lots more docs
This commit is contained in:
parent
2f822ae4a6
commit
163aa52420
@ -14,22 +14,21 @@ Derivatives
|
||||
-----------
|
||||
|
||||
Define the discrete forward derivative as
|
||||
$$ [\\tilde{\\partial}_x f ]_{m + \\frac{1}{2}} = \\frac{1}{\\Delta_{x, m}} (f_{m + 1} - f_m) $$
|
||||
or
|
||||
|
||||
Dx_forward(f)[i] = (f[i + 1] - f[i]) / dx[i]
|
||||
|
||||
or
|
||||
$$ [\\tilde{\\partial}_x f ]_{m + \\frac{1}{2}} = \\frac{1}{\\Delta_{x, m}} (f_{m + 1} - f_m) $$
|
||||
|
||||
Likewise, discrete reverse derivative is
|
||||
$$ [\\hat{\\partial}_x f ]_{m - \\frac{1}{2}} = \\frac{1}{\\Delta_{x, m}} (f_{m} - f_{m - 1}) $$
|
||||
|
||||
or
|
||||
|
||||
Dx_back(f)[i] = (f[i] - f[i - 1]) / dx[i]
|
||||
|
||||
or
|
||||
$$ [\\hat{\\partial}_x f ]_{m - \\frac{1}{2}} = \\frac{1}{\\Delta_{x, m}} (f_{m} - f_{m - 1}) $$
|
||||
|
||||
|
||||
The derivatives are shifted by a half-cell relative to the original function:
|
||||
The derivatives' arrays are shifted by a half-cell relative to the original function:
|
||||
|
||||
[figure: derivatives]
|
||||
_________________________
|
||||
| | | | |
|
||||
| f0 | f1 | f2 | f3 | function
|
||||
@ -48,13 +47,30 @@ Gradients and fore-vectors
|
||||
--------------------------
|
||||
|
||||
Expanding to three dimensions, we can define two gradients
|
||||
$$ [\\tilde{\\nabla} f]_{n,m,p} = \\vec{x} [\\tilde{\\partial}_x f]_{m + \\frac{1}{2},n,p} +
|
||||
$$ [\\tilde{\\nabla} f]_{m,n,p} = \\vec{x} [\\tilde{\\partial}_x f]_{m + \\frac{1}{2},n,p} +
|
||||
\\vec{y} [\\tilde{\\partial}_y f]_{m,n + \\frac{1}{2},p} +
|
||||
\\vec{z} [\\tilde{\\partial}_z f]_{m,n,p + \\frac{1}{2}} $$
|
||||
$$ [\\hat{\\nabla} f]_{m,n,p} = \\vec{x} [\\hat{\\partial}_x f]_{m + \\frac{1}{2},n,p} +
|
||||
\\vec{y} [\\hat{\\partial}_y f]_{m,n + \\frac{1}{2},p} +
|
||||
\\vec{z} [\\hat{\\partial}_z f]_{m,n,p + \\frac{1}{2}} $$
|
||||
|
||||
or
|
||||
|
||||
[code: gradients]
|
||||
grad_forward(f)[i,j,k] = [Dx_forward(f)[i, j, k],
|
||||
Dy_forward(f)[i, j, k],
|
||||
Dz_forward(f)[i, j, k]]
|
||||
= [(f[i + 1, j, k] - f[i, j, k]) / dx[i],
|
||||
(f[i, j + 1, k] - f[i, j, k]) / dy[i],
|
||||
(f[i, j, k + 1] - f[i, j, k]) / dz[i]]
|
||||
|
||||
grad_back(f)[i,j,k] = [Dx_back(f)[i, j, k],
|
||||
Dy_back(f)[i, j, k],
|
||||
Dz_back(f)[i, j, k]]
|
||||
= [(f[i, j, k] - f[i - 1, j, k]) / dx[i],
|
||||
(f[i, j, k] - f[i, j - 1, k]) / dy[i],
|
||||
(f[i, j, k] - f[i, j, k - 1]) / dz[i]]
|
||||
|
||||
The three derivatives in the gradient cause shifts in different
|
||||
directions, so the x/y/z components of the resulting "vector" are defined
|
||||
at different points: the x-component is shifted in the x-direction,
|
||||
@ -70,18 +86,18 @@ on the direction of the shift. We write it as
|
||||
\\vec{z} g^z_{m,n,p - \\frac{1}{2}} $$
|
||||
|
||||
|
||||
(m, n+1, p+1) _____________ (m+1, n+1, p+1)
|
||||
/: /|
|
||||
/ : / |
|
||||
/ : / |
|
||||
(m, n, p+1)/____________/ | The derivatives are defined
|
||||
| : | | at the Dx, Dy, Dz points,
|
||||
| :........|...| but the gradient fore-vector
|
||||
Dz / | / is the set of all three
|
||||
| Dy | / and is said to be "located" at (m,n,p)
|
||||
| / | /
|
||||
(m, n, p)|/____Dx_____|/ (m+1, n, p)
|
||||
|
||||
[figure: gradient / fore-vector]
|
||||
(m, n+1, p+1) ______________ (m+1, n+1, p+1)
|
||||
/: /|
|
||||
/ : / |
|
||||
/ : / |
|
||||
(m, n, p+1)/_____________/ | The forward derivatives are defined
|
||||
| : | | at the Dx, Dy, Dz points,
|
||||
| :.........|...| but the forward-gradient fore-vector
|
||||
Dz / | / is the set of all three
|
||||
| Dy | / and is said to be "located" at (m,n,p)
|
||||
| / | /
|
||||
(m, n, p)|/_____Dx_____|/ (m+1, n, p)
|
||||
|
||||
|
||||
|
||||
@ -100,23 +116,58 @@ There are also two divergences,
|
||||
[\\hat{\\partial}_y g^y]_{m,n,p} +
|
||||
[\\hat{\\partial}_z g^z]_{m,n,p} $$
|
||||
|
||||
or
|
||||
|
||||
[code: divergences]
|
||||
div_forward(g)[i,j,k] = Dx_forward(gx)[i, j, k] +
|
||||
Dy_forward(gy)[i, j, k] +
|
||||
Dz_forward(gz)[i, j, k]
|
||||
= (gx[i + 1, j, k] - gx[i, j, k]) / dx[i] +
|
||||
(gy[i, j + 1, k] - gy[i, j, k]) / dy[i] +
|
||||
(gz[i, j, k + 1] - gz[i, j, k]) / dz[i]
|
||||
|
||||
div_back(g)[i,j,k] = Dx_back(gx)[i, j, k] +
|
||||
Dy_back(gy)[i, j, k] +
|
||||
Dz_back(gz)[i, j, k]
|
||||
= (gx[i, j, k] - gx[i - 1, j, k]) / dx[i] +
|
||||
(gy[i, j, k] - gy[i, j - 1, k]) / dy[i] +
|
||||
(gz[i, j, k] - gz[i, j, k - 1]) / dz[i]
|
||||
|
||||
where `g = [gx, gy, gz]` is a fore- or back-vector field.
|
||||
|
||||
Since we applied the forward divergence to the back-vector (and vice-versa), the resulting scalar value
|
||||
is defined at the back-vector's (fore-vectors) location \\( (m,n,p) \\) and not at the locations of its components
|
||||
\\( (m \\pm \\frac{1}{2},n,p) \\) etc.
|
||||
|
||||
[figure: divergence]
|
||||
^^
|
||||
(m-1/2, n+1/2, p+1/2) _____||_______ (m+1/2, n+1/2, p+1/2)
|
||||
/: || ,, /|
|
||||
/ : || // / | The divergence at (m, n, p) (the center
|
||||
/ : // / | of this cube) of a fore-vector field
|
||||
(m-1/2, n-1/2, p+1/2)/_____________/ | is the sum of the outward-pointing
|
||||
| : | | fore-vector components, which are
|
||||
<==|== :.........|.====> located at the face centers.
|
||||
| / | /
|
||||
| / // | / Note that in a nonuniform grid, each
|
||||
| / // || | / dimension is normalized by the cell width.
|
||||
(m-1/2, n-1/2, p-1/2)|/___//_______|/ (m+1/2, n-1/2, p-1/2)
|
||||
'' ||
|
||||
VV
|
||||
|
||||
|
||||
Curls
|
||||
-----
|
||||
|
||||
The two curls are then
|
||||
|
||||
$$ \\begin{align}
|
||||
$$ \\begin{align*}
|
||||
\\hat{h}_{m + \\frac{1}{2}, n + \\frac{1}{2}, p + \\frac{1}{2}} &= \\\\
|
||||
[\\tilde{\\nabla} \\times \\tilde{g}]_{m + \\frac{1}{2}, n + \\frac{1}{2}, p + \\frac{1}{2}} &=
|
||||
\\vec{x} (\\tilde{\\partial}_y g^z_{m,n,p + \\frac{1}{2}} - \\tilde{\\partial}_z g^y_{m,n + \\frac{1}{2},p}) \\\\
|
||||
&+ \\vec{y} (\\tilde{\\partial}_z g^x_{m + \\frac{1}{2},n,p} - \\tilde{\\partial}_x g^z_{m,n,p + \\frac{1}{2}}) \\\\
|
||||
&+ \\vec{z} (\\tilde{\\partial}_x g^y_{m,n + \\frac{1}{2},p} - \\tilde{\\partial}_x g^z_{m + \\frac{1}{2},n,p})
|
||||
\\end{align} $$
|
||||
&+ \\vec{z} (\\tilde{\\partial}_x g^y_{m,n + \\frac{1}{2},p} - \\tilde{\\partial}_y g^z_{m + \\frac{1}{2},n,p})
|
||||
\\end{align*} $$
|
||||
|
||||
and
|
||||
|
||||
@ -128,8 +179,90 @@ The two curls are then
|
||||
while \\( \\hat{h} \\) and \\( \\tilde{h} \\) are located at \\((m \\pm \\frac{1}{2}, n \\pm \\frac{1}{2}, p \\pm \\frac{1}{2})\\)
|
||||
with components at \\((m, n \\pm \\frac{1}{2}, p \\pm \\frac{1}{2})\\) etc.
|
||||
|
||||
TODO: draw diagrams for vector derivatives
|
||||
TODO: Explain fdfield_t vs vfdfield_t / operators vs functional
|
||||
|
||||
[code: curls]
|
||||
curl_forward(g)[i,j,k] = [Dy_forward(gz)[i, j, k] - Dz_forward(gy)[i, j, k],
|
||||
Dz_forward(gx)[i, j, k] - Dx_forward(gz)[i, j, k],
|
||||
Dx_forward(gy)[i, j, k] - Dy_forward(gx)[i, j, k]]
|
||||
|
||||
curl_back(g)[i,j,k] = [Dy_back(gz)[i, j, k] - Dz_back(gy)[i, j, k],
|
||||
Dz_back(gx)[i, j, k] - Dx_back(gz)[i, j, k],
|
||||
Dx_back(gy)[i, j, k] - Dy_back(gx)[i, j, k]]
|
||||
|
||||
|
||||
For example, consider the forward curl, at (m, n, p), of a back-vector field `g`, defined
|
||||
on a grid containing (m + 1/2, n + 1/2, p + 1/2).
|
||||
The curl will be a fore-vector, so its z-component will be defined at (m, n, p + 1/2).
|
||||
Take the nearest x- and y-components of `g` in the xy plane where the curl's z-component
|
||||
is located; these are
|
||||
|
||||
[curl components]
|
||||
(m, n + 1/2, p + 1/2) : x-component of back-vector at (m + 1/2, n + 1/2, p + 1/2)
|
||||
(m + 1, n + 1/2, p + 1/2) : x-component of back-vector at (m + 3/2, n + 1/2, p + 1/2)
|
||||
(m + 1/2, n , p + 1/2) : y-component of back-vector at (m + 1/2, n + 1/2, p + 1/2)
|
||||
(m + 1/2, n + 1 , p + 1/2) : y-component of back-vector at (m + 1/2, n + 3/2, p + 1/2)
|
||||
|
||||
These four xy-components can be used to form a loop around the curl's z-component; its magnitude and sign
|
||||
is set by their loop-oriented sum (i.e. two have their signs flipped to complete the loop).
|
||||
|
||||
[figure: z-component of curl]
|
||||
: |
|
||||
: ^^ |
|
||||
:....||.<.....| (m, n+1, p+1/2)
|
||||
/ || /
|
||||
| v || | ^
|
||||
| / | /
|
||||
(m, n, p+1/2) |/_____>______|/ (m+1, n, p+1/2)
|
||||
|
||||
|
||||
|
||||
Maxwell's Equations
|
||||
===================
|
||||
|
||||
If we discretize both space (m,n,p) and time (l), Maxwell's equations become
|
||||
|
||||
$$ \\begin{align*}
|
||||
\\tilde{\\nabla} \\times \\tilde{E}_{l,\\vec{r}} &=& -&\\tilde{\\partial}_t \\hat{B}_{l-\\frac{1}{2}, \\vec{r} + \\frac{1}{2}}
|
||||
&+& \\hat{M}_{l-1, \\vec{r} + \\frac{1}{2}} \\\\
|
||||
\\hat{\\nabla} \\times \\hat{H}_{l,\\vec{r}} &=& &\\hat{\\partial}_t \\tilde{D}_{l, \\vec{r}}
|
||||
&+& \\tilde{J}_{l-\\frac{1}{2},\\vec{r}} \\\\
|
||||
\\tilde{\\nabla} \\cdot \\hat{B}_{l-\\frac{1}{2}, \\vec{r} + \\frac{1}{2}} &= 0 \\\\
|
||||
\\hat{\\nabla} \\cdot \\tilde{D}_{l,\\vec{r}} &= \\rho_{l,\\vec{r}}
|
||||
\\end{align*} $$
|
||||
|
||||
with
|
||||
|
||||
$$ \\begin{align*}
|
||||
\\hat{B}_\\vec{r} &= \\mu_{\\vec{r} + \\frac{1}{2}} \\cdot \\hat{H}_{\\vec{r} + \\frac{1}{2}} \\\\
|
||||
\\tilde{D}_\\vec{r} &= \\epsilon_\\vec{r} \\cdot \\tilde{E}_\\vec{r}
|
||||
\\end{align*} $$
|
||||
|
||||
where the spatial subscripts are abbreviated as \\( \\vec{r} = (m, n, p) \\) and
|
||||
\\( \\vec{r} + \\frac{1}{2} = (m + \\frac{1}{2}, n + \\frac{1}{2}, p + \\frac{1}{2}) \\).
|
||||
This is Yee's algorithm, written in a form analogous to Maxwell's equations.
|
||||
|
||||
The divergence equations can be derived by taking the divergence of the curl equations
|
||||
and combining them with charge continuity,
|
||||
$$ \\hat{\\nabla} \\cdot \\tilde{J} + \\hat{\\partial}_t \\rho = 0 $$
|
||||
implying that the discrete Maxwell's equations do not produce spurious charges.
|
||||
|
||||
TODO: Maxwell's equations explanation
|
||||
TODO: Maxwell's equations plaintext
|
||||
|
||||
Wave equation
|
||||
-------------
|
||||
|
||||
$$
|
||||
\\hat{\\nabla} \\times \\mu^{-1}_{\\vec{r} + \\frac{1}{2}} \\cdot \\tilde{\\nabla} \\times \\tilde{E}_{l, \\vec{r}}
|
||||
+ \\tilde{\\partial}_t \\hat{\\partial}_t \\epsilon_\\vec{r} \\cdot \\tilde{E}_{l, \\vec{r}}
|
||||
= \\tilde{\\partial}_t \\tilde{J}_{l - \\frac{1}{2}, \\vec{r}} $$
|
||||
|
||||
TODO: wave equation explanation
|
||||
TODO: wave equation plaintext
|
||||
|
||||
|
||||
Grid description
|
||||
================
|
||||
TODO: explain dxes
|
||||
|
||||
"""
|
||||
|
Loading…
Reference in New Issue
Block a user