Use non-vectorized fields for waveguide_mode functions
This commit is contained in:
parent
3887a8804f
commit
7b56aa363f
@ -10,8 +10,8 @@ from ..eigensolvers import signed_eigensolve, rayleigh_quotient_iteration
|
||||
def solve_waveguide_mode_2d(mode_number: int,
|
||||
omega: complex,
|
||||
dxes: dx_lists_t,
|
||||
epsilon: vfield_t,
|
||||
mu: vfield_t = None,
|
||||
epsilon: field_t,
|
||||
mu: field_t = None,
|
||||
mode_margin: int = 2,
|
||||
) -> Dict[str, complex or field_t]:
|
||||
"""
|
||||
@ -25,14 +25,14 @@ def solve_waveguide_mode_2d(mode_number: int,
|
||||
:param mode_margin: The eigensolver will actually solve for (mode_number + mode_margin)
|
||||
modes, but only return the target mode. Increasing this value can improve the solver's
|
||||
ability to find the correct mode. Default 2.
|
||||
:return: {'E': List[numpy.ndarray], 'H': List[numpy.ndarray], 'wavenumber': complex}
|
||||
:return: {'E': numpy.ndarray, 'H': numpy.ndarray, 'wavenumber': complex}
|
||||
"""
|
||||
|
||||
'''
|
||||
Solve for the largest-magnitude eigenvalue of the real operator
|
||||
'''
|
||||
dxes_real = [[numpy.real(dx) for dx in dxi] for dxi in dxes]
|
||||
A_r = waveguide.operator_e(numpy.real(omega), dxes_real, numpy.real(epsilon), numpy.real(mu))
|
||||
A_r = waveguide.operator_e(numpy.real(omega), dxes_real, vec(numpy.real(epsilon)), vec(numpy.real(mu)))
|
||||
|
||||
eigvals, eigvecs = signed_eigensolve(A_r, mode_number + mode_margin)
|
||||
exy = eigvecs[:, -(mode_number + 1)]
|
||||
@ -41,14 +41,14 @@ def solve_waveguide_mode_2d(mode_number: int,
|
||||
Now solve for the eigenvector of the full operator, using the real operator's
|
||||
eigenvector as an initial guess for Rayleigh quotient iteration.
|
||||
'''
|
||||
A = waveguide.operator_e(omega, dxes, epsilon, mu)
|
||||
A = waveguide.operator_e(omega, dxes, vec(epsilon), vec(mu))
|
||||
eigval, exy = rayleigh_quotient_iteration(A, exy)
|
||||
|
||||
# Calculate the wave-vector (force the real part to be positive)
|
||||
wavenumber = numpy.sqrt(eigval)
|
||||
wavenumber *= numpy.sign(numpy.real(wavenumber))
|
||||
|
||||
e, h = waveguide.normalized_fields_e(exy, wavenumber, omega, dxes, epsilon, mu)
|
||||
e, h = waveguide.normalized_fields_e(exy, wavenumber, omega, dxes, vec(epsilon), vec(mu))
|
||||
|
||||
shape = [d.size for d in dxes[0]]
|
||||
fields = {
|
||||
@ -103,8 +103,8 @@ def solve_waveguide_mode(mode_number: int,
|
||||
# Reduce to 2D and solve the 2D problem
|
||||
args_2d = {
|
||||
'dxes': [[dx[i][slices[i]] for i in order[:2]] for dx in dxes],
|
||||
'epsilon': vec([epsilon[i][slices].transpose(order) for i in order]),
|
||||
'mu': vec([mu[i][slices].transpose(order) for i in order]),
|
||||
'epsilon': [epsilon[i][slices].transpose(order) for i in order],
|
||||
'mu': [mu[i][slices].transpose(order) for i in order],
|
||||
}
|
||||
fields_2d = solve_waveguide_mode_2d(mode_number, omega=omega, **args_2d)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user