 
			
		||||
    return du
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def delta_energy_j(j0: field_t, e1: field_t, dxes: dx_lists_t = None) -> field_t:
 | 
			
		||||
def delta_energy_j(j0: fdfield_t, e1: fdfield_t, dxes: dx_lists_t = None) -> fdfield_t:
 | 
			
		||||
    if dxes is None:
 | 
			
		||||
        dxes = tuple(tuple(numpy.ones(1) for _ in range(3)) for _ in range(2))
 | 
			
		||||
 | 
			
		||||
@ -108,12 +109,12 @@ def delta_energy_j(j0: field_t, e1: field_t, dxes: dx_lists_t = None) -> field_t
 | 
			
		||||
    return du
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def dxmul(ee: field_t,
 | 
			
		||||
          hh: field_t,
 | 
			
		||||
          epsilon: field_t = None,
 | 
			
		||||
          mu: field_t = None,
 | 
			
		||||
def dxmul(ee: fdfield_t,
 | 
			
		||||
          hh: fdfield_t,
 | 
			
		||||
          epsilon: fdfield_t = None,
 | 
			
		||||
          mu: fdfield_t = None,
 | 
			
		||||
          dxes: dx_lists_t = None
 | 
			
		||||
          ) -> field_t:
 | 
			
		||||
          ) -> fdfield_t:
 | 
			
		||||
    if epsilon is None:
 | 
			
		||||
        epsilon = 1
 | 
			
		||||
    if mu is None:
 | 
			
		||||
 | 
			
		||||
@ -7,7 +7,7 @@ PML implementations
 | 
			
		||||
from typing import List, Callable, Tuple, Dict
 | 
			
		||||
import numpy
 | 
			
		||||
 | 
			
		||||
from .. import dx_lists_t, field_t, field_updater
 | 
			
		||||
from ..fdmath import dx_lists_t, fdfield_t, fdfield_updater_t
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
__author__ = 'Jan Petykiewicz'
 | 
			
		||||
@ -16,7 +16,7 @@ __author__ = 'Jan Petykiewicz'
 | 
			
		||||
def cpml(direction: int,
 | 
			
		||||
         polarity: int,
 | 
			
		||||
         dt: float,
 | 
			
		||||
         epsilon: field_t,
 | 
			
		||||
         epsilon: fdfield_t,
 | 
			
		||||
         thickness: int = 8,
 | 
			
		||||
         ln_R_per_layer: float = -1.6,
 | 
			
		||||
         epsilon_eff: float = 1,
 | 
			
		||||
@ -25,7 +25,7 @@ def cpml(direction: int,
 | 
			
		||||
         ma: float = 1,
 | 
			
		||||
         cfs_alpha: float = 0,
 | 
			
		||||
         dtype: numpy.dtype = numpy.float32,
 | 
			
		||||
         ) -> Tuple[Callable, Callable, Dict[str, field_t]]:
 | 
			
		||||
         ) -> Tuple[Callable, Callable, Dict[str, fdfield_t]]:
 | 
			
		||||
 | 
			
		||||
    if direction not in range(3):
 | 
			
		||||
        raise Exception('Invalid direction: {}'.format(direction))
 | 
			
		||||
@ -58,6 +58,7 @@ def cpml(direction: int,
 | 
			
		||||
 | 
			
		||||
    expand_slice = [None] * 3
 | 
			
		||||
    expand_slice[direction] = slice(None)
 | 
			
		||||
    expand_slice = tuple(expand_slice)
 | 
			
		||||
 | 
			
		||||
    def par(x):
 | 
			
		||||
        scaling = (x / thickness) ** m
 | 
			
		||||
@ -79,6 +80,7 @@ def cpml(direction: int,
 | 
			
		||||
        region[direction] = slice(-thickness, None)
 | 
			
		||||
    else:
 | 
			
		||||
        raise Exception('Bad polarity!')
 | 
			
		||||
    region = tuple(region)
 | 
			
		||||
 | 
			
		||||
    se = 1 if direction == 1 else -1
 | 
			
		||||
 | 
			
		||||
@ -97,7 +99,7 @@ def cpml(direction: int,
 | 
			
		||||
 | 
			
		||||
    # Note that this is kinda slow -- would be faster to reuse dHv*p2h for the original
 | 
			
		||||
    #  H update, but then you have multiple arrays and a monolithic (field + pml) update operation
 | 
			
		||||
    def pml_e(e: field_t, h: field_t, epsilon: field_t) -> Tuple[field_t, field_t]:
 | 
			
		||||
    def pml_e(e: fdfield_t, h: fdfield_t, epsilon: fdfield_t) -> Tuple[fdfield_t, fdfield_t]:
 | 
			
		||||
        dHv = h[v][region] - numpy.roll(h[v], 1, axis=direction)[region]
 | 
			
		||||
        dHu = h[u][region] - numpy.roll(h[u], 1, axis=direction)[region]
 | 
			
		||||
        psi_e[0] *= p0e
 | 
			
		||||
@ -108,7 +110,7 @@ def cpml(direction: int,
 | 
			
		||||
        e[v][region] -= se * dt / epsilon[v][region] * (psi_e[1] + (p2e - 1) * dHu)
 | 
			
		||||
        return e, h
 | 
			
		||||
 | 
			
		||||
    def pml_h(e: field_t, h: field_t) -> Tuple[field_t, field_t]:
 | 
			
		||||
    def pml_h(e: fdfield_t, h: fdfield_t) -> Tuple[fdfield_t, fdfield_t]:
 | 
			
		||||
        dEv = (numpy.roll(e[v], -1, axis=direction)[region] - e[v][region])
 | 
			
		||||
        dEu = (numpy.roll(e[u], -1, axis=direction)[region] - e[u][region])
 | 
			
		||||
        psi_h[0] *= p0h
 | 
			
		||||
 | 
			
		||||
@ -5,7 +5,8 @@ import pytest
 | 
			
		||||
import numpy
 | 
			
		||||
#from numpy.testing import assert_allclose, assert_array_equal
 | 
			
		||||
 | 
			
		||||
from .. import fdfd, vec, unvec
 | 
			
		||||
from .. import fdfd
 | 
			
		||||
from ..fdmath import vec, unvec
 | 
			
		||||
from .utils import assert_close, assert_fields_close
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -20,6 +21,10 @@ def test_poynting_planes(sim):
 | 
			
		||||
    mask = (sim.j != 0).any(axis=0)
 | 
			
		||||
    if mask.sum() != 2:
 | 
			
		||||
        pytest.skip(f'test_poynting_planes will only test 2-point sources, got {mask.sum()}')
 | 
			
		||||
#    for dxg in sim.dxes:
 | 
			
		||||
#        for dxa in dxg:
 | 
			
		||||
#            if not (dxa == sim.dxes[0][0][0]).all():
 | 
			
		||||
#                pytest.skip('test_poynting_planes skips nonuniform dxes')
 | 
			
		||||
    points = numpy.where(mask)
 | 
			
		||||
    mask[points[0][0], points[1][0], points[2][0]] = 0
 | 
			
		||||
 | 
			
		||||
@ -43,7 +48,6 @@ def test_poynting_planes(sim):
 | 
			
		||||
    assert_close(sum(planes), src_energy.sum())
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#####################################
 | 
			
		||||
#      Test fixtures
 | 
			
		||||
#####################################
 | 
			
		||||
@ -102,6 +106,15 @@ def sim(request, shape, epsilon, dxes, j_distribution, omega, pec, pmc):
 | 
			
		||||
#    if is3d:
 | 
			
		||||
#        pytest.skip('Skipping dt != 0.3 because test is 3D (for speed)')
 | 
			
		||||
 | 
			
		||||
#    # If no edge currents, add pmls
 | 
			
		||||
#    src_mask = j_distribution.any(axis=0)
 | 
			
		||||
#    th = 10
 | 
			
		||||
#    #if src_mask.sum() - src_mask[th:-th, th:-th, th:-th].sum() == 0:
 | 
			
		||||
#    if src_mask.sum() - src_mask[th:-th, :, :].sum() == 0:
 | 
			
		||||
#        for axis in (0,):
 | 
			
		||||
#            for polarity in (-1, 1):
 | 
			
		||||
#                dxes = fdfd.scpml.stretch_with_scpml(dxes, axis=axis, polarity=polarity,
 | 
			
		||||
 | 
			
		||||
    j_vec = vec(j_distribution)
 | 
			
		||||
    eps_vec = vec(epsilon)
 | 
			
		||||
    e_vec = fdfd.solvers.generic(J=j_vec, omega=omega, dxes=dxes, epsilon=eps_vec,
 | 
			
		||||
 | 
			
		||||
@ -6,7 +6,8 @@ import pytest
 | 
			
		||||
import numpy
 | 
			
		||||
from numpy.testing import assert_allclose, assert_array_equal
 | 
			
		||||
 | 
			
		||||
from .. import fdfd, vec, unvec
 | 
			
		||||
from .. import fdfd
 | 
			
		||||
from ..fdmath import vec, unvec
 | 
			
		||||
from .utils import assert_close, assert_fields_close
 | 
			
		||||
from .test_fdfd import FDResult
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user