add headings and vector diagram
This commit is contained in:
parent
ec77408680
commit
2f822ae4a6
@ -1,23 +1,30 @@
|
||||
"""
|
||||
|
||||
Basic discrete calculus for finite difference (fd) simulations.
|
||||
|
||||
Discrete calculus
|
||||
=================
|
||||
|
||||
This documentation and approach is roughly based on W.C. Chew's excellent
|
||||
"Electromagnetic Theory on a Lattice" (doi:10.1063/1.355770),
|
||||
which covers a superset of this material with similar notation and more detail.
|
||||
|
||||
|
||||
Derivatives
|
||||
-----------
|
||||
|
||||
Define the discrete forward derivative as
|
||||
|
||||
Dx_forward(f)[i] = (f[i + 1] - f[i]) / dx[i]
|
||||
|
||||
or
|
||||
or
|
||||
$$ [\\tilde{\\partial}_x f ]_{m + \\frac{1}{2}} = \\frac{1}{\\Delta_{x, m}} (f_{m + 1} - f_m) $$
|
||||
|
||||
Likewise, discrete reverse derivative is
|
||||
|
||||
Dx_back(f)[i] = (f[i] - f[i - 1]) / dx[i]
|
||||
|
||||
or
|
||||
or
|
||||
$$ [\\hat{\\partial}_x f ]_{m - \\frac{1}{2}} = \\frac{1}{\\Delta_{x, m}} (f_{m} - f_{m - 1}) $$
|
||||
|
||||
|
||||
@ -37,6 +44,9 @@ The derivatives are shifted by a half-cell relative to the original function:
|
||||
Periodic boundaries are used unless otherwise noted.
|
||||
|
||||
|
||||
Gradients and fore-vectors
|
||||
--------------------------
|
||||
|
||||
Expanding to three dimensions, we can define two gradients
|
||||
$$ [\\tilde{\\nabla} f]_{n,m,p} = \\vec{x} [\\tilde{\\partial}_x f]_{m + \\frac{1}{2},n,p} +
|
||||
\\vec{y} [\\tilde{\\partial}_y f]_{m,n + \\frac{1}{2},p} +
|
||||
@ -60,6 +70,24 @@ on the direction of the shift. We write it as
|
||||
\\vec{z} g^z_{m,n,p - \\frac{1}{2}} $$
|
||||
|
||||
|
||||
(m, n+1, p+1) _____________ (m+1, n+1, p+1)
|
||||
/: /|
|
||||
/ : / |
|
||||
/ : / |
|
||||
(m, n, p+1)/____________/ | The derivatives are defined
|
||||
| : | | at the Dx, Dy, Dz points,
|
||||
| :........|...| but the gradient fore-vector
|
||||
Dz / | / is the set of all three
|
||||
| Dy | / and is said to be "located" at (m,n,p)
|
||||
| / | /
|
||||
(m, n, p)|/____Dx_____|/ (m+1, n, p)
|
||||
|
||||
|
||||
|
||||
|
||||
Divergences
|
||||
-----------
|
||||
|
||||
There are also two divergences,
|
||||
|
||||
$$ d_{n,m,p} = [\\tilde{\\nabla} \\cdot \\hat{g}]_{n,m,p}
|
||||
@ -77,15 +105,21 @@ is defined at the back-vector's (fore-vectors) location \\( (m,n,p) \\) and not
|
||||
\\( (m \\pm \\frac{1}{2},n,p) \\) etc.
|
||||
|
||||
|
||||
Curls
|
||||
-----
|
||||
|
||||
The two curls are then
|
||||
|
||||
$$ \\begin{align}
|
||||
\\hat{h}_{m + \\frac{1}{2}, n + \\frac{1}{2}, p + \\frac{1}{2}} &= \\\\
|
||||
[\\tilde{\\nabla} \\times \\tilde{g}]_{m + \\frac{1}{2}, n + \\frac{1}{2}, p + \\frac{1}{2}} &=
|
||||
\\vec{x} (\\tilde{\\partial}_y g^z_{m,n,p + \\frac{1}{2}} - \\tilde{\\partial}_z g^y_{m,n + \\frac{1}{2},p}) \\\\
|
||||
&+ \\vec{y} (\\tilde{\\partial}_z g^x_{m + \\frac{1}{2},n,p} - \\tilde{\\partial}_x g^z_{m,n,p + \\frac{1}{2}}) \\\\
|
||||
&+ \\vec{z} (\\tilde{\\partial}_x g^y_{m,n + \\frac{1}{2},p} - \\tilde{\\partial}_x g^z_{m + \\frac{1}{2},n,p})
|
||||
\\end{align}$$
|
||||
and
|
||||
\\end{align} $$
|
||||
|
||||
and
|
||||
|
||||
$$ \\tilde{h}_{m - \\frac{1}{2}, n - \\frac{1}{2}, p - \\frac{1}{2}} =
|
||||
[\\hat{\\nabla} \\times \\hat{g}]_{m - \\frac{1}{2}, n - \\frac{1}{2}, p - \\frac{1}{2}} $$
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user