Use non-vectorized fields for waveguide_mode functions

This commit is contained in:
Jan Petykiewicz 2019-08-26 01:02:54 -07:00
parent 3887a8804f
commit 7b56aa363f

View File

@ -10,8 +10,8 @@ from ..eigensolvers import signed_eigensolve, rayleigh_quotient_iteration
def solve_waveguide_mode_2d(mode_number: int,
omega: complex,
dxes: dx_lists_t,
epsilon: vfield_t,
mu: vfield_t = None,
epsilon: field_t,
mu: field_t = None,
mode_margin: int = 2,
) -> Dict[str, complex or field_t]:
"""
@ -25,14 +25,14 @@ def solve_waveguide_mode_2d(mode_number: int,
:param mode_margin: The eigensolver will actually solve for (mode_number + mode_margin)
modes, but only return the target mode. Increasing this value can improve the solver's
ability to find the correct mode. Default 2.
:return: {'E': List[numpy.ndarray], 'H': List[numpy.ndarray], 'wavenumber': complex}
:return: {'E': numpy.ndarray, 'H': numpy.ndarray, 'wavenumber': complex}
"""
'''
Solve for the largest-magnitude eigenvalue of the real operator
'''
dxes_real = [[numpy.real(dx) for dx in dxi] for dxi in dxes]
A_r = waveguide.operator_e(numpy.real(omega), dxes_real, numpy.real(epsilon), numpy.real(mu))
A_r = waveguide.operator_e(numpy.real(omega), dxes_real, vec(numpy.real(epsilon)), vec(numpy.real(mu)))
eigvals, eigvecs = signed_eigensolve(A_r, mode_number + mode_margin)
exy = eigvecs[:, -(mode_number + 1)]
@ -41,14 +41,14 @@ def solve_waveguide_mode_2d(mode_number: int,
Now solve for the eigenvector of the full operator, using the real operator's
eigenvector as an initial guess for Rayleigh quotient iteration.
'''
A = waveguide.operator_e(omega, dxes, epsilon, mu)
A = waveguide.operator_e(omega, dxes, vec(epsilon), vec(mu))
eigval, exy = rayleigh_quotient_iteration(A, exy)
# Calculate the wave-vector (force the real part to be positive)
wavenumber = numpy.sqrt(eigval)
wavenumber *= numpy.sign(numpy.real(wavenumber))
e, h = waveguide.normalized_fields_e(exy, wavenumber, omega, dxes, epsilon, mu)
e, h = waveguide.normalized_fields_e(exy, wavenumber, omega, dxes, vec(epsilon), vec(mu))
shape = [d.size for d in dxes[0]]
fields = {
@ -103,8 +103,8 @@ def solve_waveguide_mode(mode_number: int,
# Reduce to 2D and solve the 2D problem
args_2d = {
'dxes': [[dx[i][slices[i]] for i in order[:2]] for dx in dxes],
'epsilon': vec([epsilon[i][slices].transpose(order) for i in order]),
'mu': vec([mu[i][slices].transpose(order) for i in order]),
'epsilon': [epsilon[i][slices].transpose(order) for i in order],
'mu': [mu[i][slices].transpose(order) for i in order],
}
fields_2d = solve_waveguide_mode_2d(mode_number, omega=omega, **args_2d)