232 lines
6.6 KiB
Python
232 lines
6.6 KiB
Python
|
"""
|
||
|
Matrix operators for finite difference simulations
|
||
|
|
||
|
Basic discrete calculus etc.
|
||
|
"""
|
||
|
from typing import List, Callable, Tuple, Dict
|
||
|
import numpy
|
||
|
import scipy.sparse as sparse
|
||
|
|
||
|
from .. import field_t, vfield_t
|
||
|
|
||
|
|
||
|
def rotation(axis: int, shape: List[int], shift_distance: int=1) -> sparse.spmatrix:
|
||
|
"""
|
||
|
Utility operator for performing a circular shift along a specified axis by a
|
||
|
specified number of elements.
|
||
|
|
||
|
Args:
|
||
|
axis: Axis to shift along. x=0, y=1, z=2
|
||
|
shape: Shape of the grid being shifted
|
||
|
shift_distance: Number of cells to shift by. May be negative. Default 1.
|
||
|
|
||
|
Returns:
|
||
|
Sparse matrix for performing the circular shift.
|
||
|
"""
|
||
|
if len(shape) not in (2, 3):
|
||
|
raise Exception('Invalid shape: {}'.format(shape))
|
||
|
if axis not in range(len(shape)):
|
||
|
raise Exception('Invalid direction: {}, shape is {}'.format(axis, shape))
|
||
|
|
||
|
shifts = [abs(shift_distance) if a == axis else 0 for a in range(3)]
|
||
|
shifted_diags = [(numpy.arange(n) + s) % n for n, s in zip(shape, shifts)]
|
||
|
ijk = numpy.meshgrid(*shifted_diags, indexing='ij')
|
||
|
|
||
|
n = numpy.prod(shape)
|
||
|
i_ind = numpy.arange(n)
|
||
|
j_ind = numpy.ravel_multi_index(ijk, shape, order='C')
|
||
|
|
||
|
vij = (numpy.ones(n), (i_ind, j_ind.ravel(order='C')))
|
||
|
|
||
|
d = sparse.csr_matrix(vij, shape=(n, n))
|
||
|
|
||
|
if shift_distance < 0:
|
||
|
d = d.T
|
||
|
|
||
|
return d
|
||
|
|
||
|
|
||
|
def shift_with_mirror(axis: int, shape: List[int], shift_distance: int=1) -> sparse.spmatrix:
|
||
|
"""
|
||
|
Utility operator for performing an n-element shift along a specified axis, with mirror
|
||
|
boundary conditions applied to the cells beyond the receding edge.
|
||
|
|
||
|
Args:
|
||
|
axis: Axis to shift along. x=0, y=1, z=2
|
||
|
shape: Shape of the grid being shifted
|
||
|
shift_distance: Number of cells to shift by. May be negative. Default 1.
|
||
|
|
||
|
Returns:
|
||
|
Sparse matrix for performing the shift-with-mirror.
|
||
|
"""
|
||
|
if len(shape) not in (2, 3):
|
||
|
raise Exception('Invalid shape: {}'.format(shape))
|
||
|
if axis not in range(len(shape)):
|
||
|
raise Exception('Invalid direction: {}, shape is {}'.format(axis, shape))
|
||
|
if shift_distance >= shape[axis]:
|
||
|
raise Exception('Shift ({}) is too large for axis {} of size {}'.format(
|
||
|
shift_distance, axis, shape[axis]))
|
||
|
|
||
|
def mirrored_range(n, s):
|
||
|
v = numpy.arange(n) + s
|
||
|
v = numpy.where(v >= n, 2 * n - v - 1, v)
|
||
|
v = numpy.where(v < 0, - 1 - v, v)
|
||
|
return v
|
||
|
|
||
|
shifts = [shift_distance if a == axis else 0 for a in range(3)]
|
||
|
shifted_diags = [mirrored_range(n, s) for n, s in zip(shape, shifts)]
|
||
|
ijk = numpy.meshgrid(*shifted_diags, indexing='ij')
|
||
|
|
||
|
n = numpy.prod(shape)
|
||
|
i_ind = numpy.arange(n)
|
||
|
j_ind = numpy.ravel_multi_index(ijk, shape, order='C')
|
||
|
|
||
|
vij = (numpy.ones(n), (i_ind, j_ind.ravel(order='C')))
|
||
|
|
||
|
d = sparse.csr_matrix(vij, shape=(n, n))
|
||
|
return d
|
||
|
|
||
|
|
||
|
def deriv_forward(dx_e: List[numpy.ndarray]) -> List[sparse.spmatrix]:
|
||
|
"""
|
||
|
Utility operators for taking discretized derivatives (forward variant).
|
||
|
|
||
|
Args:
|
||
|
dx_e: Lists of cell sizes for all axes
|
||
|
`[[dx_0, dx_1, ...], [dy_0, dy_1, ...], ...]`.
|
||
|
|
||
|
Returns:
|
||
|
List of operators for taking forward derivatives along each axis.
|
||
|
"""
|
||
|
shape = [s.size for s in dx_e]
|
||
|
n = numpy.prod(shape)
|
||
|
|
||
|
dx_e_expanded = numpy.meshgrid(*dx_e, indexing='ij')
|
||
|
|
||
|
def deriv(axis):
|
||
|
return rotation(axis, shape, 1) - sparse.eye(n)
|
||
|
|
||
|
Ds = [sparse.diags(+1 / dx.ravel(order='C')) @ deriv(a)
|
||
|
for a, dx in enumerate(dx_e_expanded)]
|
||
|
|
||
|
return Ds
|
||
|
|
||
|
|
||
|
def deriv_back(dx_h: List[numpy.ndarray]) -> List[sparse.spmatrix]:
|
||
|
"""
|
||
|
Utility operators for taking discretized derivatives (backward variant).
|
||
|
|
||
|
Args:
|
||
|
dx_h: Lists of cell sizes for all axes
|
||
|
`[[dx_0, dx_1, ...], [dy_0, dy_1, ...], ...]`.
|
||
|
|
||
|
Returns:
|
||
|
List of operators for taking forward derivatives along each axis.
|
||
|
"""
|
||
|
shape = [s.size for s in dx_h]
|
||
|
n = numpy.prod(shape)
|
||
|
|
||
|
dx_h_expanded = numpy.meshgrid(*dx_h, indexing='ij')
|
||
|
|
||
|
def deriv(axis):
|
||
|
return rotation(axis, shape, -1) - sparse.eye(n)
|
||
|
|
||
|
Ds = [sparse.diags(-1 / dx.ravel(order='C')) @ deriv(a)
|
||
|
for a, dx in enumerate(dx_h_expanded)]
|
||
|
|
||
|
return Ds
|
||
|
|
||
|
|
||
|
def cross(B: List[sparse.spmatrix]) -> sparse.spmatrix:
|
||
|
"""
|
||
|
Cross product operator
|
||
|
|
||
|
Args:
|
||
|
B: List `[Bx, By, Bz]` of sparse matrices corresponding to the x, y, z
|
||
|
portions of the operator on the left side of the cross product.
|
||
|
|
||
|
Returns:
|
||
|
Sparse matrix corresponding to (B x), where x is the cross product.
|
||
|
"""
|
||
|
n = B[0].shape[0]
|
||
|
zero = sparse.csr_matrix((n, n))
|
||
|
return sparse.bmat([[zero, -B[2], B[1]],
|
||
|
[B[2], zero, -B[0]],
|
||
|
[-B[1], B[0], zero]])
|
||
|
|
||
|
|
||
|
def vec_cross(b: vfield_t) -> sparse.spmatrix:
|
||
|
"""
|
||
|
Vector cross product operator
|
||
|
|
||
|
Args:
|
||
|
b: Vector on the left side of the cross product.
|
||
|
|
||
|
Returns:
|
||
|
|
||
|
Sparse matrix corresponding to (b x), where x is the cross product.
|
||
|
|
||
|
"""
|
||
|
B = [sparse.diags(c) for c in numpy.split(b, 3)]
|
||
|
return cross(B)
|
||
|
|
||
|
|
||
|
def avg_forward(axis: int, shape: List[int]) -> sparse.spmatrix:
|
||
|
"""
|
||
|
Forward average operator `(x4 = (x4 + x5) / 2)`
|
||
|
|
||
|
Args:
|
||
|
axis: Axis to average along (x=0, y=1, z=2)
|
||
|
shape: Shape of the grid to average
|
||
|
|
||
|
Returns:
|
||
|
Sparse matrix for forward average operation.
|
||
|
"""
|
||
|
if len(shape) not in (2, 3):
|
||
|
raise Exception('Invalid shape: {}'.format(shape))
|
||
|
|
||
|
n = numpy.prod(shape)
|
||
|
return 0.5 * (sparse.eye(n) + rotation(axis, shape))
|
||
|
|
||
|
|
||
|
def avg_back(axis: int, shape: List[int]) -> sparse.spmatrix:
|
||
|
"""
|
||
|
Backward average operator `(x4 = (x4 + x3) / 2)`
|
||
|
|
||
|
Args:
|
||
|
axis: Axis to average along (x=0, y=1, z=2)
|
||
|
shape: Shape of the grid to average
|
||
|
|
||
|
Returns:
|
||
|
Sparse matrix for backward average operation.
|
||
|
"""
|
||
|
return avg_forward(axis, shape).T
|
||
|
|
||
|
|
||
|
def curl_forward(dx_e: List[numpy.ndarray]) -> sparse.spmatrix:
|
||
|
"""
|
||
|
Curl operator for use with the E field.
|
||
|
|
||
|
Args:
|
||
|
dx_e: Lists of cell sizes for all axes
|
||
|
`[[dx_0, dx_1, ...], [dy_0, dy_1, ...], ...]`.
|
||
|
|
||
|
Returns:
|
||
|
Sparse matrix for taking the discretized curl of the E-field
|
||
|
"""
|
||
|
return cross(deriv_forward(dx_e))
|
||
|
|
||
|
|
||
|
def curl_back(dx_h: List[numpy.ndarray]) -> sparse.spmatrix:
|
||
|
"""
|
||
|
Curl operator for use with the H field.
|
||
|
|
||
|
Args:
|
||
|
dx_h: Lists of cell sizes for all axes
|
||
|
`[[dx_0, dx_1, ...], [dy_0, dy_1, ...], ...]`.
|
||
|
|
||
|
Returns:
|
||
|
Sparse matrix for taking the discretized curl of the H-field
|
||
|
"""
|
||
|
return cross(deriv_back(dx_h))
|