Use e_boundary_source for compute_source
This commit is contained in:
parent
7b56aa363f
commit
5f96474497
@ -137,13 +137,13 @@ def solve_waveguide_mode(mode_number: int,
|
||||
|
||||
|
||||
def compute_source(E: field_t,
|
||||
H: field_t,
|
||||
wavenumber: complex,
|
||||
omega: complex,
|
||||
dxes: dx_lists_t,
|
||||
axis: int,
|
||||
polarity: int,
|
||||
slices: List[slice],
|
||||
epsilon: field_t,
|
||||
mu: field_t = None,
|
||||
) -> field_t:
|
||||
"""
|
||||
@ -151,7 +151,6 @@ def compute_source(E: field_t,
|
||||
necessary to position a unidirectional source at the slice location.
|
||||
|
||||
:param E: E-field of the mode
|
||||
:param H: H-field of the mode (advanced by half of a Yee cell from E)
|
||||
:param wavenumber: Wavenumber of the mode
|
||||
:param omega: Angular frequency of the simulation
|
||||
:param dxes: Grid parameters [dx_e, dx_h] as described in meanas.types
|
||||
@ -162,32 +161,21 @@ def compute_source(E: field_t,
|
||||
:param mu: Magnetic permeability (default 1 everywhere)
|
||||
:return: J distribution for the unidirectional source
|
||||
"""
|
||||
J = numpy.zeros_like(E, dtype=complex)
|
||||
M = numpy.zeros_like(E, dtype=complex)
|
||||
E_expanded = expand_wgmode_e(E=E, dxes=dxes, wavenumber=wavenumber, axis=axis,
|
||||
polarity=polarity, slices=slices)
|
||||
|
||||
src_order = numpy.roll(range(3), -axis)
|
||||
smask = [slice(None)] * 4
|
||||
if polarity > 0:
|
||||
smask[axis + 1] = slice(slices[axis].start, None)
|
||||
else:
|
||||
smask[axis + 1] = slice(None, slices[axis].stop)
|
||||
|
||||
# exp_iphi = numpy.exp(1j * polarity * wavenumber * dxes[1][axis][slices[axis]])
|
||||
# rollby = -1 if polarity > 0 else 0
|
||||
# J[src_order[1]] = +exp_iphi * H[src_order[2]] * polarity / dxes[1][axis][slices[axis]]
|
||||
# J[src_order[2]] = -exp_iphi * H[src_order[1]] * polarity / dxes[1][axis][slices[axis]]
|
||||
# M[src_order[1]] = +numpy.roll(E[src_order[2]], rollby, axis=axis) / dxes[0][axis][slices[axis]]
|
||||
# M[src_order[2]] = -numpy.roll(E[src_order[1]], rollby, axis=axis) / dxes[0][axis][slices[axis]]
|
||||
mask = numpy.zeros_like(E_expanded, dtype=int)
|
||||
mask[tuple(smask)] = 1
|
||||
|
||||
s2 = [slice(None), slice(None), slice(None)]
|
||||
s2[axis] = slice(slices[axis].start, slices[axis].stop)
|
||||
s2 = (src_order, *s2)
|
||||
|
||||
rollby = 1 if polarity < 0 else 0
|
||||
exp_iphi = numpy.exp(-1j * -rollby * wavenumber * dxes[1][axis][slices[axis]])
|
||||
J[s2] = numpy.roll(functional.curl_h(dxes=dxes)(H), -rollby, axis=axis+1)[s2] * exp_iphi * -polarity
|
||||
M[s2] = numpy.roll(functional.curl_e(dxes=dxes)(E), rollby, axis=axis+1)[s2]
|
||||
|
||||
m2j = functional.m2j(omega, dxes, mu)
|
||||
Jm = m2j(M)
|
||||
|
||||
Jtot = J + Jm
|
||||
return Jtot
|
||||
masked_e2j = operators.e_boundary_source(mask=vec(mask), omega=omega, dxes=dxes, epsilon=vec(epsilon), mu=vec(mu))
|
||||
J = unvec(masked_e2j @ vec(E_expanded), E.shape[1:])
|
||||
return J
|
||||
|
||||
|
||||
def compute_overlap_e(E: field_t,
|
||||
|
Loading…
Reference in New Issue
Block a user