3102 lines
99 KiB
XML
3102 lines
99 KiB
XML
<?xml version="1.0"?>
|
|
<opencv_storage>
|
|
<classifier_DuvarSaati type_id="opencv-haar-classifier">
|
|
<size>
|
|
30 30</size>
|
|
<stages>
|
|
<_>
|
|
<!-- stage 0 -->
|
|
<trees>
|
|
<_>
|
|
<!-- tree 0 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
11 0 10 10 -1.</_>
|
|
<_>
|
|
11 5 10 5 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0225503891706467</threshold>
|
|
<left_val>-0.7207304835319519</left_val>
|
|
<right_val>0.7884858250617981</right_val></_></_>
|
|
<_>
|
|
<!-- tree 1 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
12 14 6 3 -1.</_>
|
|
<_>
|
|
14 15 2 1 9.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0103679997846484</threshold>
|
|
<left_val>0.8748232126235962</left_val>
|
|
<right_val>-0.5662534236907959</right_val></_></_>
|
|
<_>
|
|
<!-- tree 2 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
13 11 4 9 -1.</_>
|
|
<_>
|
|
13 14 4 3 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-7.6229930855333805e-003</threshold>
|
|
<left_val>0.7921038269996643</left_val>
|
|
<right_val>-0.4398050904273987</right_val></_></_>
|
|
<_>
|
|
<!-- tree 3 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 10 6 15 -1.</_>
|
|
<_>
|
|
6 10 3 15 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0142955500632524</threshold>
|
|
<left_val>-0.4856897890567780</left_val>
|
|
<right_val>0.8144654035568237</right_val></_></_></trees>
|
|
<stage_threshold>-0.9805700778961182</stage_threshold>
|
|
<parent>-1</parent>
|
|
<next>-1</next></_>
|
|
<_>
|
|
<!-- stage 1 -->
|
|
<trees>
|
|
<_>
|
|
<!-- tree 0 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 20 27 10 -1.</_>
|
|
<_>
|
|
3 25 27 5 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0418560616672039</threshold>
|
|
<left_val>0.7715684771537781</left_val>
|
|
<right_val>-0.7308530807495117</right_val></_></_>
|
|
<_>
|
|
<!-- tree 1 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
14 14 3 3 -1.</_>
|
|
<_>
|
|
15 15 1 1 9.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-6.2480890192091465e-003</threshold>
|
|
<left_val>0.7600126862525940</left_val>
|
|
<right_val>-0.5264171957969666</right_val></_></_>
|
|
<_>
|
|
<!-- tree 2 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
12 0 15 10 -1.</_>
|
|
<_>
|
|
12 5 15 5 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0479770787060261</threshold>
|
|
<left_val>-0.4011876881122589</left_val>
|
|
<right_val>0.7997202277183533</right_val></_></_>
|
|
<_>
|
|
<!-- tree 3 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
18 3 9 26 -1.</_>
|
|
<_>
|
|
18 16 9 13 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0318866707384586</threshold>
|
|
<left_val>0.3455348908901215</left_val>
|
|
<right_val>-0.8596624732017517</right_val></_></_>
|
|
<_>
|
|
<!-- tree 4 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
20 2 10 12 -1.</_>
|
|
<_>
|
|
20 2 5 6 2.</_>
|
|
<_>
|
|
25 8 5 6 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0194444395601749</threshold>
|
|
<left_val>0.8260732889175415</left_val>
|
|
<right_val>-0.4276879131793976</right_val></_></_>
|
|
<_>
|
|
<!-- tree 5 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
26 9 4 14 -1.</_>
|
|
<_>
|
|
28 9 2 14 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0200596991926432</threshold>
|
|
<left_val>0.9874691963195801</left_val>
|
|
<right_val>-0.3553096055984497</right_val></_></_>
|
|
<_>
|
|
<!-- tree 6 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
26 0 2 2 -1.</_>
|
|
<_>
|
|
27 0 1 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-7.7831762610003352e-004</threshold>
|
|
<left_val>-0.8497620224952698</left_val>
|
|
<right_val>0.4054605960845947</right_val></_></_>
|
|
<_>
|
|
<!-- tree 7 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 19 10 8 -1.</_>
|
|
<_>
|
|
9 21 10 4 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0116476295515895</threshold>
|
|
<left_val>-0.3601523935794830</left_val>
|
|
<right_val>0.8574079871177673</right_val></_></_></trees>
|
|
<stage_threshold>-0.8330519199371338</stage_threshold>
|
|
<parent>0</parent>
|
|
<next>-1</next></_>
|
|
<_>
|
|
<!-- stage 2 -->
|
|
<trees>
|
|
<_>
|
|
<!-- tree 0 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
20 5 10 14 -1.</_>
|
|
<_>
|
|
25 5 5 14 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0520163811743259</threshold>
|
|
<left_val>0.8257145285606384</left_val>
|
|
<right_val>-0.5637528896331787</right_val></_></_>
|
|
<_>
|
|
<!-- tree 1 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
14 15 6 2 -1.</_>
|
|
<_>
|
|
14 15 3 1 2.</_>
|
|
<_>
|
|
17 16 3 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.3776830639690161e-003</threshold>
|
|
<left_val>0.8298984766006470</left_val>
|
|
<right_val>-0.3037792146205902</right_val></_></_>
|
|
<_>
|
|
<!-- tree 2 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 10 18 19 -1.</_>
|
|
<_>
|
|
6 10 6 19 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0171877499669790</threshold>
|
|
<left_val>-0.5477277040481567</left_val>
|
|
<right_val>0.5136498808860779</right_val></_></_>
|
|
<_>
|
|
<!-- tree 3 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
28 4 2 14 -1.</_>
|
|
<_>
|
|
28 4 1 7 2.</_>
|
|
<_>
|
|
29 11 1 7 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-5.2252239547669888e-003</threshold>
|
|
<left_val>0.8670595884323120</left_val>
|
|
<right_val>-0.3483909070491791</right_val></_></_>
|
|
<_>
|
|
<!-- tree 4 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
1 6 28 19 -1.</_>
|
|
<_>
|
|
8 6 14 19 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.1614976972341538</threshold>
|
|
<left_val>-0.2469431012868881</left_val>
|
|
<right_val>0.8995053768157959</right_val></_></_>
|
|
<_>
|
|
<!-- tree 5 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
5 23 2 2 -1.</_>
|
|
<_>
|
|
5 23 1 2 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-8.6788518819957972e-004</threshold>
|
|
<left_val>-0.6489925980567932</left_val>
|
|
<right_val>0.4482645988464356</right_val></_></_>
|
|
<_>
|
|
<!-- tree 6 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
5 0 17 12 -1.</_>
|
|
<_>
|
|
5 3 17 6 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0405330397188663</threshold>
|
|
<left_val>-0.3314704000949860</left_val>
|
|
<right_val>0.8627082705497742</right_val></_></_></trees>
|
|
<stage_threshold>-1.8573789596557617</stage_threshold>
|
|
<parent>1</parent>
|
|
<next>-1</next></_>
|
|
<_>
|
|
<!-- stage 3 -->
|
|
<trees>
|
|
<_>
|
|
<!-- tree 0 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
14 15 16 1 -1.</_>
|
|
<_>
|
|
18 15 8 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>4.0193069726228714e-003</threshold>
|
|
<left_val>-0.6957365274429321</left_val>
|
|
<right_val>0.6457979083061218</right_val></_></_>
|
|
<_>
|
|
<!-- tree 1 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
11 15 9 1 -1.</_>
|
|
<_>
|
|
14 15 3 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-3.7396959960460663e-003</threshold>
|
|
<left_val>0.6279641985893250</left_val>
|
|
<right_val>-0.5662031173706055</right_val></_></_>
|
|
<_>
|
|
<!-- tree 2 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
25 8 3 15 -1.</_>
|
|
<_>
|
|
26 8 1 15 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>2.4585970677435398e-003</threshold>
|
|
<left_val>-0.4059694111347199</left_val>
|
|
<right_val>0.7348414063453674</right_val></_></_>
|
|
<_>
|
|
<!-- tree 3 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 0 2 4 -1.</_>
|
|
<_>
|
|
0 2 2 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>1.1789749842137098e-003</threshold>
|
|
<left_val>0.3537071943283081</left_val>
|
|
<right_val>-0.9093698859214783</right_val></_></_>
|
|
<_>
|
|
<!-- tree 4 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 9 15 10 -1.</_>
|
|
<_>
|
|
5 9 5 10 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0275318492203951</threshold>
|
|
<left_val>-0.4571217894554138</left_val>
|
|
<right_val>0.6919301152229309</right_val></_></_>
|
|
<_>
|
|
<!-- tree 5 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
26 11 4 9 -1.</_>
|
|
<_>
|
|
27 11 2 9 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>3.1117910984903574e-003</threshold>
|
|
<left_val>-0.4389519989490509</left_val>
|
|
<right_val>0.6670482754707336</right_val></_></_></trees>
|
|
<stage_threshold>-1.1042749881744385</stage_threshold>
|
|
<parent>2</parent>
|
|
<next>-1</next></_>
|
|
<_>
|
|
<!-- stage 4 -->
|
|
<trees>
|
|
<_>
|
|
<!-- tree 0 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 8 28 2 -1.</_>
|
|
<_>
|
|
9 8 14 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0207930002361536</threshold>
|
|
<left_val>-0.5435373187065125</left_val>
|
|
<right_val>0.7769594192504883</right_val></_></_>
|
|
<_>
|
|
<!-- tree 1 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
12 15 6 1 -1.</_>
|
|
<_>
|
|
14 15 2 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-3.5948599688708782e-003</threshold>
|
|
<left_val>0.7313253283500671</left_val>
|
|
<right_val>-0.4182578027248383</right_val></_></_>
|
|
<_>
|
|
<!-- tree 2 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
1 13 3 6 -1.</_>
|
|
<_>
|
|
2 13 1 6 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>4.5345202088356018e-003</threshold>
|
|
<left_val>-0.2915262877941132</left_val>
|
|
<right_val>1.0000820159912109</right_val></_></_>
|
|
<_>
|
|
<!-- tree 3 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
16 0 14 5 -1.</_>
|
|
<_>
|
|
16 0 7 5 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>0.0156572908163071</threshold>
|
|
<left_val>0.4315113127231598</left_val>
|
|
<right_val>-0.8470829725265503</right_val></_></_>
|
|
<_>
|
|
<!-- tree 4 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
20 2 10 4 -1.</_>
|
|
<_>
|
|
20 2 5 4 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-0.0203227400779724</threshold>
|
|
<left_val>-0.8424695730209351</left_val>
|
|
<right_val>0.2959519028663635</right_val></_></_></trees>
|
|
<stage_threshold>-0.6548693776130676</stage_threshold>
|
|
<parent>3</parent>
|
|
<next>-1</next></_>
|
|
<_>
|
|
<!-- stage 5 -->
|
|
<trees>
|
|
<_>
|
|
<!-- tree 0 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
14 14 3 3 -1.</_>
|
|
<_>
|
|
15 15 1 1 9.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-8.3805844187736511e-003</threshold>
|
|
<left_val>0.8370696902275085</left_val>
|
|
<right_val>-0.5038247108459473</right_val></_></_>
|
|
<_>
|
|
<!-- tree 1 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
20 14 10 14 -1.</_>
|
|
<_>
|
|
25 14 5 14 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0148145696148276</threshold>
|
|
<left_val>0.5616933107376099</left_val>
|
|
<right_val>-0.6403117775917053</right_val></_></_>
|
|
<_>
|
|
<!-- tree 2 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
17 0 2 16 -1.</_>
|
|
<_>
|
|
17 0 2 8 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>0.0163473393768072</threshold>
|
|
<left_val>0.3776484131813049</left_val>
|
|
<right_val>-0.9327405095100403</right_val></_></_>
|
|
<_>
|
|
<!-- tree 3 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
13 0 5 15 -1.</_>
|
|
<_>
|
|
13 5 5 5 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0117841102182865</threshold>
|
|
<left_val>-0.6357597112655640</left_val>
|
|
<right_val>0.5127261877059937</right_val></_></_>
|
|
<_>
|
|
<!-- tree 4 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 0 10 28 -1.</_>
|
|
<_>
|
|
4 14 10 14 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0387781895697117</threshold>
|
|
<left_val>-0.7584123015403748</left_val>
|
|
<right_val>0.3491626977920532</right_val></_></_></trees>
|
|
<stage_threshold>-1.0530849695205688</stage_threshold>
|
|
<parent>4</parent>
|
|
<next>-1</next></_>
|
|
<_>
|
|
<!-- stage 6 -->
|
|
<trees>
|
|
<_>
|
|
<!-- tree 0 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 12 8 15 -1.</_>
|
|
<_>
|
|
6 12 4 15 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0404665991663933</threshold>
|
|
<left_val>-0.4351164996623993</left_val>
|
|
<right_val>0.8230059742927551</right_val></_></_>
|
|
<_>
|
|
<!-- tree 1 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 0 14 18 -1.</_>
|
|
<_>
|
|
4 6 14 6 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0402202606201172</threshold>
|
|
<left_val>-0.5208637118339539</left_val>
|
|
<right_val>0.5568476915359497</right_val></_></_>
|
|
<_>
|
|
<!-- tree 2 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
15 14 1 3 -1.</_>
|
|
<_>
|
|
15 15 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-3.1198970973491669e-003</threshold>
|
|
<left_val>0.9094204902648926</left_val>
|
|
<right_val>-0.2997655868530273</right_val></_></_>
|
|
<_>
|
|
<!-- tree 3 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
27 13 3 4 -1.</_>
|
|
<_>
|
|
28 13 1 4 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>3.9229649119079113e-003</threshold>
|
|
<left_val>-0.3093683123588562</left_val>
|
|
<right_val>0.9037017226219177</right_val></_></_>
|
|
<_>
|
|
<!-- tree 4 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 8 28 11 -1.</_>
|
|
<_>
|
|
14 8 14 11 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0547299198806286</threshold>
|
|
<left_val>-0.9201089739799500</left_val>
|
|
<right_val>0.4091405868530273</right_val></_></_>
|
|
<_>
|
|
<!-- tree 5 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
25 12 3 7 -1.</_>
|
|
<_>
|
|
26 12 1 7 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>4.0078898891806602e-003</threshold>
|
|
<left_val>-0.4236168861389160</left_val>
|
|
<right_val>0.8053380846977234</right_val></_></_>
|
|
<_>
|
|
<!-- tree 6 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
5 5 22 2 -1.</_>
|
|
<_>
|
|
16 5 11 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0119076501578093</threshold>
|
|
<left_val>0.3813633024692535</left_val>
|
|
<right_val>-0.7564094066619873</right_val></_></_></trees>
|
|
<stage_threshold>-1.1982270479202271</stage_threshold>
|
|
<parent>5</parent>
|
|
<next>-1</next></_>
|
|
<_>
|
|
<!-- stage 7 -->
|
|
<trees>
|
|
<_>
|
|
<!-- tree 0 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
6 0 22 14 -1.</_>
|
|
<_>
|
|
6 7 22 7 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0797815322875977</threshold>
|
|
<left_val>-0.6493945121765137</left_val>
|
|
<right_val>0.5762786865234375</right_val></_></_>
|
|
<_>
|
|
<!-- tree 1 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
19 12 1 6 -1.</_>
|
|
<_>
|
|
17 14 1 2 3.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-2.7952969539910555e-003</threshold>
|
|
<left_val>0.5456848144531250</left_val>
|
|
<right_val>-0.5883920788764954</right_val></_></_>
|
|
<_>
|
|
<!-- tree 2 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 13 14 12 -1.</_>
|
|
<_>
|
|
2 13 7 6 2.</_>
|
|
<_>
|
|
9 19 7 6 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>8.4679108113050461e-003</threshold>
|
|
<left_val>-0.5249853134155273</left_val>
|
|
<right_val>0.4567469060420990</right_val></_></_>
|
|
<_>
|
|
<!-- tree 3 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
15 4 7 26 -1.</_>
|
|
<_>
|
|
15 17 7 13 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0316940285265446</threshold>
|
|
<left_val>0.2529393136501312</left_val>
|
|
<right_val>-0.8642746806144714</right_val></_></_>
|
|
<_>
|
|
<!-- tree 4 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 26 13 4 -1.</_>
|
|
<_>
|
|
9 28 13 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0128996297717094</threshold>
|
|
<left_val>0.7359365224838257</left_val>
|
|
<right_val>-0.3432675004005432</right_val></_></_>
|
|
<_>
|
|
<!-- tree 5 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
10 3 6 8 -1.</_>
|
|
<_>
|
|
10 3 3 8 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-0.0229662600904703</threshold>
|
|
<left_val>0.7252805233001709</left_val>
|
|
<right_val>-0.4172959923744202</right_val></_></_>
|
|
<_>
|
|
<!-- tree 6 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 10 3 10 -1.</_>
|
|
<_>
|
|
1 10 1 10 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-7.0529622025787830e-003</threshold>
|
|
<left_val>0.8382613062858582</left_val>
|
|
<right_val>-0.2421897947788239</right_val></_></_>
|
|
<_>
|
|
<!-- tree 7 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
14 12 3 4 -1.</_>
|
|
<_>
|
|
14 13 3 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>1.8983749905601144e-003</threshold>
|
|
<left_val>-0.3964825868606567</left_val>
|
|
<right_val>0.6354545950889587</right_val></_></_></trees>
|
|
<stage_threshold>-1.7664920091629028</stage_threshold>
|
|
<parent>6</parent>
|
|
<next>-1</next></_>
|
|
<_>
|
|
<!-- stage 8 -->
|
|
<trees>
|
|
<_>
|
|
<!-- tree 0 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
8 2 19 28 -1.</_>
|
|
<_>
|
|
8 9 19 14 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.2004013061523438</threshold>
|
|
<left_val>-0.4439170062541962</left_val>
|
|
<right_val>0.8234676122665405</right_val></_></_>
|
|
<_>
|
|
<!-- tree 1 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 0 30 12 -1.</_>
|
|
<_>
|
|
0 6 30 6 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0495737306773663</threshold>
|
|
<left_val>-0.6449897289276123</left_val>
|
|
<right_val>0.4417080879211426</right_val></_></_>
|
|
<_>
|
|
<!-- tree 2 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
14 11 2 9 -1.</_>
|
|
<_>
|
|
14 14 2 3 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-6.0293218120932579e-003</threshold>
|
|
<left_val>0.5647888779640198</left_val>
|
|
<right_val>-0.4946784079074860</right_val></_></_>
|
|
<_>
|
|
<!-- tree 3 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 0 3 2 -1.</_>
|
|
<_>
|
|
3 0 3 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>5.9228722238913178e-004</threshold>
|
|
<left_val>0.4513243138790131</left_val>
|
|
<right_val>-0.5798317193984985</right_val></_></_>
|
|
<_>
|
|
<!-- tree 4 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 11 6 11 -1.</_>
|
|
<_>
|
|
2 11 2 11 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0139415403828025</threshold>
|
|
<left_val>-0.3902432918548584</left_val>
|
|
<right_val>0.7450913190841675</right_val></_></_>
|
|
<_>
|
|
<!-- tree 5 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
17 8 8 20 -1.</_>
|
|
<_>
|
|
17 8 4 10 2.</_>
|
|
<_>
|
|
21 18 4 10 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-4.4980688835494220e-004</threshold>
|
|
<left_val>0.5301743149757385</left_val>
|
|
<right_val>-0.5319514870643616</right_val></_></_>
|
|
<_>
|
|
<!-- tree 6 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
8 18 4 8 -1.</_>
|
|
<_>
|
|
6 20 4 4 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-0.0143874799832702</threshold>
|
|
<left_val>0.8146824240684509</left_val>
|
|
<right_val>-0.3091411888599396</right_val></_></_>
|
|
<_>
|
|
<!-- tree 7 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
24 19 6 4 -1.</_>
|
|
<_>
|
|
26 21 2 4 3.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>0.0157648399472237</threshold>
|
|
<left_val>-0.2650843858718872</left_val>
|
|
<right_val>0.8585258126258850</right_val></_></_></trees>
|
|
<stage_threshold>-1.5048580169677734</stage_threshold>
|
|
<parent>7</parent>
|
|
<next>-1</next></_>
|
|
<_>
|
|
<!-- stage 9 -->
|
|
<trees>
|
|
<_>
|
|
<!-- tree 0 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
25 14 2 8 -1.</_>
|
|
<_>
|
|
25 14 1 4 2.</_>
|
|
<_>
|
|
26 18 1 4 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-1.9776010885834694e-003</threshold>
|
|
<left_val>0.8342393040657044</left_val>
|
|
<right_val>-0.3764109015464783</right_val></_></_>
|
|
<_>
|
|
<!-- tree 1 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
14 15 4 2 -1.</_>
|
|
<_>
|
|
14 15 2 1 2.</_>
|
|
<_>
|
|
16 16 2 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-1.5312379691749811e-003</threshold>
|
|
<left_val>0.7800230979919434</left_val>
|
|
<right_val>-0.3976786136627197</right_val></_></_>
|
|
<_>
|
|
<!-- tree 2 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
16 6 13 24 -1.</_>
|
|
<_>
|
|
16 18 13 12 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-5.5937091819941998e-003</threshold>
|
|
<left_val>0.3976748883724213</left_val>
|
|
<right_val>-0.8354712128639221</right_val></_></_>
|
|
<_>
|
|
<!-- tree 3 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 14 6 2 -1.</_>
|
|
<_>
|
|
3 14 3 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>5.9340591542422771e-003</threshold>
|
|
<left_val>-0.4098539948463440</left_val>
|
|
<right_val>0.7775127887725830</right_val></_></_>
|
|
<_>
|
|
<!-- tree 4 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
17 14 5 6 -1.</_>
|
|
<_>
|
|
17 14 5 3 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>3.3641920890659094e-003</threshold>
|
|
<left_val>0.4648639857769013</left_val>
|
|
<right_val>-0.5968496799468994</right_val></_></_>
|
|
<_>
|
|
<!-- tree 5 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
6 20 6 3 -1.</_>
|
|
<_>
|
|
6 20 3 3 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-6.3608391210436821e-003</threshold>
|
|
<left_val>-0.8452699184417725</left_val>
|
|
<right_val>0.3319250047206879</right_val></_></_>
|
|
<_>
|
|
<!-- tree 6 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
14 15 2 2 -1.</_>
|
|
<_>
|
|
14 15 1 1 2.</_>
|
|
<_>
|
|
15 16 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>1.0717130498960614e-003</threshold>
|
|
<left_val>-0.3603565990924835</left_val>
|
|
<right_val>0.8019682765007019</right_val></_></_>
|
|
<_>
|
|
<!-- tree 7 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
28 11 2 16 -1.</_>
|
|
<_>
|
|
28 11 1 8 2.</_>
|
|
<_>
|
|
29 19 1 8 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>4.5385858975350857e-003</threshold>
|
|
<left_val>-0.2635689079761505</left_val>
|
|
<right_val>0.8338183164596558</right_val></_></_></trees>
|
|
<stage_threshold>-0.7491639256477356</stage_threshold>
|
|
<parent>8</parent>
|
|
<next>-1</next></_>
|
|
<_>
|
|
<!-- stage 10 -->
|
|
<trees>
|
|
<_>
|
|
<!-- tree 0 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
1 18 28 8 -1.</_>
|
|
<_>
|
|
8 18 14 8 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0700757801532745</threshold>
|
|
<left_val>-0.4914397895336151</left_val>
|
|
<right_val>0.6778938174247742</right_val></_></_>
|
|
<_>
|
|
<!-- tree 1 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
16 0 6 15 -1.</_>
|
|
<_>
|
|
18 2 2 15 3.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>0.0229521002620459</threshold>
|
|
<left_val>-0.3336066901683807</left_val>
|
|
<right_val>0.7829133868217468</right_val></_></_>
|
|
<_>
|
|
<!-- tree 2 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
8 1 2 7 -1.</_>
|
|
<_>
|
|
8 1 1 7 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-6.8707908503711224e-003</threshold>
|
|
<left_val>0.9234185218811035</left_val>
|
|
<right_val>-0.2476124018430710</right_val></_></_>
|
|
<_>
|
|
<!-- tree 3 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
14 12 6 4 -1.</_>
|
|
<_>
|
|
14 12 3 2 2.</_>
|
|
<_>
|
|
17 14 3 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>2.0509921014308929e-003</threshold>
|
|
<left_val>-0.4796935021877289</left_val>
|
|
<right_val>0.5479726195335388</right_val></_></_>
|
|
<_>
|
|
<!-- tree 4 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
26 0 2 22 -1.</_>
|
|
<_>
|
|
26 0 2 11 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>0.0209642108529806</threshold>
|
|
<left_val>0.3271762132644653</left_val>
|
|
<right_val>-0.8076078891754150</right_val></_></_>
|
|
<_>
|
|
<!-- tree 5 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
28 10 2 2 -1.</_>
|
|
<_>
|
|
28 10 1 1 2.</_>
|
|
<_>
|
|
29 11 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.8584629762917757e-004</threshold>
|
|
<left_val>0.8164829015731812</left_val>
|
|
<right_val>-0.3120633959770203</right_val></_></_>
|
|
<_>
|
|
<!-- tree 6 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
25 8 3 10 -1.</_>
|
|
<_>
|
|
26 8 1 10 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>5.0798300653696060e-003</threshold>
|
|
<left_val>-0.2668131887912750</left_val>
|
|
<right_val>0.7880414128303528</right_val></_></_>
|
|
<_>
|
|
<!-- tree 7 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
14 24 2 6 -1.</_>
|
|
<_>
|
|
14 27 2 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-1.6909160185605288e-003</threshold>
|
|
<left_val>0.5380467772483826</left_val>
|
|
<right_val>-0.4121227860450745</right_val></_></_></trees>
|
|
<stage_threshold>-1.2660059928894043</stage_threshold>
|
|
<parent>9</parent>
|
|
<next>-1</next></_>
|
|
<_>
|
|
<!-- stage 11 -->
|
|
<trees>
|
|
<_>
|
|
<!-- tree 0 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
19 4 6 7 -1.</_>
|
|
<_>
|
|
22 4 3 7 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-5.4764188826084137e-003</threshold>
|
|
<left_val>0.6139761805534363</left_val>
|
|
<right_val>-0.5204738974571228</right_val></_></_>
|
|
<_>
|
|
<!-- tree 1 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
13 5 3 18 -1.</_>
|
|
<_>
|
|
13 11 3 6 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>4.7526010894216597e-004</threshold>
|
|
<left_val>0.4232788085937500</left_val>
|
|
<right_val>-0.6906324028968811</right_val></_></_>
|
|
<_>
|
|
<!-- tree 2 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 2 12 14 -1.</_>
|
|
<_>
|
|
6 2 6 14 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>9.8068211227655411e-003</threshold>
|
|
<left_val>-0.7110623121261597</left_val>
|
|
<right_val>0.4150972068309784</right_val></_></_>
|
|
<_>
|
|
<!-- tree 3 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
14 15 3 1 -1.</_>
|
|
<_>
|
|
15 15 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.8263509739190340e-003</threshold>
|
|
<left_val>0.8587607145309448</left_val>
|
|
<right_val>-0.3086710870265961</right_val></_></_>
|
|
<_>
|
|
<!-- tree 4 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
24 8 6 15 -1.</_>
|
|
<_>
|
|
27 8 3 15 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0207858793437481</threshold>
|
|
<left_val>0.5591353178024292</left_val>
|
|
<right_val>-0.5492148995399475</right_val></_></_>
|
|
<_>
|
|
<!-- tree 5 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
23 0 3 30 -1.</_>
|
|
<_>
|
|
23 15 3 15 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0284755192697048</threshold>
|
|
<left_val>0.2707023024559021</left_val>
|
|
<right_val>-0.9300810098648071</right_val></_></_>
|
|
<_>
|
|
<!-- tree 6 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
14 13 4 3 -1.</_>
|
|
<_>
|
|
13 14 4 1 3.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>6.1908899806439877e-003</threshold>
|
|
<left_val>-0.2891514003276825</left_val>
|
|
<right_val>0.8885921835899353</right_val></_></_></trees>
|
|
<stage_threshold>-1.6723439693450928</stage_threshold>
|
|
<parent>10</parent>
|
|
<next>-1</next></_>
|
|
<_>
|
|
<!-- stage 12 -->
|
|
<trees>
|
|
<_>
|
|
<!-- tree 0 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
19 7 10 19 -1.</_>
|
|
<_>
|
|
24 7 5 19 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0639207363128662</threshold>
|
|
<left_val>0.5404042005538940</left_val>
|
|
<right_val>-0.4567835032939911</right_val></_></_>
|
|
<_>
|
|
<!-- tree 1 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
11 7 10 15 -1.</_>
|
|
<_>
|
|
11 12 10 5 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.6347399689257145e-003</threshold>
|
|
<left_val>0.4270741045475006</left_val>
|
|
<right_val>-0.5876396894454956</right_val></_></_>
|
|
<_>
|
|
<!-- tree 2 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 20 26 8 -1.</_>
|
|
<_>
|
|
15 20 13 8 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0461380295455456</threshold>
|
|
<left_val>-0.7739400267601013</left_val>
|
|
<right_val>0.3122020959854126</right_val></_></_>
|
|
<_>
|
|
<!-- tree 3 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
25 8 2 6 -1.</_>
|
|
<_>
|
|
25 8 1 3 2.</_>
|
|
<_>
|
|
26 11 1 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>2.0124330185353756e-003</threshold>
|
|
<left_val>-0.3222776949405670</left_val>
|
|
<right_val>0.8423414826393127</right_val></_></_>
|
|
<_>
|
|
<!-- tree 4 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
27 13 3 5 -1.</_>
|
|
<_>
|
|
28 13 1 5 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>6.1421301215887070e-003</threshold>
|
|
<left_val>-0.3080565035343170</left_val>
|
|
<right_val>0.8616139888763428</right_val></_></_>
|
|
<_>
|
|
<!-- tree 5 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
14 14 2 4 -1.</_>
|
|
<_>
|
|
14 15 2 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-1.6880210023373365e-003</threshold>
|
|
<left_val>0.5805559754371643</left_val>
|
|
<right_val>-0.3706024885177612</right_val></_></_>
|
|
<_>
|
|
<!-- tree 6 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 10 8 2 -1.</_>
|
|
<_>
|
|
3 10 4 2 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-0.0101441303268075</threshold>
|
|
<left_val>0.5537341833114624</left_val>
|
|
<right_val>-0.3941943049430847</right_val></_></_>
|
|
<_>
|
|
<!-- tree 7 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
24 17 6 7 -1.</_>
|
|
<_>
|
|
26 19 2 7 3.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>0.0335026010870934</threshold>
|
|
<left_val>-0.2556783854961395</left_val>
|
|
<right_val>0.8882070183753967</right_val></_></_></trees>
|
|
<stage_threshold>-1.3683170080184937</stage_threshold>
|
|
<parent>11</parent>
|
|
<next>-1</next></_>
|
|
<_>
|
|
<!-- stage 13 -->
|
|
<trees>
|
|
<_>
|
|
<!-- tree 0 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
21 2 2 28 -1.</_>
|
|
<_>
|
|
21 9 2 14 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0224439799785614</threshold>
|
|
<left_val>-0.5313345193862915</left_val>
|
|
<right_val>0.6142271161079407</right_val></_></_>
|
|
<_>
|
|
<!-- tree 1 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 4 18 26 -1.</_>
|
|
<_>
|
|
2 17 18 13 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0533409006893635</threshold>
|
|
<left_val>0.2682515084743500</left_val>
|
|
<right_val>-0.9193441271781921</right_val></_></_>
|
|
<_>
|
|
<!-- tree 2 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
26 14 4 4 -1.</_>
|
|
<_>
|
|
28 14 2 4 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-5.0225141458213329e-003</threshold>
|
|
<left_val>0.5458484888076782</left_val>
|
|
<right_val>-0.4496412873268127</right_val></_></_>
|
|
<_>
|
|
<!-- tree 3 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
23 15 6 8 -1.</_>
|
|
<_>
|
|
23 15 3 8 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>0.0459533594548702</threshold>
|
|
<left_val>-0.3108670115470886</left_val>
|
|
<right_val>0.8686702251434326</right_val></_></_>
|
|
<_>
|
|
<!-- tree 4 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 9 6 11 -1.</_>
|
|
<_>
|
|
2 9 2 11 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>9.1376658529043198e-003</threshold>
|
|
<left_val>-0.3542624115943909</left_val>
|
|
<right_val>0.6663610935211182</right_val></_></_>
|
|
<_>
|
|
<!-- tree 5 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
14 14 1 3 -1.</_>
|
|
<_>
|
|
14 15 1 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.2559710778295994e-003</threshold>
|
|
<left_val>0.7523422241210938</left_val>
|
|
<right_val>-0.3447830975055695</right_val></_></_>
|
|
<_>
|
|
<!-- tree 6 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
1 7 28 1 -1.</_>
|
|
<_>
|
|
8 7 14 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>9.0435370802879333e-003</threshold>
|
|
<left_val>-0.3231815099716187</left_val>
|
|
<right_val>0.6448699235916138</right_val></_></_></trees>
|
|
<stage_threshold>-1.0777670145034790</stage_threshold>
|
|
<parent>12</parent>
|
|
<next>-1</next></_>
|
|
<_>
|
|
<!-- stage 14 -->
|
|
<trees>
|
|
<_>
|
|
<!-- tree 0 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
20 13 10 15 -1.</_>
|
|
<_>
|
|
25 13 5 15 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0394573509693146</threshold>
|
|
<left_val>0.4782564938068390</left_val>
|
|
<right_val>-0.5722619295120239</right_val></_></_>
|
|
<_>
|
|
<!-- tree 1 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
9 15 8 1 -1.</_>
|
|
<_>
|
|
13 15 4 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-1.7344199586659670e-003</threshold>
|
|
<left_val>0.3705500066280365</left_val>
|
|
<right_val>-0.6115717887878418</right_val></_></_>
|
|
<_>
|
|
<!-- tree 2 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
19 0 8 1 -1.</_>
|
|
<_>
|
|
21 0 4 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-7.7608181163668633e-004</threshold>
|
|
<left_val>-0.7950387001037598</left_val>
|
|
<right_val>0.2622818052768707</right_val></_></_>
|
|
<_>
|
|
<!-- tree 3 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
5 20 2 2 -1.</_>
|
|
<_>
|
|
5 20 1 1 2.</_>
|
|
<_>
|
|
6 21 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>6.0399679932743311e-004</threshold>
|
|
<left_val>-0.2708126008510590</left_val>
|
|
<right_val>0.8733022809028626</right_val></_></_>
|
|
<_>
|
|
<!-- tree 4 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
22 11 8 10 -1.</_>
|
|
<_>
|
|
24 11 4 10 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0211945194751024</threshold>
|
|
<left_val>-0.3263381123542786</left_val>
|
|
<right_val>0.7960063815116882</right_val></_></_>
|
|
<_>
|
|
<!-- tree 5 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 18 7 6 -1.</_>
|
|
<_>
|
|
2 21 7 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-3.3754170872271061e-003</threshold>
|
|
<left_val>0.5355839729309082</left_val>
|
|
<right_val>-0.5585852265357971</right_val></_></_>
|
|
<_>
|
|
<!-- tree 6 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
6 17 8 5 -1.</_>
|
|
<_>
|
|
8 19 4 5 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>7.7950168633833528e-004</threshold>
|
|
<left_val>-0.6128119230270386</left_val>
|
|
<right_val>0.3950763940811157</right_val></_></_>
|
|
<_>
|
|
<!-- tree 7 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
10 0 5 12 -1.</_>
|
|
<_>
|
|
10 6 5 6 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>6.2134041218087077e-004</threshold>
|
|
<left_val>-0.7983394265174866</left_val>
|
|
<right_val>0.2523753941059113</right_val></_></_>
|
|
<_>
|
|
<!-- tree 8 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
19 8 8 8 -1.</_>
|
|
<_>
|
|
19 8 8 4 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>5.1883992273360491e-004</threshold>
|
|
<left_val>-0.7581666707992554</left_val>
|
|
<right_val>0.2751871049404144</right_val></_></_></trees>
|
|
<stage_threshold>-1.1804150342941284</stage_threshold>
|
|
<parent>13</parent>
|
|
<next>-1</next></_>
|
|
<_>
|
|
<!-- stage 15 -->
|
|
<trees>
|
|
<_>
|
|
<!-- tree 0 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
8 20 18 8 -1.</_>
|
|
<_>
|
|
8 24 18 4 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0746768414974213</threshold>
|
|
<left_val>0.8516380190849304</left_val>
|
|
<right_val>-0.3425028026103973</right_val></_></_>
|
|
<_>
|
|
<!-- tree 1 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
26 15 4 1 -1.</_>
|
|
<_>
|
|
27 16 2 1 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>1.5731110470369458e-003</threshold>
|
|
<left_val>-0.3031556010246277</left_val>
|
|
<right_val>0.6837754249572754</right_val></_></_>
|
|
<_>
|
|
<!-- tree 2 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
22 3 8 25 -1.</_>
|
|
<_>
|
|
26 3 4 25 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0625705122947693</threshold>
|
|
<left_val>0.5789077877998352</left_val>
|
|
<right_val>-0.4484055042266846</right_val></_></_>
|
|
<_>
|
|
<!-- tree 3 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
12 15 6 1 -1.</_>
|
|
<_>
|
|
14 15 2 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.3908941075205803e-003</threshold>
|
|
<left_val>0.4731529951095581</left_val>
|
|
<right_val>-0.5635436773300171</right_val></_></_>
|
|
<_>
|
|
<!-- tree 4 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
11 24 7 6 -1.</_>
|
|
<_>
|
|
11 26 7 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>2.1347070578485727e-003</threshold>
|
|
<left_val>-0.4449442028999329</left_val>
|
|
<right_val>0.5285379290580750</right_val></_></_>
|
|
<_>
|
|
<!-- tree 5 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
12 0 16 18 -1.</_>
|
|
<_>
|
|
12 6 16 6 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0103090200573206</threshold>
|
|
<left_val>-0.7689601182937622</left_val>
|
|
<right_val>0.2924349009990692</right_val></_></_>
|
|
<_>
|
|
<!-- tree 6 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
7 13 11 6 -1.</_>
|
|
<_>
|
|
7 13 11 3 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>0.0620706714689732</threshold>
|
|
<left_val>-0.4327771961688995</left_val>
|
|
<right_val>0.8331649899482727</right_val></_></_>
|
|
<_>
|
|
<!-- tree 7 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
11 13 9 6 -1.</_>
|
|
<_>
|
|
14 15 3 2 9.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.5847749784588814e-003</threshold>
|
|
<left_val>0.2928090989589691</left_val>
|
|
<right_val>-0.8889489173889160</right_val></_></_></trees>
|
|
<stage_threshold>-1.1310479640960693</stage_threshold>
|
|
<parent>14</parent>
|
|
<next>-1</next></_>
|
|
<_>
|
|
<!-- stage 16 -->
|
|
<trees>
|
|
<_>
|
|
<!-- tree 0 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 0 21 26 -1.</_>
|
|
<_>
|
|
4 13 21 13 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0588057599961758</threshold>
|
|
<left_val>-0.4991154074668884</left_val>
|
|
<right_val>0.6187056899070740</right_val></_></_>
|
|
<_>
|
|
<!-- tree 1 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
13 0 9 11 -1.</_>
|
|
<_>
|
|
16 3 3 11 3.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>0.0356934182345867</threshold>
|
|
<left_val>-0.4802035093307495</left_val>
|
|
<right_val>0.6672577857971191</right_val></_></_>
|
|
<_>
|
|
<!-- tree 2 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 8 6 8 -1.</_>
|
|
<_>
|
|
2 8 2 8 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>3.7319110706448555e-003</threshold>
|
|
<left_val>-0.5551087856292725</left_val>
|
|
<right_val>0.6358423233032227</right_val></_></_>
|
|
<_>
|
|
<!-- tree 3 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
6 17 24 12 -1.</_>
|
|
<_>
|
|
18 17 12 12 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-3.4886640496551991e-003</threshold>
|
|
<left_val>0.3998816013336182</left_val>
|
|
<right_val>-0.8779597282409668</right_val></_></_>
|
|
<_>
|
|
<!-- tree 4 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
14 11 3 9 -1.</_>
|
|
<_>
|
|
14 14 3 3 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-3.5188349429517984e-003</threshold>
|
|
<left_val>0.2896867990493774</left_val>
|
|
<right_val>-0.8983190059661865</right_val></_></_>
|
|
<_>
|
|
<!-- tree 5 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
25 12 3 6 -1.</_>
|
|
<_>
|
|
26 14 1 2 9.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>2.6123720454052091e-004</threshold>
|
|
<left_val>-0.7029349207878113</left_val>
|
|
<right_val>0.5493162274360657</right_val></_></_>
|
|
<_>
|
|
<!-- tree 6 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
15 0 15 21 -1.</_>
|
|
<_>
|
|
15 7 15 7 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>6.4898689743131399e-005</threshold>
|
|
<left_val>-0.9439805150032044</left_val>
|
|
<right_val>0.2820520997047424</right_val></_></_>
|
|
<_>
|
|
<!-- tree 7 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
14 15 10 2 -1.</_>
|
|
<_>
|
|
14 15 5 1 2.</_>
|
|
<_>
|
|
19 16 5 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-1.3600759848486632e-004</threshold>
|
|
<left_val>0.4432930052280426</left_val>
|
|
<right_val>-0.7824695110321045</right_val></_></_>
|
|
<_>
|
|
<!-- tree 8 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 20 2 6 -1.</_>
|
|
<_>
|
|
1 20 1 6 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-9.0165252913720906e-005</threshold>
|
|
<left_val>0.6236552000045776</left_val>
|
|
<right_val>-0.6018273830413818</right_val></_></_>
|
|
<_>
|
|
<!-- tree 9 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 5 10 25 -1.</_>
|
|
<_>
|
|
5 5 5 25 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>9.2873163521289825e-003</threshold>
|
|
<left_val>-0.7339897751808167</left_val>
|
|
<right_val>0.4519324898719788</right_val></_></_>
|
|
<_>
|
|
<!-- tree 10 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 5 2 10 -1.</_>
|
|
<_>
|
|
2 5 1 5 2.</_>
|
|
<_>
|
|
3 10 1 5 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-3.7979730404913425e-004</threshold>
|
|
<left_val>0.6942034959793091</left_val>
|
|
<right_val>-0.5841832756996155</right_val></_></_>
|
|
<_>
|
|
<!-- tree 11 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
4 7 6 6 -1.</_>
|
|
<_>
|
|
4 10 6 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>2.1245880052447319e-003</threshold>
|
|
<left_val>-0.4886597096920013</left_val>
|
|
<right_val>0.6439890265464783</right_val></_></_></trees>
|
|
<stage_threshold>-2.0186989307403564</stage_threshold>
|
|
<parent>15</parent>
|
|
<next>-1</next></_>
|
|
<_>
|
|
<!-- stage 17 -->
|
|
<trees>
|
|
<_>
|
|
<!-- tree 0 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
18 2 12 12 -1.</_>
|
|
<_>
|
|
24 2 6 12 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0131159899756312</threshold>
|
|
<left_val>0.4102598130702972</left_val>
|
|
<right_val>-0.7836742997169495</right_val></_></_>
|
|
<_>
|
|
<!-- tree 1 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
12 15 4 1 -1.</_>
|
|
<_>
|
|
14 15 2 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-1.9107479602098465e-003</threshold>
|
|
<left_val>0.4352349936962128</left_val>
|
|
<right_val>-0.5894374251365662</right_val></_></_>
|
|
<_>
|
|
<!-- tree 2 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 14 15 15 -1.</_>
|
|
<_>
|
|
0 19 15 5 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>2.8926940285600722e-004</threshold>
|
|
<left_val>-0.7347720861434937</left_val>
|
|
<right_val>0.3091743886470795</right_val></_></_>
|
|
<_>
|
|
<!-- tree 3 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
5 23 15 6 -1.</_>
|
|
<_>
|
|
5 25 15 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0108875995501876</threshold>
|
|
<left_val>-0.4113591015338898</left_val>
|
|
<right_val>0.7446773052215576</right_val></_></_>
|
|
<_>
|
|
<!-- tree 4 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
6 23 20 1 -1.</_>
|
|
<_>
|
|
11 23 10 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>8.4888264536857605e-003</threshold>
|
|
<left_val>-0.4784755110740662</left_val>
|
|
<right_val>0.7682887911796570</right_val></_></_>
|
|
<_>
|
|
<!-- tree 5 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
7 13 15 6 -1.</_>
|
|
<_>
|
|
12 15 5 2 9.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-7.8473137691617012e-003</threshold>
|
|
<left_val>0.3737767040729523</left_val>
|
|
<right_val>-0.8986917138099670</right_val></_></_>
|
|
<_>
|
|
<!-- tree 6 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
26 11 4 9 -1.</_>
|
|
<_>
|
|
28 11 2 9 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-8.6469706147909164e-003</threshold>
|
|
<left_val>0.5991634726524353</left_val>
|
|
<right_val>-0.6494582891464233</right_val></_></_>
|
|
<_>
|
|
<!-- tree 7 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 2 24 18 -1.</_>
|
|
<_>
|
|
6 2 12 18 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>1.2370230397209525e-003</threshold>
|
|
<left_val>-0.8902391195297241</left_val>
|
|
<right_val>0.3708789944648743</right_val></_></_>
|
|
<_>
|
|
<!-- tree 8 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
14 12 3 3 -1.</_>
|
|
<_>
|
|
15 13 1 1 9.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>2.5298888795077801e-004</threshold>
|
|
<left_val>-0.8120170235633850</left_val>
|
|
<right_val>0.4935150146484375</right_val></_></_>
|
|
<_>
|
|
<!-- tree 9 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
13 5 15 10 -1.</_>
|
|
<_>
|
|
18 5 5 10 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>5.1526250317692757e-003</threshold>
|
|
<left_val>-0.9192841053009033</left_val>
|
|
<right_val>0.4452421963214874</right_val></_></_></trees>
|
|
<stage_threshold>-1.3165810108184814</stage_threshold>
|
|
<parent>16</parent>
|
|
<next>-1</next></_>
|
|
<_>
|
|
<!-- stage 18 -->
|
|
<trees>
|
|
<_>
|
|
<!-- tree 0 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
15 12 12 18 -1.</_>
|
|
<_>
|
|
15 18 12 6 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0295117292553186</threshold>
|
|
<left_val>-0.5727707743644714</left_val>
|
|
<right_val>0.4841710031032562</right_val></_></_>
|
|
<_>
|
|
<!-- tree 1 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
20 0 9 16 -1.</_>
|
|
<_>
|
|
20 8 9 8 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0143716000020504</threshold>
|
|
<left_val>-0.7799515128135681</left_val>
|
|
<right_val>0.3565404117107391</right_val></_></_>
|
|
<_>
|
|
<!-- tree 2 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 0 6 3 -1.</_>
|
|
<_>
|
|
4 1 2 1 9.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>1.0884779840125702e-005</threshold>
|
|
<left_val>-0.6723812222480774</left_val>
|
|
<right_val>0.4785112142562866</right_val></_></_>
|
|
<_>
|
|
<!-- tree 3 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
1 0 29 24 -1.</_>
|
|
<_>
|
|
1 6 29 12 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>4.3139769695699215e-003</threshold>
|
|
<left_val>-0.8979778885841370</left_val>
|
|
<right_val>0.2318837046623230</right_val></_></_>
|
|
<_>
|
|
<!-- tree 4 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 29 10 1 -1.</_>
|
|
<_>
|
|
5 29 5 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-7.7994642197154462e-005</threshold>
|
|
<left_val>0.3738532960414887</left_val>
|
|
<right_val>-0.7187057137489319</right_val></_></_>
|
|
<_>
|
|
<!-- tree 5 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
11 12 6 4 -1.</_>
|
|
<_>
|
|
11 12 3 2 2.</_>
|
|
<_>
|
|
14 14 3 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-3.0512181110680103e-003</threshold>
|
|
<left_val>0.5300139784812927</left_val>
|
|
<right_val>-0.5830147266387940</right_val></_></_>
|
|
<_>
|
|
<!-- tree 6 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
5 14 6 5 -1.</_>
|
|
<_>
|
|
5 14 3 5 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-4.3142150389030576e-004</threshold>
|
|
<left_val>0.4394023120403290</left_val>
|
|
<right_val>-0.6322596073150635</right_val></_></_>
|
|
<_>
|
|
<!-- tree 7 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
1 11 4 7 -1.</_>
|
|
<_>
|
|
2 11 2 7 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>7.0738680660724640e-003</threshold>
|
|
<left_val>-0.3457511961460114</left_val>
|
|
<right_val>0.9177647233009338</right_val></_></_>
|
|
<_>
|
|
<!-- tree 8 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
28 27 2 3 -1.</_>
|
|
<_>
|
|
29 27 1 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>7.7551658250740729e-006</threshold>
|
|
<left_val>-0.6041529774665833</left_val>
|
|
<right_val>0.4977194964885712</right_val></_></_>
|
|
<_>
|
|
<!-- tree 9 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
12 15 8 6 -1.</_>
|
|
<_>
|
|
10 17 8 2 3.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>0.0139424195513129</threshold>
|
|
<left_val>-0.4868971109390259</left_val>
|
|
<right_val>0.7841137051582336</right_val></_></_></trees>
|
|
<stage_threshold>-1.8075209856033325</stage_threshold>
|
|
<parent>17</parent>
|
|
<next>-1</next></_>
|
|
<_>
|
|
<!-- stage 19 -->
|
|
<trees>
|
|
<_>
|
|
<!-- tree 0 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
15 15 2 2 -1.</_>
|
|
<_>
|
|
15 15 1 1 2.</_>
|
|
<_>
|
|
16 16 1 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-1.8129580421373248e-003</threshold>
|
|
<left_val>0.9541606903076172</left_val>
|
|
<right_val>-0.2965695858001709</right_val></_></_>
|
|
<_>
|
|
<!-- tree 1 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 12 16 12 -1.</_>
|
|
<_>
|
|
2 12 8 6 2.</_>
|
|
<_>
|
|
10 18 8 6 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>4.7363578341901302e-003</threshold>
|
|
<left_val>-0.6298993825912476</left_val>
|
|
<right_val>0.4632642865180969</right_val></_></_>
|
|
<_>
|
|
<!-- tree 2 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
25 14 2 10 -1.</_>
|
|
<_>
|
|
25 14 1 5 2.</_>
|
|
<_>
|
|
26 19 1 5 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-3.3910579513758421e-003</threshold>
|
|
<left_val>0.8871492147445679</left_val>
|
|
<right_val>-0.4089617133140564</right_val></_></_>
|
|
<_>
|
|
<!-- tree 3 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
24 10 6 16 -1.</_>
|
|
<_>
|
|
27 10 3 16 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0291099399328232</threshold>
|
|
<left_val>0.5941541790962219</left_val>
|
|
<right_val>-0.4963997900485992</right_val></_></_>
|
|
<_>
|
|
<!-- tree 4 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 3 24 10 -1.</_>
|
|
<_>
|
|
12 3 12 10 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>1.8045129763777368e-005</threshold>
|
|
<left_val>-0.8051089048385620</left_val>
|
|
<right_val>0.2899082005023956</right_val></_></_>
|
|
<_>
|
|
<!-- tree 5 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
5 18 8 4 -1.</_>
|
|
<_>
|
|
4 19 8 2 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>7.3270881548523903e-003</threshold>
|
|
<left_val>-0.5242174267768860</left_val>
|
|
<right_val>0.8847057819366455</right_val></_></_>
|
|
<_>
|
|
<!-- tree 6 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
16 6 9 6 -1.</_>
|
|
<_>
|
|
19 9 3 6 3.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-1.9007539958693087e-004</threshold>
|
|
<left_val>0.5221701860427856</left_val>
|
|
<right_val>-0.8480635881423950</right_val></_></_>
|
|
<_>
|
|
<!-- tree 7 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
16 5 1 16 -1.</_>
|
|
<_>
|
|
16 5 1 8 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>4.3798499973490834e-005</threshold>
|
|
<left_val>-0.7982841730117798</left_val>
|
|
<right_val>0.4523805975914002</right_val></_></_>
|
|
<_>
|
|
<!-- tree 8 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 0 1 30 -1.</_>
|
|
<_>
|
|
0 10 1 10 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.6992160201189108e-005</threshold>
|
|
<left_val>0.5484765172004700</left_val>
|
|
<right_val>-0.7896834015846252</right_val></_></_>
|
|
<_>
|
|
<!-- tree 9 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
18 1 2 8 -1.</_>
|
|
<_>
|
|
18 5 2 4 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>2.6483249384909868e-003</threshold>
|
|
<left_val>-0.6831504702568054</left_val>
|
|
<right_val>0.5447096824645996</right_val></_></_>
|
|
<_>
|
|
<!-- tree 10 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 1 2 18 -1.</_>
|
|
<_>
|
|
2 1 1 9 2.</_>
|
|
<_>
|
|
3 10 1 9 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-1.2241229705978185e-004</threshold>
|
|
<left_val>0.6463962197303772</left_val>
|
|
<right_val>-0.7322003245353699</right_val></_></_></trees>
|
|
<stage_threshold>-1.2552789449691772</stage_threshold>
|
|
<parent>18</parent>
|
|
<next>-1</next></_>
|
|
<_>
|
|
<!-- stage 20 -->
|
|
<trees>
|
|
<_>
|
|
<!-- tree 0 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
14 14 3 3 -1.</_>
|
|
<_>
|
|
15 15 1 1 9.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0118554998189211</threshold>
|
|
<left_val>0.7671378254890442</left_val>
|
|
<right_val>-0.3722873032093048</right_val></_></_>
|
|
<_>
|
|
<!-- tree 1 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
15 12 15 18 -1.</_>
|
|
<_>
|
|
15 18 15 6 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0129950996488333</threshold>
|
|
<left_val>-0.5752075910568237</left_val>
|
|
<right_val>0.4080007970333099</right_val></_></_>
|
|
<_>
|
|
<!-- tree 2 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 15 15 5 -1.</_>
|
|
<_>
|
|
5 15 5 5 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0123613402247429</threshold>
|
|
<left_val>-0.5057299137115479</left_val>
|
|
<right_val>0.4008283019065857</right_val></_></_>
|
|
<_>
|
|
<!-- tree 3 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
24 11 6 10 -1.</_>
|
|
<_>
|
|
26 11 2 10 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0217736903578043</threshold>
|
|
<left_val>-0.3811939060688019</left_val>
|
|
<right_val>0.7375351190567017</right_val></_></_>
|
|
<_>
|
|
<!-- tree 4 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
20 4 9 18 -1.</_>
|
|
<_>
|
|
20 10 9 6 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>8.2471058703958988e-004</threshold>
|
|
<left_val>-0.7928907275199890</left_val>
|
|
<right_val>0.3049820065498352</right_val></_></_>
|
|
<_>
|
|
<!-- tree 5 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
15 12 4 4 -1.</_>
|
|
<_>
|
|
15 12 4 2 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-8.0548477126285434e-004</threshold>
|
|
<left_val>0.3002581894397736</left_val>
|
|
<right_val>-0.8209298849105835</right_val></_></_>
|
|
<_>
|
|
<!-- tree 6 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
27 26 3 4 -1.</_>
|
|
<_>
|
|
27 28 3 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>4.6441138692898676e-005</threshold>
|
|
<left_val>-0.5512930154800415</left_val>
|
|
<right_val>0.4281317889690399</right_val></_></_>
|
|
<_>
|
|
<!-- tree 7 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 6 28 4 -1.</_>
|
|
<_>
|
|
14 6 14 4 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>1.3028540706727654e-004</threshold>
|
|
<left_val>-0.7330580949783325</left_val>
|
|
<right_val>0.3167754113674164</right_val></_></_>
|
|
<_>
|
|
<!-- tree 8 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
12 5 6 18 -1.</_>
|
|
<_>
|
|
14 11 2 6 9.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-3.0463289003819227e-003</threshold>
|
|
<left_val>0.3088589906692505</left_val>
|
|
<right_val>-0.7799909114837647</right_val></_></_>
|
|
<_>
|
|
<!-- tree 9 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
13 11 3 6 -1.</_>
|
|
<_>
|
|
14 13 1 2 9.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>5.1273731514811516e-003</threshold>
|
|
<left_val>-0.4092488884925842</left_val>
|
|
<right_val>0.7003359198570252</right_val></_></_>
|
|
<_>
|
|
<!-- tree 10 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
14 13 4 3 -1.</_>
|
|
<_>
|
|
13 14 4 1 3.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>6.9407821865752339e-004</threshold>
|
|
<left_val>-0.6798236966133118</left_val>
|
|
<right_val>0.5320472121238709</right_val></_></_>
|
|
<_>
|
|
<!-- tree 11 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
3 0 17 21 -1.</_>
|
|
<_>
|
|
3 7 17 7 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>4.9300299724563956e-004</threshold>
|
|
<left_val>-0.9494745135307312</left_val>
|
|
<right_val>0.2453067004680634</right_val></_></_></trees>
|
|
<stage_threshold>-1.2338080406188965</stage_threshold>
|
|
<parent>19</parent>
|
|
<next>-1</next></_>
|
|
<_>
|
|
<!-- stage 21 -->
|
|
<trees>
|
|
<_>
|
|
<!-- tree 0 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
6 5 22 24 -1.</_>
|
|
<_>
|
|
6 11 22 12 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.1109884008765221</threshold>
|
|
<left_val>-0.4732984006404877</left_val>
|
|
<right_val>0.6041498184204102</right_val></_></_>
|
|
<_>
|
|
<!-- tree 1 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
15 3 15 13 -1.</_>
|
|
<_>
|
|
20 3 5 13 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>8.8524278253316879e-003</threshold>
|
|
<left_val>-0.7683498263359070</left_val>
|
|
<right_val>0.2962965071201325</right_val></_></_>
|
|
<_>
|
|
<!-- tree 2 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 2 27 8 -1.</_>
|
|
<_>
|
|
9 2 9 8 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>2.9951189644634724e-003</threshold>
|
|
<left_val>-0.7832775712013245</left_val>
|
|
<right_val>0.2668977975845337</right_val></_></_>
|
|
<_>
|
|
<!-- tree 3 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
24 18 3 3 -1.</_>
|
|
<_>
|
|
25 19 1 1 9.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>7.0615397999063134e-004</threshold>
|
|
<left_val>-0.5898581147193909</left_val>
|
|
<right_val>0.4767473042011261</right_val></_></_>
|
|
<_>
|
|
<!-- tree 4 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 10 14 20 -1.</_>
|
|
<_>
|
|
2 15 14 10 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>8.2862451672554016e-003</threshold>
|
|
<left_val>-0.8107367157936096</left_val>
|
|
<right_val>0.2578361928462982</right_val></_></_>
|
|
<_>
|
|
<!-- tree 5 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
17 14 3 2 -1.</_>
|
|
<_>
|
|
18 15 1 2 3.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>8.9599809143692255e-004</threshold>
|
|
<left_val>-0.7087581753730774</left_val>
|
|
<right_val>0.5773987770080566</right_val></_></_>
|
|
<_>
|
|
<!-- tree 6 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
19 6 4 10 -1.</_>
|
|
<_>
|
|
19 6 4 5 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>2.2114950115792453e-004</threshold>
|
|
<left_val>-0.9175388813018799</left_val>
|
|
<right_val>0.3938092887401581</right_val></_></_>
|
|
<_>
|
|
<!-- tree 7 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
19 9 10 20 -1.</_>
|
|
<_>
|
|
19 19 10 10 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.6218120474368334e-003</threshold>
|
|
<left_val>0.2289039939641953</left_val>
|
|
<right_val>-0.9661834239959717</right_val></_></_>
|
|
<_>
|
|
<!-- tree 8 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
13 24 9 6 -1.</_>
|
|
<_>
|
|
13 26 9 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>8.1112459301948547e-003</threshold>
|
|
<left_val>-0.6872652173042297</left_val>
|
|
<right_val>0.7748587727546692</right_val></_></_>
|
|
<_>
|
|
<!-- tree 9 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
10 14 12 3 -1.</_>
|
|
<_>
|
|
14 15 4 1 9.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-6.6581218561623245e-005</threshold>
|
|
<left_val>0.4069637060165405</left_val>
|
|
<right_val>-0.9821419119834900</right_val></_></_>
|
|
<_>
|
|
<!-- tree 10 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
20 4 10 11 -1.</_>
|
|
<_>
|
|
25 4 5 11 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-4.3942942284047604e-003</threshold>
|
|
<left_val>0.3025366067886353</left_val>
|
|
<right_val>-0.9085376858711243</right_val></_></_>
|
|
<_>
|
|
<!-- tree 11 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
14 14 4 4 -1.</_>
|
|
<_>
|
|
14 14 2 2 2.</_>
|
|
<_>
|
|
16 16 2 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-8.1969819802907296e-006</threshold>
|
|
<left_val>0.3476018905639648</left_val>
|
|
<right_val>-0.8090888857841492</right_val></_></_>
|
|
<_>
|
|
<!-- tree 12 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 13 3 5 -1.</_>
|
|
<_>
|
|
3 13 1 5 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-1.7878259532153606e-003</threshold>
|
|
<left_val>0.7400094270706177</left_val>
|
|
<right_val>-0.4940893948078156</right_val></_></_></trees>
|
|
<stage_threshold>-1.6455509662628174</stage_threshold>
|
|
<parent>20</parent>
|
|
<next>-1</next></_>
|
|
<_>
|
|
<!-- stage 22 -->
|
|
<trees>
|
|
<_>
|
|
<!-- tree 0 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
6 1 3 18 -1.</_>
|
|
<_>
|
|
6 10 3 9 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0170281101018190</threshold>
|
|
<left_val>-0.6075357794761658</left_val>
|
|
<right_val>0.6752921938896179</right_val></_></_>
|
|
<_>
|
|
<!-- tree 1 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
19 0 10 18 -1.</_>
|
|
<_>
|
|
19 9 10 9 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>4.9286349676549435e-003</threshold>
|
|
<left_val>-0.9023544788360596</left_val>
|
|
<right_val>0.2912414968013763</right_val></_></_>
|
|
<_>
|
|
<!-- tree 2 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
15 11 1 6 -1.</_>
|
|
<_>
|
|
15 13 1 2 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>4.5951400534249842e-004</threshold>
|
|
<left_val>-0.6812731027603149</left_val>
|
|
<right_val>0.5965930819511414</right_val></_></_>
|
|
<_>
|
|
<!-- tree 3 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
13 4 6 18 -1.</_>
|
|
<_>
|
|
15 10 2 6 9.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-4.2040079279104248e-005</threshold>
|
|
<left_val>0.4269096851348877</left_val>
|
|
<right_val>-0.8979231715202332</right_val></_></_>
|
|
<_>
|
|
<!-- tree 4 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
18 4 11 26 -1.</_>
|
|
<_>
|
|
18 17 11 13 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-1.1093009961768985e-003</threshold>
|
|
<left_val>0.3619905114173889</left_val>
|
|
<right_val>-0.9165890216827393</right_val></_></_>
|
|
<_>
|
|
<!-- tree 5 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
10 3 6 27 -1.</_>
|
|
<_>
|
|
12 12 2 9 9.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>7.1232998743653297e-003</threshold>
|
|
<left_val>-0.5551241040229797</left_val>
|
|
<right_val>0.5782169103622437</right_val></_></_>
|
|
<_>
|
|
<!-- tree 6 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
8 1 4 8 -1.</_>
|
|
<_>
|
|
9 2 2 8 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>3.6009349860250950e-003</threshold>
|
|
<left_val>-0.6728715896606445</left_val>
|
|
<right_val>0.7024763822555542</right_val></_></_>
|
|
<_>
|
|
<!-- tree 7 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
8 0 8 2 -1.</_>
|
|
<_>
|
|
12 0 4 2 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-9.7479542091605254e-006</threshold>
|
|
<left_val>0.5475305914878845</left_val>
|
|
<right_val>-0.8654465079307556</right_val></_></_>
|
|
<_>
|
|
<!-- tree 8 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 20 18 10 -1.</_>
|
|
<_>
|
|
0 25 18 5 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-2.2331129293888807e-003</threshold>
|
|
<left_val>0.3924748003482819</left_val>
|
|
<right_val>-0.8936464190483093</right_val></_></_>
|
|
<_>
|
|
<!-- tree 9 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
20 1 7 3 -1.</_>
|
|
<_>
|
|
19 2 7 1 3.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>4.9669588916003704e-003</threshold>
|
|
<left_val>-0.4396930932998657</left_val>
|
|
<right_val>0.8690040111541748</right_val></_></_>
|
|
<_>
|
|
<!-- tree 10 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
5 15 1 4 -1.</_>
|
|
<_>
|
|
4 16 1 2 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>4.6299301175167784e-005</threshold>
|
|
<left_val>-0.6883816123008728</left_val>
|
|
<right_val>0.6461343765258789</right_val></_></_>
|
|
<_>
|
|
<!-- tree 11 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
5 1 20 8 -1.</_>
|
|
<_>
|
|
10 1 10 8 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>2.0605750614777207e-004</threshold>
|
|
<left_val>-0.9089515805244446</left_val>
|
|
<right_val>0.5352932214736939</right_val></_></_></trees>
|
|
<stage_threshold>-1.3342789411544800</stage_threshold>
|
|
<parent>21</parent>
|
|
<next>-1</next></_>
|
|
<_>
|
|
<!-- stage 23 -->
|
|
<trees>
|
|
<_>
|
|
<!-- tree 0 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
19 0 2 14 -1.</_>
|
|
<_>
|
|
19 0 2 7 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>-9.7629595547914505e-003</threshold>
|
|
<left_val>0.6056637167930603</left_val>
|
|
<right_val>-0.6816167235374451</right_val></_></_>
|
|
<_>
|
|
<!-- tree 1 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 2 26 10 -1.</_>
|
|
<_>
|
|
13 2 13 10 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>1.1452470207586884e-003</threshold>
|
|
<left_val>-0.7568649053573608</left_val>
|
|
<right_val>0.4382646977901459</right_val></_></_>
|
|
<_>
|
|
<!-- tree 2 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
14 14 3 3 -1.</_>
|
|
<_>
|
|
15 15 1 1 9.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-8.1162629649043083e-003</threshold>
|
|
<left_val>0.6009442806243897</left_val>
|
|
<right_val>-0.5972846150398254</right_val></_></_>
|
|
<_>
|
|
<!-- tree 3 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
10 0 4 20 -1.</_>
|
|
<_>
|
|
10 5 4 10 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>9.4810684458934702e-006</threshold>
|
|
<left_val>-0.7322263121604919</left_val>
|
|
<right_val>0.4546971917152405</right_val></_></_>
|
|
<_>
|
|
<!-- tree 4 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
22 21 6 6 -1.</_>
|
|
<_>
|
|
22 21 3 3 2.</_>
|
|
<_>
|
|
25 24 3 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-8.2458636825322174e-006</threshold>
|
|
<left_val>0.6875557899475098</left_val>
|
|
<right_val>-0.5961893796920776</right_val></_></_>
|
|
<_>
|
|
<!-- tree 5 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
23 1 6 3 -1.</_>
|
|
<_>
|
|
23 2 6 1 3.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>8.2058722910005599e-006</threshold>
|
|
<left_val>-0.5708162784576416</left_val>
|
|
<right_val>0.6666625738143921</right_val></_></_>
|
|
<_>
|
|
<!-- tree 6 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
12 24 4 2 -1.</_>
|
|
<_>
|
|
12 24 2 2 2.</_></rects>
|
|
<tilted>1</tilted></feature>
|
|
<threshold>2.3102159611880779e-003</threshold>
|
|
<left_val>-0.6336330771446228</left_val>
|
|
<right_val>0.7040169239044190</right_val></_></_>
|
|
<_>
|
|
<!-- tree 7 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
21 4 4 26 -1.</_>
|
|
<_>
|
|
21 17 4 13 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-3.1256309739546850e-005</threshold>
|
|
<left_val>0.3984279930591583</left_val>
|
|
<right_val>-0.9526088833808899</right_val></_></_>
|
|
<_>
|
|
<!-- tree 8 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 3 6 8 -1.</_>
|
|
<_>
|
|
2 3 3 4 2.</_>
|
|
<_>
|
|
5 7 3 4 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-5.6237089447677135e-003</threshold>
|
|
<left_val>0.8949983119964600</left_val>
|
|
<right_val>-0.6286303997039795</right_val></_></_></trees>
|
|
<stage_threshold>-1.1762020587921143</stage_threshold>
|
|
<parent>22</parent>
|
|
<next>-1</next></_>
|
|
<_>
|
|
<!-- stage 24 -->
|
|
<trees>
|
|
<_>
|
|
<!-- tree 0 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 0 4 1 -1.</_>
|
|
<_>
|
|
2 0 2 1 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>6.9548498140648007e-004</threshold>
|
|
<left_val>0.2593482136726379</left_val>
|
|
<right_val>-0.9198864102363586</right_val></_></_>
|
|
<_>
|
|
<!-- tree 1 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
24 13 2 10 -1.</_>
|
|
<_>
|
|
25 13 1 10 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-4.9878000281751156e-003</threshold>
|
|
<left_val>0.8619614839553833</left_val>
|
|
<right_val>-0.3343923985958099</right_val></_></_>
|
|
<_>
|
|
<!-- tree 2 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
2 4 28 15 -1.</_>
|
|
<_>
|
|
16 4 14 15 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>0.0454013496637344</threshold>
|
|
<left_val>0.3592154085636139</left_val>
|
|
<right_val>-0.7624815106391907</right_val></_></_>
|
|
<_>
|
|
<!-- tree 3 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
0 13 30 10 -1.</_>
|
|
<_>
|
|
15 13 15 10 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>-0.0440022610127926</threshold>
|
|
<left_val>-0.7319048047065735</left_val>
|
|
<right_val>0.3194361031055450</right_val></_></_>
|
|
<_>
|
|
<!-- tree 4 -->
|
|
<_>
|
|
<!-- root node -->
|
|
<feature>
|
|
<rects>
|
|
<_>
|
|
25 0 4 3 -1.</_>
|
|
<_>
|
|
26 0 2 3 2.</_></rects>
|
|
<tilted>0</tilted></feature>
|
|
<threshold>9.2827458865940571e-004</threshold>
|
|
<left_val>0.3184696137905121</left_val>
|
|
<right_val>-0.7557029128074646</right_val></_></_></trees>
|
|
<stage_threshold>-1.2034360170364380</stage_threshold>
|
|
<parent>23</parent>
|
|
<next>-1</next></_></stages></classifier_DuvarSaati>
|
|
</opencv_storage>
|