223 lines
7.7 KiB
Python
223 lines
7.7 KiB
Python
"""
|
|
Functions for performing near-to-farfield transformation (and the reverse).
|
|
"""
|
|
from typing import Dict, List, Any
|
|
import numpy
|
|
from numpy.fft import fft2, fftshift, fftfreq, ifft2, ifftshift
|
|
from numpy import pi
|
|
|
|
from .. import fdfield_t
|
|
|
|
|
|
def near_to_farfield(E_near: fdfield_t,
|
|
H_near: fdfield_t,
|
|
dx: float,
|
|
dy: float,
|
|
padded_size: List[int] = None
|
|
) -> Dict[str, Any]:
|
|
"""
|
|
Compute the farfield, i.e. the distribution of the fields after propagation
|
|
through several wavelengths of uniform medium.
|
|
|
|
The input fields should be complex phasors.
|
|
|
|
:param E_near: List of 2 ndarrays containing the 2D phasor field slices for the transverse
|
|
E fields (e.g. [Ex, Ey] for calculating the farfield toward the z-direction).
|
|
:param H_near: List of 2 ndarrays containing the 2D phasor field slices for the transverse
|
|
H fields (e.g. [Hx, hy] for calculating the farfield towrad the z-direction).
|
|
:param dx: Cell size along x-dimension, in units of wavelength.
|
|
:param dy: Cell size along y-dimension, in units of wavelength.
|
|
:param padded_size: Shape of the output. A single integer `n` will be expanded to `(n, n)`.
|
|
Powers of 2 are most efficient for FFT computation.
|
|
Default is the smallest power of 2 larger than the input, for each axis.
|
|
:returns: Dict with keys
|
|
'E_far': Normalized E-field farfield; multiply by
|
|
(i k exp(-i k r) / (4 pi r)) to get the actual field value.
|
|
'H_far': Normalized H-field farfield; multiply by
|
|
(i k exp(-i k r) / (4 pi r)) to get the actual field value.
|
|
'kx', 'ky': Wavevector values corresponding to the x- and y- axes in E_far and H_far,
|
|
normalized to wavelength (dimensionless).
|
|
'dkx', 'dky': step size for kx and ky, normalized to wavelength.
|
|
'theta': arctan2(ky, kx) corresponding to each (kx, ky).
|
|
This is the angle in the x-y plane, counterclockwise from above, starting from +x.
|
|
'phi': arccos(kz / k) corresponding to each (kx, ky).
|
|
This is the angle away from +z.
|
|
"""
|
|
|
|
if not len(E_near) == 2:
|
|
raise Exception('E_near must be a length-2 list of ndarrays')
|
|
if not len(H_near) == 2:
|
|
raise Exception('H_near must be a length-2 list of ndarrays')
|
|
|
|
s = E_near[0].shape
|
|
if not all(s == f.shape for f in E_near + H_near):
|
|
raise Exception('All fields must be the same shape!')
|
|
|
|
if padded_size is None:
|
|
padded_size = (2**numpy.ceil(numpy.log2(s))).astype(int)
|
|
if not hasattr(padded_size, '__len__'):
|
|
padded_size = (padded_size, padded_size)
|
|
|
|
En_fft = [fftshift(fft2(fftshift(Eni), s=padded_size)) for Eni in E_near]
|
|
Hn_fft = [fftshift(fft2(fftshift(Hni), s=padded_size)) for Hni in H_near]
|
|
|
|
# Propagation vectors kx, ky
|
|
k = 2 * pi
|
|
kxx = 2 * pi * fftshift(fftfreq(padded_size[0], dx))
|
|
kyy = 2 * pi * fftshift(fftfreq(padded_size[1], dy))
|
|
|
|
kx, ky = numpy.meshgrid(kxx, kyy, indexing='ij')
|
|
kxy2 = kx * kx + ky * ky
|
|
kxy = numpy.sqrt(kxy2)
|
|
kz = numpy.sqrt(k * k - kxy2)
|
|
|
|
sin_th = ky / kxy
|
|
cos_th = kx / kxy
|
|
cos_phi = kz / k
|
|
|
|
sin_th[numpy.logical_and(kx == 0, ky == 0)] = 0
|
|
cos_th[numpy.logical_and(kx == 0, ky == 0)] = 1
|
|
|
|
# Normalized vector potentials N, L
|
|
N = [-Hn_fft[1] * cos_phi * cos_th + Hn_fft[0] * cos_phi * sin_th,
|
|
Hn_fft[1] * sin_th + Hn_fft[0] * cos_th]
|
|
L = [ En_fft[1] * cos_phi * cos_th - En_fft[0] * cos_phi * sin_th,
|
|
-En_fft[1] * sin_th - En_fft[0] * cos_th]
|
|
|
|
E_far = [-L[1] - N[0],
|
|
L[0] - N[1]]
|
|
H_far = [-E_far[1],
|
|
E_far[0]]
|
|
|
|
theta = numpy.arctan2(ky, kx)
|
|
phi = numpy.arccos(cos_phi)
|
|
theta[numpy.logical_and(kx == 0, ky == 0)] = 0
|
|
phi[numpy.logical_and(kx == 0, ky == 0)] = 0
|
|
|
|
# Zero fields beyond valid (phi, theta)
|
|
invalid_ind = kxy2 >= k * k
|
|
theta[invalid_ind] = 0
|
|
phi[invalid_ind] = 0
|
|
for i in range(2):
|
|
E_far[i][invalid_ind] = 0
|
|
H_far[i][invalid_ind] = 0
|
|
|
|
outputs = {
|
|
'E': E_far,
|
|
'H': H_far,
|
|
'dkx': kx[1]-kx[0],
|
|
'dky': ky[1]-ky[0],
|
|
'kx': kx,
|
|
'ky': ky,
|
|
'theta': theta,
|
|
'phi': phi,
|
|
}
|
|
|
|
return outputs
|
|
|
|
|
|
|
|
def far_to_nearfield(E_far: fdfield_t,
|
|
H_far: fdfield_t,
|
|
dkx: float,
|
|
dky: float,
|
|
padded_size: List[int] = None
|
|
) -> Dict[str, Any]:
|
|
"""
|
|
Compute the farfield, i.e. the distribution of the fields after propagation
|
|
through several wavelengths of uniform medium.
|
|
|
|
The input fields should be complex phasors.
|
|
|
|
:param E_far: List of 2 ndarrays containing the 2D phasor field slices for the transverse
|
|
E fields (e.g. [Ex, Ey] for calculating the nearfield toward the z-direction).
|
|
Fields should be normalized so that
|
|
E_far = E_far_actual / (i k exp(-i k r) / (4 pi r))
|
|
:param H_far: List of 2 ndarrays containing the 2D phasor field slices for the transverse
|
|
H fields (e.g. [Hx, hy] for calculating the nearfield toward the z-direction).
|
|
Fields should be normalized so that
|
|
H_far = H_far_actual / (i k exp(-i k r) / (4 pi r))
|
|
:param dkx: kx discretization, in units of wavelength.
|
|
:param dky: ky discretization, in units of wavelength.
|
|
:param padded_size: Shape of the output. A single integer `n` will be expanded to `(n, n)`.
|
|
Powers of 2 are most efficient for FFT computation.
|
|
Default is the smallest power of 2 larger than the input, for each axis.
|
|
:returns: Dict with keys
|
|
'E': E-field nearfield
|
|
'H': H-field nearfield
|
|
'dx', 'dy': spatial discretization, normalized to wavelength (dimensionless)
|
|
"""
|
|
|
|
if not len(E_far) == 2:
|
|
raise Exception('E_far must be a length-2 list of ndarrays')
|
|
if not len(H_far) == 2:
|
|
raise Exception('H_far must be a length-2 list of ndarrays')
|
|
|
|
s = E_far[0].shape
|
|
if not all(s == f.shape for f in E_far + H_far):
|
|
raise Exception('All fields must be the same shape!')
|
|
|
|
if padded_size is None:
|
|
padded_size = (2**numpy.ceil(numpy.log2(s))).astype(int)
|
|
if not hasattr(padded_size, '__len__'):
|
|
padded_size = (padded_size, padded_size)
|
|
|
|
|
|
k = 2 * pi
|
|
kxs = fftshift(fftfreq(s[0], 1/(s[0] * dkx)))
|
|
kys = fftshift(fftfreq(s[0], 1/(s[1] * dky)))
|
|
|
|
kx, ky = numpy.meshgrid(kxs, kys, indexing='ij')
|
|
kxy2 = kx * kx + ky * ky
|
|
kxy = numpy.sqrt(kxy2)
|
|
|
|
kz = numpy.sqrt(k * k - kxy2)
|
|
|
|
sin_th = ky / kxy
|
|
cos_th = kx / kxy
|
|
cos_phi = kz / k
|
|
|
|
sin_th[numpy.logical_and(kx == 0, ky == 0)] = 0
|
|
cos_th[numpy.logical_and(kx == 0, ky == 0)] = 1
|
|
|
|
# Zero fields beyond valid (phi, theta)
|
|
invalid_ind = kxy2 >= k * k
|
|
theta[invalid_ind] = 0
|
|
phi[invalid_ind] = 0
|
|
for i in range(2):
|
|
E_far[i][invalid_ind] = 0
|
|
H_far[i][invalid_ind] = 0
|
|
|
|
|
|
# Normalized vector potentials N, L
|
|
L = [0.5 * E_far[1],
|
|
-0.5 * E_far[0]]
|
|
N = [L[1],
|
|
-L[0]]
|
|
|
|
En_fft = [-( L[0] * sin_th + L[1] * cos_phi * cos_th)/cos_phi,
|
|
-(-L[0] * cos_th + L[1] * cos_phi * sin_th)/cos_phi]
|
|
|
|
Hn_fft = [( N[0] * sin_th + N[1] * cos_phi * cos_th)/cos_phi,
|
|
(-N[0] * cos_th + N[1] * cos_phi * sin_th)/cos_phi]
|
|
|
|
for i in range(2):
|
|
En_fft[i][cos_phi == 0] = 0
|
|
Hn_fft[i][cos_phi == 0] = 0
|
|
|
|
E_near = [ifftshift(ifft2(ifftshift(Ei), s=padded_size)) for Ei in En_fft]
|
|
H_near = [ifftshift(ifft2(ifftshift(Hi), s=padded_size)) for Hi in Hn_fft]
|
|
|
|
dx = 2 * pi / (s[0] * dkx)
|
|
dy = 2 * pi / (s[0] * dky)
|
|
|
|
outputs = {
|
|
'E': E_near,
|
|
'H': H_near,
|
|
'dx': dx,
|
|
'dy': dy,
|
|
}
|
|
|
|
return outputs
|
|
|