Calibrate works?

This commit is contained in:
jan 2016-07-10 00:36:44 -07:00
parent 26e34f7671
commit cc711c6343
1104 changed files with 636510 additions and 75 deletions

View File

@ -2,12 +2,7 @@
<project version="4">
<component name="ChangeListManager">
<list default="true" id="6e752a8c-6cb9-4ef9-9031-0329ce15fcb4" name="Default" comment="">
<change type="MODIFICATION" beforePath="$PROJECT_DIR$/.idea/compiler.xml" afterPath="$PROJECT_DIR$/.idea/compiler.xml" />
<change type="MODIFICATION" beforePath="$PROJECT_DIR$/.idea/workspace.xml" afterPath="$PROJECT_DIR$/.idea/workspace.xml" />
<change type="MODIFICATION" beforePath="$PROJECT_DIR$/src/Camera.java" afterPath="$PROJECT_DIR$/src/Camera.java" />
<change type="MODIFICATION" beforePath="$PROJECT_DIR$/src/EuglenaApplet.java" afterPath="$PROJECT_DIR$/src/EuglenaApplet.java" />
<change type="MODIFICATION" beforePath="$PROJECT_DIR$/src/LEDControl.java" afterPath="$PROJECT_DIR$/src/LEDControl.java" />
<change type="MODIFICATION" beforePath="$PROJECT_DIR$/src/ProjectorApplet.java" afterPath="$PROJECT_DIR$/src/ProjectorApplet.java" />
</list>
<ignored path="processing-intellij.iws" />
<ignored path=".idea/workspace.xml" />
@ -31,8 +26,8 @@
<file leaf-file-name="euglena_basic_stimuli.java" pinned="false" current-in-tab="true">
<entry file="file://$PROJECT_DIR$/src/euglena_basic_stimuli.java">
<provider selected="true" editor-type-id="text-editor">
<state relative-caret-position="759">
<caret line="85" column="29" selection-start-line="85" selection-start-column="29" selection-end-line="85" selection-end-column="29" />
<state relative-caret-position="489">
<caret line="325" column="0" selection-start-line="325" selection-start-column="0" selection-end-line="325" selection-end-column="0" />
<folding>
<element signature="e#0#16478#0" expanded="true" />
<element signature="imports" expanded="true" />
@ -55,8 +50,8 @@
<file leaf-file-name="EuglenaApplet.java" pinned="false" current-in-tab="false">
<entry file="file://$PROJECT_DIR$/src/EuglenaApplet.java">
<provider selected="true" editor-type-id="text-editor">
<state relative-caret-position="540">
<caret line="41" column="13" selection-start-line="41" selection-start-column="13" selection-end-line="41" selection-end-column="13" />
<state relative-caret-position="504">
<caret line="39" column="5" selection-start-line="39" selection-start-column="5" selection-end-line="39" selection-end-column="5" />
<folding>
<element signature="e#349#350#0" expanded="true" />
<element signature="e#394#395#0" expanded="true" />
@ -70,8 +65,8 @@
<file leaf-file-name="ProjectorApplet.java" pinned="false" current-in-tab="false">
<entry file="file://$PROJECT_DIR$/src/ProjectorApplet.java">
<provider selected="true" editor-type-id="text-editor">
<state relative-caret-position="630">
<caret line="35" column="0" selection-start-line="35" selection-start-column="0" selection-end-line="35" selection-end-column="0" />
<state relative-caret-position="594">
<caret line="33" column="18" selection-start-line="33" selection-start-column="8" selection-end-line="33" selection-end-column="18" />
<folding>
<element signature="e#394#395#0" expanded="true" />
<element signature="e#453#454#0" expanded="true" />
@ -91,18 +86,18 @@
<file leaf-file-name="LEDControl.java" pinned="false" current-in-tab="false">
<entry file="file://$PROJECT_DIR$/src/LEDControl.java">
<provider selected="true" editor-type-id="text-editor">
<state relative-caret-position="576">
<caret line="35" column="33" selection-start-line="35" selection-start-column="24" selection-end-line="35" selection-end-column="33" />
<state relative-caret-position="378">
<caret line="22" column="0" selection-start-line="22" selection-start-column="0" selection-end-line="22" selection-end-column="0" />
<folding />
</state>
</provider>
</entry>
</file>
<file leaf-file-name="Camera.java" pinned="false" current-in-tab="true">
<file leaf-file-name="Camera.java" pinned="false" current-in-tab="false">
<entry file="file://$PROJECT_DIR$/src/Camera.java">
<provider selected="true" editor-type-id="text-editor">
<state relative-caret-position="144">
<caret line="8" column="6" selection-start-line="8" selection-start-column="6" selection-end-line="8" selection-end-column="6" />
<state relative-caret-position="396">
<caret line="22" column="49" selection-start-line="22" selection-start-column="49" selection-end-line="22" selection-end-column="49" />
<folding>
<element signature="imports" expanded="true" />
<element signature="e#1015#1016#0" expanded="true" />
@ -115,8 +110,8 @@
<file leaf-file-name="Menu.java" pinned="false" current-in-tab="false">
<entry file="file://$PROJECT_DIR$/src/Menu.java">
<provider selected="true" editor-type-id="text-editor">
<state relative-caret-position="198">
<caret line="20" column="63" selection-start-line="20" selection-start-column="63" selection-end-line="20" selection-end-column="63" />
<state relative-caret-position="342">
<caret line="188" column="2" selection-start-line="188" selection-start-column="2" selection-end-line="188" selection-end-column="2" />
<folding>
<element signature="imports" expanded="true" />
</folding>
@ -124,13 +119,13 @@
</provider>
</entry>
</file>
<file leaf-file-name="Calibrator.java" pinned="false" current-in-tab="false">
<file leaf-file-name="Calibrator.java" pinned="false" current-in-tab="true">
<entry file="file://$PROJECT_DIR$/src/Calibrator.java">
<provider selected="true" editor-type-id="text-editor">
<state relative-caret-position="318">
<caret line="38" column="0" selection-start-line="38" selection-start-column="0" selection-end-line="38" selection-end-column="0" />
<state relative-caret-position="18">
<caret line="28" column="20" selection-start-line="28" selection-start-column="20" selection-end-line="28" selection-end-column="20" />
<folding>
<element signature="e#0#3795#0" expanded="true" />
<element signature="e#0#3796#0" expanded="true" />
</folding>
</state>
</provider>
@ -167,10 +162,10 @@
<option value="$PROJECT_DIR$/src/EllipseClass.java" />
<option value="$PROJECT_DIR$/src/RectangleClass.java" />
<option value="$PROJECT_DIR$/src/EuglenaApplet.java" />
<option value="$PROJECT_DIR$/src/Calibrator.java" />
<option value="$PROJECT_DIR$/src/LEDControl.java" />
<option value="$PROJECT_DIR$/lib/core.jar!/processing/core/PApplet.class" />
<option value="$PROJECT_DIR$/src/ProjectorApplet.java" />
<option value="$PROJECT_DIR$/src/LEDControl.java" />
<option value="$PROJECT_DIR$/src/Calibrator.java" />
</list>
</option>
</component>
@ -610,17 +605,6 @@
</state>
</provider>
</entry>
<entry file="file://$PROJECT_DIR$/src/euglena_basic_stimuli.java">
<provider selected="true" editor-type-id="text-editor">
<state relative-caret-position="759">
<caret line="85" column="29" selection-start-line="85" selection-start-column="29" selection-end-line="85" selection-end-column="29" />
<folding>
<element signature="e#0#16478#0" expanded="true" />
<element signature="imports" expanded="true" />
</folding>
</state>
</provider>
</entry>
<entry file="jar://$PROJECT_DIR$/lib/core.jar!/processing/core/PApplet.class">
<provider selected="true" editor-type-id="text-editor">
<state relative-caret-position="94216">
@ -629,30 +613,10 @@
</state>
</provider>
</entry>
<entry file="file://$PROJECT_DIR$/src/Calibrator.java">
<provider selected="true" editor-type-id="text-editor">
<state relative-caret-position="318">
<caret line="38" column="0" selection-start-line="38" selection-start-column="0" selection-end-line="38" selection-end-column="0" />
<folding>
<element signature="e#0#3795#0" expanded="true" />
</folding>
</state>
</provider>
</entry>
<entry file="file://$PROJECT_DIR$/src/Menu.java">
<provider selected="true" editor-type-id="text-editor">
<state relative-caret-position="198">
<caret line="20" column="63" selection-start-line="20" selection-start-column="63" selection-end-line="20" selection-end-column="63" />
<folding>
<element signature="imports" expanded="true" />
</folding>
</state>
</provider>
</entry>
<entry file="file://$PROJECT_DIR$/src/EuglenaApplet.java">
<provider selected="true" editor-type-id="text-editor">
<state relative-caret-position="540">
<caret line="41" column="13" selection-start-line="41" selection-start-column="13" selection-end-line="41" selection-end-column="13" />
<state relative-caret-position="504">
<caret line="39" column="5" selection-start-line="39" selection-start-column="5" selection-end-line="39" selection-end-column="5" />
<folding>
<element signature="e#349#350#0" expanded="true" />
<element signature="e#394#395#0" expanded="true" />
@ -664,8 +628,8 @@
</entry>
<entry file="file://$PROJECT_DIR$/src/ProjectorApplet.java">
<provider selected="true" editor-type-id="text-editor">
<state relative-caret-position="630">
<caret line="35" column="0" selection-start-line="35" selection-start-column="0" selection-end-line="35" selection-end-column="0" />
<state relative-caret-position="594">
<caret line="33" column="18" selection-start-line="33" selection-start-column="8" selection-end-line="33" selection-end-column="18" />
<folding>
<element signature="e#394#395#0" expanded="true" />
<element signature="e#453#454#0" expanded="true" />
@ -681,18 +645,39 @@
</state>
</provider>
</entry>
<entry file="file://$PROJECT_DIR$/src/euglena_basic_stimuli.java">
<provider selected="true" editor-type-id="text-editor">
<state relative-caret-position="489">
<caret line="325" column="0" selection-start-line="325" selection-start-column="0" selection-end-line="325" selection-end-column="0" />
<folding>
<element signature="e#0#16478#0" expanded="true" />
<element signature="imports" expanded="true" />
</folding>
</state>
</provider>
</entry>
<entry file="file://$PROJECT_DIR$/src/LEDControl.java">
<provider selected="true" editor-type-id="text-editor">
<state relative-caret-position="576">
<caret line="35" column="33" selection-start-line="35" selection-start-column="24" selection-end-line="35" selection-end-column="33" />
<state relative-caret-position="378">
<caret line="22" column="0" selection-start-line="22" selection-start-column="0" selection-end-line="22" selection-end-column="0" />
<folding />
</state>
</provider>
</entry>
<entry file="file://$PROJECT_DIR$/src/Menu.java">
<provider selected="true" editor-type-id="text-editor">
<state relative-caret-position="342">
<caret line="188" column="2" selection-start-line="188" selection-start-column="2" selection-end-line="188" selection-end-column="2" />
<folding>
<element signature="imports" expanded="true" />
</folding>
</state>
</provider>
</entry>
<entry file="file://$PROJECT_DIR$/src/Camera.java">
<provider selected="true" editor-type-id="text-editor">
<state relative-caret-position="144">
<caret line="8" column="6" selection-start-line="8" selection-start-column="6" selection-end-line="8" selection-end-column="6" />
<state relative-caret-position="396">
<caret line="22" column="49" selection-start-line="22" selection-start-column="49" selection-end-line="22" selection-end-column="49" />
<folding>
<element signature="imports" expanded="true" />
<element signature="e#1015#1016#0" expanded="true" />
@ -701,6 +686,16 @@
</state>
</provider>
</entry>
<entry file="file://$PROJECT_DIR$/src/Calibrator.java">
<provider selected="true" editor-type-id="text-editor">
<state relative-caret-position="18">
<caret line="28" column="20" selection-start-line="28" selection-start-column="20" selection-end-line="28" selection-end-column="20" />
<folding>
<element signature="e#0#3796#0" expanded="true" />
</folding>
</state>
</provider>
</entry>
</component>
<component name="masterDetails">
<states>

BIN
lib/arduino.jar Normal file

Binary file not shown.

BIN
lib/controlP5.jar Normal file

Binary file not shown.

View File

@ -0,0 +1,7 @@
the data folder:
If your library is using files like images, sound files,
any data file, etc., put them into the data folder.
When coding your library you can use processing's internal loading
functions like loadImage(), loadStrings(), etc. to load files
located inside the data folder into your library.

View File

@ -0,0 +1,37 @@
import gab.opencv.*;
import processing.video.*;
Movie video;
OpenCV opencv;
void setup() {
size(720, 480);
video = new Movie(this, "street.mov");
opencv = new OpenCV(this, 720, 480);
opencv.startBackgroundSubtraction(5, 3, 0.5);
video.loop();
video.play();
}
void draw() {
image(video, 0, 0);
opencv.loadImage(video);
opencv.updateBackground();
opencv.dilate();
opencv.erode();
noFill();
stroke(255, 0, 0);
strokeWeight(3);
for (Contour contour : opencv.findContours()) {
contour.draw();
}
}
void movieEvent(Movie m) {
m.read();
}

View File

@ -0,0 +1,22 @@
import gab.opencv.*;
OpenCV opencv;
void setup() {
PImage src = loadImage("robot_light.jpg");
src.resize(800, 0);
size(src.width, src.height);
opencv = new OpenCV(this, src);
}
void draw() {
image(opencv.getOutput(), 0, 0);
PVector loc = opencv.max();
stroke(255, 0, 0);
strokeWeight(4);
noFill();
ellipse(loc.x, loc.y, 10, 10);
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 205 KiB

View File

@ -0,0 +1,17 @@
import gab.opencv.*;
PImage img;
OpenCV opencv;
void setup(){
img = loadImage("test.jpg");
size(img.width, img.height);
opencv = new OpenCV(this, img);
}
void draw(){
opencv.loadImage(img);
opencv.brightness((int)map(mouseX, 0, width, -255, 255));
image(opencv.getOutput(),0,0);
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 100 KiB

View File

@ -0,0 +1,25 @@
import gab.opencv.*;
PImage src;
ArrayList<PVector> cornerPoints;
OpenCV opencv;
void setup() {
src = loadImage("checkerboard.jpg");
src.resize(500, 0);
size(src.width, src.height);
opencv = new OpenCV(this, src);
opencv.gray();
cornerPoints = opencv.findChessboardCorners(9,6);
}
void draw() {
image( opencv.getOutput(), 0, 0);
fill(255,0,0);
noStroke();
for(PVector p : cornerPoints){
ellipse(p.x, p.y, 5, 5);
}
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 115 KiB

View File

@ -0,0 +1,46 @@
import gab.opencv.*;
OpenCV opencv;
PImage src, r, g, b, h, s, v;
int imgH, imgW;
void setup() {
src = loadImage("green_object.png");
src.resize(800,0);
opencv = new OpenCV(this, src);
size(int(opencv.width*1.5), int(opencv.height * 1.5));
imgH = src.height/2;
imgW = src.width/2;
r = opencv.getSnapshot(opencv.getR());
g = opencv.getSnapshot(opencv.getG());
b = opencv.getSnapshot(opencv.getB());
opencv.useColor(HSB);
h = opencv.getSnapshot(opencv.getH());
s = opencv.getSnapshot(opencv.getS());
v = opencv.getSnapshot(opencv.getV());
}
void draw() {
background(0);
noTint();
image(src, imgW,0, imgW, imgH);
tint(255,0,0);
image(r, 0, imgH, imgW, imgH);
tint(0,255,0);
image(g, imgW, imgH, imgW, imgH);
tint(0,0,255);
image(b, 2*imgW, imgH, imgW, imgH);
noTint();
image(h, 0, 2*imgH, imgW, imgH);
image(s, imgW, 2*imgH, imgW, imgH);
image(v, 2*imgW, 2*imgH, imgW, imgH);
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.2 MiB

View File

@ -0,0 +1,58 @@
import gab.opencv.*;
import org.opencv.core.Mat;
import org.opencv.calib3d.StereoBM;
import org.opencv.core.CvType;
import org.opencv.calib3d.StereoSGBM;
OpenCV ocvL, ocvR;
PImage imgL, imgR, depth1, depth2;
void setup() {
imgL = loadImage("scene_l.jpg");
imgR = loadImage("scene_r.jpg");
ocvL = new OpenCV(this, imgL);
ocvR = new OpenCV(this, imgR);
size(ocvL.width * 2, ocvL.height*2);
ocvL.gray();
ocvR.gray();
Mat left = ocvL.getGray();
Mat right = ocvR.getGray();
Mat disparity = OpenCV.imitate(left);
StereoSGBM stereo = new StereoSGBM(0, 32, 3, 128, 256, 20, 16, 1, 100, 20, true);
stereo.compute(left, right, disparity );
Mat depthMat = OpenCV.imitate(left);
disparity.convertTo(depthMat, depthMat.type());
depth1 = createImage(depthMat.width(), depthMat.height(), RGB);
ocvL.toPImage(depthMat, depth1);
StereoBM stereo2 = new StereoBM();
stereo2.compute(left, right, disparity );
disparity.convertTo(depthMat, depthMat.type());
depth2 = createImage(depthMat.width(), depthMat.height(), RGB);
ocvL.toPImage(depthMat, depth2);
}
void draw() {
image(imgL, 0, 0);
image(imgR, imgL.width, 0);
image(depth1, 0, imgL.height);
image(depth2, imgL.width, imgL.height);
fill(255, 0, 0);
text("left", 10, 20);
text("right", 10 + imgL.width, 20);
text("stereo SGBM", 10, imgL.height + 20);
text("stereo BM", 10 + imgL.width, imgL.height+ 20);
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 70 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 70 KiB

View File

@ -0,0 +1,51 @@
import gab.opencv.*;
PImage src, dilated, eroded, both;
OpenCV opencv;
void setup() {
src = loadImage("pen_sketch.jpg");
src.resize(src.width/2, 0);
size(src.width*2, src.height*2);
opencv = new OpenCV(this, src);
// Dilate and Erode both need a binary image
// So, we'll make it gray and threshold it.
opencv.gray();
opencv.threshold(100);
// We'll also invert so that erosion eats away the lines
// and dilation expands them (rather than vice-versa)
opencv.invert();
// save a snapshot to use in both operations
src = opencv.getSnapshot();
// erode and save snapshot for display
opencv.erode();
eroded = opencv.getSnapshot();
// reload un-eroded image and dilate it
opencv.loadImage(src);
opencv.dilate();
// save dilated version for display
dilated = opencv.getSnapshot();
// now erode on top of dilated version to close holes
opencv.erode();
both = opencv.getSnapshot();
noLoop();
}
void draw() {
image(src, 0, 0);
image(eroded, src.width, 0);
image(dilated, 0, src.height);
image(both, src.width, src.height);
fill(0, 255, 0);
text("original", 20, 20);
text("erode", src.width + 20, 20);
text("dilate", 20, src.height+20);
text("dilate then erode\n(close holes)", src.width+20, src.height+20);
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 191 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 62 KiB

View File

@ -0,0 +1,25 @@
import gab.opencv.*;
import java.awt.Rectangle;
OpenCV opencv;
Rectangle[] faces;
void setup() {
opencv = new OpenCV(this, "test.jpg");
size(opencv.width, opencv.height);
opencv.loadCascade(OpenCV.CASCADE_FRONTALFACE);
faces = opencv.detect();
}
void draw() {
image(opencv.getInput(), 0, 0);
noFill();
stroke(0, 255, 0);
strokeWeight(3);
for (int i = 0; i < faces.length; i++) {
rect(faces[i].x, faces[i].y, faces[i].width, faces[i].height);
}
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 100 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 100 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 43 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.5 KiB

View File

@ -0,0 +1,40 @@
import gab.opencv.*;
OpenCV opencv;
PImage img, thresh, blur, adaptive;
void setup() {
img = loadImage("test.jpg");
size(img.width, img.height);
opencv = new OpenCV(this, img);
PImage gray = opencv.getSnapshot();
opencv.threshold(80);
thresh = opencv.getSnapshot();
opencv.loadImage(gray);
opencv.blur(12);
blur = opencv.getSnapshot();
opencv.loadImage(gray);
opencv.adaptiveThreshold(591, 1);
adaptive = opencv.getSnapshot();
}
void draw() {
pushMatrix();
scale(0.5);
image(img, 0, 0);
image(thresh, img.width, 0);
image(blur, 0, img.height);
image(adaptive, img.width, img.height);
popMatrix();
fill(0);
text("source", img.width/2 - 100, 20 );
text("threshold", img.width - 100, 20 );
text("blur", img.width/2 - 100, img.height/2 + 20 );
text("adaptive threshold", img.width - 150, img.height/2 + 20 );
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 100 KiB

View File

@ -0,0 +1,42 @@
import gab.opencv.*;
PImage src, dst;
OpenCV opencv;
ArrayList<Contour> contours;
ArrayList<Contour> polygons;
void setup() {
src = loadImage("test.jpg");
size(src.width, src.height/2);
opencv = new OpenCV(this, src);
opencv.gray();
opencv.threshold(70);
dst = opencv.getOutput();
contours = opencv.findContours();
println("found " + contours.size() + " contours");
}
void draw() {
scale(0.5);
image(src, 0, 0);
image(dst, src.width, 0);
noFill();
strokeWeight(3);
for (Contour contour : contours) {
stroke(0, 255, 0);
contour.draw();
stroke(255, 0, 0);
beginShape();
for (PVector point : contour.getPolygonApproximation().getPoints()) {
vertex(point.x, point.y);
}
endShape();
}
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 100 KiB

View File

@ -0,0 +1,38 @@
import gab.opencv.*;
OpenCV opencv;
PImage src, canny, scharr, sobel;
void setup() {
src = loadImage("test.jpg");
size(src.width, src.height);
opencv = new OpenCV(this, src);
opencv.findCannyEdges(20,75);
canny = opencv.getSnapshot();
opencv.loadImage(src);
opencv.findScharrEdges(OpenCV.HORIZONTAL);
scharr = opencv.getSnapshot();
opencv.loadImage(src);
opencv.findSobelEdges(1,0);
sobel = opencv.getSnapshot();
}
void draw() {
pushMatrix();
scale(0.5);
image(src, 0, 0);
image(canny, src.width, 0);
image(scharr, 0, src.height);
image(sobel, src.width, src.height);
popMatrix();
text("Source", 10, 25);
text("Canny", src.width/2 + 10, 25);
text("Scharr", 10, src.height/2 + 25);
text("Sobel", src.width/2 + 10, src.height/2 + 25);
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 100 KiB

View File

@ -0,0 +1,47 @@
import gab.opencv.*;
OpenCV opencv;
Histogram grayHist, rHist, gHist, bHist;
PImage img;
void setup() {
size(640, 400);
img = loadImage("test.jpg");
opencv = new OpenCV(this, img);
grayHist = opencv.findHistogram(opencv.getGray(), 256);
rHist = opencv.findHistogram(opencv.getR(), 256);
gHist = opencv.findHistogram(opencv.getG(), 256);
bHist = opencv.findHistogram(opencv.getB(), 256);
}
void draw() {
background(0);
image(img, 10, 0, 300, 200);
stroke(125); noFill();
rect(320, 10, 310, 180);
fill(125); noStroke();
grayHist.draw(320, 10, 310, 180);
stroke(255, 0, 0); noFill();
rect(10, height - 190, 200, 180);
fill(255, 0, 0); noStroke();
rHist.draw(10, height - 190, 200, 180);
stroke(0, 255, 0); noFill();
rect(220, height - 190, 200, 180);
fill(0, 255, 0); noStroke();
gHist.draw(220, height - 190, 200, 180);
stroke(0, 0, 255); noFill();
rect(430, height - 190, 200, 180);
fill(0, 0, 255); noStroke();
bHist.draw(430, height - 190, 200, 180);
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 100 KiB

View File

@ -0,0 +1,107 @@
/**
* HSVColorTracking
* Greg Borenstein
* https://github.com/atduskgreg/opencv-processing-book/blob/master/code/hsv_color_tracking/HSVColorTracking/HSVColorTracking.pde
*
* Modified by Jordi Tost @jorditost (color selection)
*
* University of Applied Sciences Potsdam, 2014
*/
import gab.opencv.*;
import processing.video.*;
import java.awt.Rectangle;
Capture video;
OpenCV opencv;
PImage src, colorFilteredImage;
ArrayList<Contour> contours;
// <1> Set the range of Hue values for our filter
int rangeLow = 20;
int rangeHigh = 35;
void setup() {
video = new Capture(this, 640, 480);
video.start();
opencv = new OpenCV(this, video.width, video.height);
contours = new ArrayList<Contour>();
size(2*opencv.width, opencv.height, P2D);
}
void draw() {
// Read last captured frame
if (video.available()) {
video.read();
}
// <2> Load the new frame of our movie in to OpenCV
opencv.loadImage(video);
// Tell OpenCV to use color information
opencv.useColor();
src = opencv.getSnapshot();
// <3> Tell OpenCV to work in HSV color space.
opencv.useColor(HSB);
// <4> Copy the Hue channel of our image into
// the gray channel, which we process.
opencv.setGray(opencv.getH().clone());
// <5> Filter the image based on the range of
// hue values that match the object we want to track.
opencv.inRange(rangeLow, rangeHigh);
// <6> Get the processed image for reference.
colorFilteredImage = opencv.getSnapshot();
///////////////////////////////////////////
// We could process our image here!
// See ImageFiltering.pde
///////////////////////////////////////////
// <7> Find contours in our range image.
// Passing 'true' sorts them by descending area.
contours = opencv.findContours(true, true);
// <8> Display background images
image(src, 0, 0);
image(colorFilteredImage, src.width, 0);
// <9> Check to make sure we've found any contours
if (contours.size() > 0) {
// <9> Get the first contour, which will be the largest one
Contour biggestContour = contours.get(0);
// <10> Find the bounding box of the largest contour,
// and hence our object.
Rectangle r = biggestContour.getBoundingBox();
// <11> Draw the bounding box of our object
noFill();
strokeWeight(2);
stroke(255, 0, 0);
rect(r.x, r.y, r.width, r.height);
// <12> Draw a dot in the middle of the bounding box, on the object.
noStroke();
fill(255, 0, 0);
ellipse(r.x + r.width/2, r.y + r.height/2, 30, 30);
}
}
void mousePressed() {
color c = get(mouseX, mouseY);
println("r: " + red(c) + " g: " + green(c) + " b: " + blue(c));
int hue = int(map(hue(c), 0, 255, 0, 180));
println("hue to detect: " + hue);
rangeLow = hue - 5;
rangeHigh = hue + 5;
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 596 KiB

View File

@ -0,0 +1,61 @@
import gab.opencv.*;
import org.opencv.core.Core;
import org.opencv.core.Mat;
import org.opencv.core.Size;
import org.opencv.core.Point;
import org.opencv.core.Scalar;
import org.opencv.core.CvType;
import org.opencv.imgproc.Imgproc;
OpenCV opencv;
PImage src,dst, hist, histMask;
Mat skinHistogram;
void setup(){
src = loadImage("test.jpg");
src.resize(src.width/2, 0);
size(src.width*2 + 256, src.height);
// third argument is: useColor
opencv = new OpenCV(this, src, true);
skinHistogram = Mat.zeros(256, 256, CvType.CV_8UC1);
Core.ellipse(skinHistogram, new Point(113.0, 155.6), new Size(40.0, 25.2), 43.0, 0.0, 360.0, new Scalar(255, 255, 255), Core.FILLED);
histMask = createImage(256,256, ARGB);
opencv.toPImage(skinHistogram, histMask);
hist = loadImage("cb-cr.png");
hist.blend(histMask, 0,0,256,256,0,0,256,256, ADD);
dst = opencv.getOutput();
dst.loadPixels();
for(int i = 0; i < dst.pixels.length; i++){
Mat input = new Mat(new Size(1, 1), CvType.CV_8UC3);
input.setTo(colorToScalar(dst.pixels[i]));
Mat output = opencv.imitate(input);
Imgproc.cvtColor(input, output, Imgproc.COLOR_BGR2YCrCb );
double[] inputComponents = output.get(0,0);
if(skinHistogram.get((int)inputComponents[1], (int)inputComponents[2])[0] > 0){
dst.pixels[i] = color(255);
} else {
dst.pixels[i] = color(0);
}
}
dst.updatePixels();
}
// in BGR
Scalar colorToScalar(color c){
return new Scalar(blue(c), green(c), red(c));
}
void draw(){
image(src,0,0);
image(dst, src.width, 0);
image(hist, src.width*2, 0);
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 46 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 100 KiB

View File

@ -0,0 +1,38 @@
import gab.opencv.*;
OpenCV opencv;
ArrayList<Line> lines;
void setup() {
PImage src = loadImage("film_scan.jpg");
src.resize(0, 800);
size(src.width, src.height);
opencv = new OpenCV(this, src);
opencv.findCannyEdges(20, 75);
// Find lines with Hough line detection
// Arguments are: threshold, minLengthLength, maxLineGap
lines = opencv.findLines(100, 30, 20);
}
void draw() {
image(opencv.getOutput(), 0, 0);
strokeWeight(3);
for (Line line : lines) {
// lines include angle in radians, measured in double precision
// so we can select out vertical and horizontal lines
// They also include "start" and "end" PVectors with the position
if (line.angle >= radians(0) && line.angle < radians(1)) {
stroke(0, 255, 0);
line(line.start.x, line.start.y, line.end.x, line.end.y);
}
if (line.angle > radians(89) && line.angle < radians(91)) {
stroke(255, 0, 0);
line(line.start.x, line.start.y, line.end.x, line.end.y);
}
}
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.9 MiB

View File

@ -0,0 +1,64 @@
import gab.opencv.*;
PImage img;
OpenCV opencv;
Histogram histogram;
int lowerb = 50;
int upperb = 100;
void setup() {
img = loadImage("colored_balls.jpg");
opencv = new OpenCV(this, img);
size(opencv.width, opencv.height);
opencv.useColor(HSB);
}
void draw() {
opencv.loadImage(img);
image(img, 0, 0);
opencv.setGray(opencv.getH().clone());
opencv.inRange(lowerb, upperb);
histogram = opencv.findHistogram(opencv.getH(), 255);
image(opencv.getOutput(), 3*width/4, 3*height/4, width/4,height/4);
noStroke(); fill(0);
histogram.draw(10, height - 230, 400, 200);
noFill(); stroke(0);
line(10, height-30, 410, height-30);
text("Hue", 10, height - (textAscent() + textDescent()));
float lb = map(lowerb, 0, 255, 0, 400);
float ub = map(upperb, 0, 255, 0, 400);
stroke(255, 0, 0); fill(255, 0, 0);
strokeWeight(2);
line(lb + 10, height-30, ub +10, height-30);
ellipse(lb+10, height-30, 3, 3 );
text(lowerb, lb-10, height-15);
ellipse(ub+10, height-30, 3, 3 );
text(upperb, ub+10, height-15);
}
void mouseMoved() {
if (keyPressed) {
upperb += mouseX - pmouseX;
}
else {
if (upperb < 255 || (mouseX - pmouseX) < 0) {
lowerb += mouseX - pmouseX;
}
if (lowerb > 0 || (mouseX - pmouseX) > 0) {
upperb += mouseX - pmouseX;
}
}
upperb = constrain(upperb, lowerb, 255);
lowerb = constrain(lowerb, 0, upperb-1);
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 268 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 168 KiB

View File

@ -0,0 +1,38 @@
import gab.opencv.*;
OpenCV opencv;
PImage before, after, grayDiff;
//PImage colorDiff;
void setup() {
before = loadImage("before.jpg");
after = loadImage("after.jpg");
size(before.width, before.height);
opencv = new OpenCV(this, before);
opencv.diff(after);
grayDiff = opencv.getSnapshot();
// opencv.useColor();
// opencv.loadImage(after);
// opencv.diff(after);
// colorDiff = opencv.getSnapshot();
}
void draw() {
pushMatrix();
scale(0.5);
image(before, 0, 0);
image(after, before.width, 0);
// image(colorDiff, 0, before.height);
image(grayDiff, before.width, before.height);
popMatrix();
fill(255);
text("before", 10, 20);
text("after", before.width/2 +10, 20);
text("gray diff", before.width/2 + 10, before.height/2+ 20);
// text("color diff", 10, before.height/2+ 20);
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 128 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 132 KiB

View File

@ -0,0 +1,297 @@
/**
* Image Filtering
* This sketch performs some image filtering (threshold, blur) and contour detection
*
* @author: Jordi Tost (@jorditost)
* @url: https://github.com/jorditost/ImageFiltering/tree/master/ImageFiltering
*
* University of Applied Sciences Potsdam, 2014
*
* It requires the ControlP5 Processing library:
* http://www.sojamo.de/libraries/controlP5/
*/
import gab.opencv.*;
import java.awt.Rectangle;
import processing.video.*;
import controlP5.*;
OpenCV opencv;
Capture video;
PImage src, preProcessedImage, processedImage, contoursImage;
ArrayList<Contour> contours;
float contrast = 1.35;
int brightness = 0;
int threshold = 75;
boolean useAdaptiveThreshold = false; // use basic thresholding
int thresholdBlockSize = 489;
int thresholdConstant = 45;
int blobSizeThreshold = 20;
int blurSize = 4;
// Control vars
ControlP5 cp5;
int buttonColor;
int buttonBgColor;
void setup() {
frameRate(15);
video = new Capture(this, 640, 480);
video.start();
opencv = new OpenCV(this, 640, 480);
contours = new ArrayList<Contour>();
size(opencv.width + 200, opencv.height, P2D);
// Init Controls
cp5 = new ControlP5(this);
initControls();
// Set thresholding
toggleAdaptiveThreshold(useAdaptiveThreshold);
}
void draw() {
// Read last captured frame
if (video.available()) {
video.read();
}
// Load the new frame of our camera in to OpenCV
opencv.loadImage(video);
src = opencv.getSnapshot();
///////////////////////////////
// <1> PRE-PROCESS IMAGE
// - Grey channel
// - Brightness / Contrast
///////////////////////////////
// Gray channel
opencv.gray();
//opencv.brightness(brightness);
opencv.contrast(contrast);
// Save snapshot for display
preProcessedImage = opencv.getSnapshot();
///////////////////////////////
// <2> PROCESS IMAGE
// - Threshold
// - Noise Supression
///////////////////////////////
// Adaptive threshold - Good when non-uniform illumination
if (useAdaptiveThreshold) {
// Block size must be odd and greater than 3
if (thresholdBlockSize%2 == 0) thresholdBlockSize++;
if (thresholdBlockSize < 3) thresholdBlockSize = 3;
opencv.adaptiveThreshold(thresholdBlockSize, thresholdConstant);
// Basic threshold - range [0, 255]
} else {
opencv.threshold(threshold);
}
// Invert (black bg, white blobs)
opencv.invert();
// Reduce noise - Dilate and erode to close holes
opencv.dilate();
opencv.erode();
// Blur
opencv.blur(blurSize);
// Save snapshot for display
processedImage = opencv.getSnapshot();
///////////////////////////////
// <3> FIND CONTOURS
///////////////////////////////
// Passing 'true' sorts them by descending area.
contours = opencv.findContours(true, true);
// Save snapshot for display
contoursImage = opencv.getSnapshot();
// Draw
pushMatrix();
// Leave space for ControlP5 sliders
translate(width-src.width, 0);
// Display images
displayImages();
// Display contours in the lower right window
pushMatrix();
scale(0.5);
translate(src.width, src.height);
displayContours();
displayContoursBoundingBoxes();
popMatrix();
popMatrix();
}
/////////////////////
// Display Methods
/////////////////////
void displayImages() {
pushMatrix();
scale(0.5);
image(src, 0, 0);
image(preProcessedImage, src.width, 0);
image(processedImage, 0, src.height);
image(src, src.width, src.height);
popMatrix();
stroke(255);
fill(255);
text("Source", 10, 25);
text("Pre-processed Image", src.width/2 + 10, 25);
text("Processed Image", 10, src.height/2 + 25);
text("Tracked Points", src.width/2 + 10, src.height/2 + 25);
}
void displayContours() {
for (int i=0; i<contours.size(); i++) {
Contour contour = contours.get(i);
noFill();
stroke(0, 255, 0);
strokeWeight(3);
contour.draw();
}
}
void displayContoursBoundingBoxes() {
for (int i=0; i<contours.size(); i++) {
Contour contour = contours.get(i);
Rectangle r = contour.getBoundingBox();
if (//(contour.area() > 0.9 * src.width * src.height) ||
(r.width < blobSizeThreshold || r.height < blobSizeThreshold))
continue;
stroke(255, 0, 0);
fill(255, 0, 0, 150);
strokeWeight(2);
rect(r.x, r.y, r.width, r.height);
}
}
//////////////////////////
// CONTROL P5 Functions
//////////////////////////
void initControls() {
// Slider for contrast
cp5.addSlider("contrast")
.setLabel("contrast")
.setPosition(20,50)
.setRange(0.0,6.0)
;
// Slider for threshold
cp5.addSlider("threshold")
.setLabel("threshold")
.setPosition(20,110)
.setRange(0,255)
;
// Toggle to activae adaptive threshold
cp5.addToggle("toggleAdaptiveThreshold")
.setLabel("use adaptive threshold")
.setSize(10,10)
.setPosition(20,144)
;
// Slider for adaptive threshold block size
cp5.addSlider("thresholdBlockSize")
.setLabel("a.t. block size")
.setPosition(20,180)
.setRange(1,700)
;
// Slider for adaptive threshold constant
cp5.addSlider("thresholdConstant")
.setLabel("a.t. constant")
.setPosition(20,200)
.setRange(-100,100)
;
// Slider for blur size
cp5.addSlider("blurSize")
.setLabel("blur size")
.setPosition(20,260)
.setRange(1,20)
;
// Slider for minimum blob size
cp5.addSlider("blobSizeThreshold")
.setLabel("min blob size")
.setPosition(20,290)
.setRange(0,60)
;
// Store the default background color, we gonna need it later
buttonColor = cp5.getController("contrast").getColor().getForeground();
buttonBgColor = cp5.getController("contrast").getColor().getBackground();
}
void toggleAdaptiveThreshold(boolean theFlag) {
useAdaptiveThreshold = theFlag;
if (useAdaptiveThreshold) {
// Lock basic threshold
setLock(cp5.getController("threshold"), true);
// Unlock adaptive threshold
setLock(cp5.getController("thresholdBlockSize"), false);
setLock(cp5.getController("thresholdConstant"), false);
} else {
// Unlock basic threshold
setLock(cp5.getController("threshold"), false);
// Lock adaptive threshold
setLock(cp5.getController("thresholdBlockSize"), true);
setLock(cp5.getController("thresholdConstant"), true);
}
}
void setLock(Controller theController, boolean theValue) {
theController.setLock(theValue);
if (theValue) {
theController.setColorBackground(color(150,150));
theController.setColorForeground(color(100,100));
} else {
theController.setColorBackground(color(buttonBgColor));
theController.setColorForeground(color(buttonColor));
}
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 268 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 221 KiB

View File

@ -0,0 +1,90 @@
/**
* Blob Class
*
* Based on this example by Daniel Shiffman:
* http://shiffman.net/2011/04/26/opencv-matching-faces-over-time/
*
* @author: Jordi Tost (@jorditost)
*
* University of Applied Sciences Potsdam, 2014
*/
class Blob {
private PApplet parent;
// Contour
public Contour contour;
// Am I available to be matched?
public boolean available;
// Should I be deleted?
public boolean delete;
// How long should I live if I have disappeared?
private int initTimer = 5; //127;
public int timer;
// Unique ID for each blob
int id;
// Make me
Blob(PApplet parent, int id, Contour c) {
this.parent = parent;
this.id = id;
this.contour = new Contour(parent, c.pointMat);
available = true;
delete = false;
timer = initTimer;
}
// Show me
void display() {
Rectangle r = contour.getBoundingBox();
float opacity = map(timer, 0, initTimer, 0, 127);
fill(0,0,255,opacity);
stroke(0,0,255);
rect(r.x, r.y, r.width, r.height);
fill(255,2*opacity);
textSize(26);
text(""+id, r.x+10, r.y+30);
}
// Give me a new contour for this blob (shape, points, location, size)
// Oooh, it would be nice to lerp here!
void update(Contour newC) {
contour = new Contour(parent, newC.pointMat);
// Is there a way to update the contour's points without creating a new one?
/*ArrayList<PVector> newPoints = newC.getPoints();
Point[] inputPoints = new Point[newPoints.size()];
for(int i = 0; i < newPoints.size(); i++){
inputPoints[i] = new Point(newPoints.get(i).x, newPoints.get(i).y);
}
contour.loadPoints(inputPoints);*/
timer = initTimer;
}
// Count me down, I am gone
void countDown() {
timer--;
}
// I am deed, delete me
boolean dead() {
if (timer < 0) return true;
return false;
}
public Rectangle getBoundingBox() {
return contour.getBoundingBox();
}
}

View File

@ -0,0 +1,455 @@
/**
* Image Filtering
* This sketch will help us to adjust the filter values to optimize blob detection
*
* Persistence algorithm by Daniel Shifmann:
* http://shiffman.net/2011/04/26/opencv-matching-faces-over-time/
*
* @author: Jordi Tost (@jorditost)
* @url: https://github.com/jorditost/ImageFiltering/tree/master/ImageFilteringWithBlobPersistence
*
* University of Applied Sciences Potsdam, 2014
*
* It requires the ControlP5 Processing library:
* http://www.sojamo.de/libraries/controlP5/
*/
import gab.opencv.*;
import java.awt.Rectangle;
import processing.video.*;
import controlP5.*;
OpenCV opencv;
Capture video;
PImage src, preProcessedImage, processedImage, contoursImage;
ArrayList<Contour> contours;
// List of detected contours parsed as blobs (every frame)
ArrayList<Contour> newBlobContours;
// List of my blob objects (persistent)
ArrayList<Blob> blobList;
// Number of blobs detected over all time. Used to set IDs.
int blobCount = 0;
float contrast = 1.35;
int brightness = 0;
int threshold = 75;
boolean useAdaptiveThreshold = false; // use basic thresholding
int thresholdBlockSize = 489;
int thresholdConstant = 45;
int blobSizeThreshold = 20;
int blurSize = 4;
// Control vars
ControlP5 cp5;
int buttonColor;
int buttonBgColor;
void setup() {
frameRate(15);
video = new Capture(this, 640, 480);
//video = new Capture(this, 640, 480, "USB2.0 PC CAMERA");
video.start();
opencv = new OpenCV(this, 640, 480);
contours = new ArrayList<Contour>();
// Blobs list
blobList = new ArrayList<Blob>();
size(opencv.width + 200, opencv.height, P2D);
// Init Controls
cp5 = new ControlP5(this);
initControls();
// Set thresholding
toggleAdaptiveThreshold(useAdaptiveThreshold);
}
void draw() {
// Read last captured frame
if (video.available()) {
video.read();
}
// Load the new frame of our camera in to OpenCV
opencv.loadImage(video);
src = opencv.getSnapshot();
///////////////////////////////
// <1> PRE-PROCESS IMAGE
// - Grey channel
// - Brightness / Contrast
///////////////////////////////
// Gray channel
opencv.gray();
//opencv.brightness(brightness);
opencv.contrast(contrast);
// Save snapshot for display
preProcessedImage = opencv.getSnapshot();
///////////////////////////////
// <2> PROCESS IMAGE
// - Threshold
// - Noise Supression
///////////////////////////////
// Adaptive threshold - Good when non-uniform illumination
if (useAdaptiveThreshold) {
// Block size must be odd and greater than 3
if (thresholdBlockSize%2 == 0) thresholdBlockSize++;
if (thresholdBlockSize < 3) thresholdBlockSize = 3;
opencv.adaptiveThreshold(thresholdBlockSize, thresholdConstant);
// Basic threshold - range [0, 255]
} else {
opencv.threshold(threshold);
}
// Invert (black bg, white blobs)
opencv.invert();
// Reduce noise - Dilate and erode to close holes
opencv.dilate();
opencv.erode();
// Blur
opencv.blur(blurSize);
// Save snapshot for display
processedImage = opencv.getSnapshot();
///////////////////////////////
// <3> FIND CONTOURS
///////////////////////////////
detectBlobs();
// Passing 'true' sorts them by descending area.
//contours = opencv.findContours(true, true);
// Save snapshot for display
contoursImage = opencv.getSnapshot();
// Draw
pushMatrix();
// Leave space for ControlP5 sliders
translate(width-src.width, 0);
// Display images
displayImages();
// Display contours in the lower right window
pushMatrix();
scale(0.5);
translate(src.width, src.height);
// Contours
//displayContours();
//displayContoursBoundingBoxes();
// Blobs
displayBlobs();
popMatrix();
popMatrix();
}
///////////////////////
// Display Functions
///////////////////////
void displayImages() {
pushMatrix();
scale(0.5);
image(src, 0, 0);
image(preProcessedImage, src.width, 0);
image(processedImage, 0, src.height);
image(src, src.width, src.height);
popMatrix();
stroke(255);
fill(255);
textSize(12);
text("Source", 10, 25);
text("Pre-processed Image", src.width/2 + 10, 25);
text("Processed Image", 10, src.height/2 + 25);
text("Tracked Points", src.width/2 + 10, src.height/2 + 25);
}
void displayBlobs() {
for (Blob b : blobList) {
strokeWeight(1);
b.display();
}
}
void displayContours() {
// Contours
for (int i=0; i<contours.size(); i++) {
Contour contour = contours.get(i);
noFill();
stroke(0, 255, 0);
strokeWeight(3);
contour.draw();
}
}
void displayContoursBoundingBoxes() {
for (int i=0; i<contours.size(); i++) {
Contour contour = contours.get(i);
Rectangle r = contour.getBoundingBox();
if (//(contour.area() > 0.9 * src.width * src.height) ||
(r.width < blobSizeThreshold || r.height < blobSizeThreshold))
continue;
stroke(255, 0, 0);
fill(255, 0, 0, 150);
strokeWeight(2);
rect(r.x, r.y, r.width, r.height);
}
}
////////////////////
// Blob Detection
////////////////////
void detectBlobs() {
// Contours detected in this frame
// Passing 'true' sorts them by descending area.
contours = opencv.findContours(true, true);
newBlobContours = getBlobsFromContours(contours);
//println(contours.length);
// Check if the detected blobs already exist are new or some has disappeared.
// SCENARIO 1
// blobList is empty
if (blobList.isEmpty()) {
// Just make a Blob object for every face Rectangle
for (int i = 0; i < newBlobContours.size(); i++) {
println("+++ New blob detected with ID: " + blobCount);
blobList.add(new Blob(this, blobCount, newBlobContours.get(i)));
blobCount++;
}
// SCENARIO 2
// We have fewer Blob objects than face Rectangles found from OpenCV in this frame
} else if (blobList.size() <= newBlobContours.size()) {
boolean[] used = new boolean[newBlobContours.size()];
// Match existing Blob objects with a Rectangle
for (Blob b : blobList) {
// Find the new blob newBlobContours.get(index) that is closest to blob b
// set used[index] to true so that it can't be used twice
float record = 50000;
int index = -1;
for (int i = 0; i < newBlobContours.size(); i++) {
float d = dist(newBlobContours.get(i).getBoundingBox().x, newBlobContours.get(i).getBoundingBox().y, b.getBoundingBox().x, b.getBoundingBox().y);
//float d = dist(blobs[i].x, blobs[i].y, b.r.x, b.r.y);
if (d < record && !used[i]) {
record = d;
index = i;
}
}
// Update Blob object location
used[index] = true;
b.update(newBlobContours.get(index));
}
// Add any unused blobs
for (int i = 0; i < newBlobContours.size(); i++) {
if (!used[i]) {
println("+++ New blob detected with ID: " + blobCount);
blobList.add(new Blob(this, blobCount, newBlobContours.get(i)));
//blobList.add(new Blob(blobCount, blobs[i].x, blobs[i].y, blobs[i].width, blobs[i].height));
blobCount++;
}
}
// SCENARIO 3
// We have more Blob objects than blob Rectangles found from OpenCV in this frame
} else {
// All Blob objects start out as available
for (Blob b : blobList) {
b.available = true;
}
// Match Rectangle with a Blob object
for (int i = 0; i < newBlobContours.size(); i++) {
// Find blob object closest to the newBlobContours.get(i) Contour
// set available to false
float record = 50000;
int index = -1;
for (int j = 0; j < blobList.size(); j++) {
Blob b = blobList.get(j);
float d = dist(newBlobContours.get(i).getBoundingBox().x, newBlobContours.get(i).getBoundingBox().y, b.getBoundingBox().x, b.getBoundingBox().y);
//float d = dist(blobs[i].x, blobs[i].y, b.r.x, b.r.y);
if (d < record && b.available) {
record = d;
index = j;
}
}
// Update Blob object location
Blob b = blobList.get(index);
b.available = false;
b.update(newBlobContours.get(i));
}
// Start to kill any left over Blob objects
for (Blob b : blobList) {
if (b.available) {
b.countDown();
if (b.dead()) {
b.delete = true;
}
}
}
}
// Delete any blob that should be deleted
for (int i = blobList.size()-1; i >= 0; i--) {
Blob b = blobList.get(i);
if (b.delete) {
blobList.remove(i);
}
}
}
ArrayList<Contour> getBlobsFromContours(ArrayList<Contour> newContours) {
ArrayList<Contour> newBlobs = new ArrayList<Contour>();
// Which of these contours are blobs?
for (int i=0; i<newContours.size(); i++) {
Contour contour = newContours.get(i);
Rectangle r = contour.getBoundingBox();
if (//(contour.area() > 0.9 * src.width * src.height) ||
(r.width < blobSizeThreshold || r.height < blobSizeThreshold))
continue;
newBlobs.add(contour);
}
return newBlobs;
}
//////////////////////////
// CONTROL P5 Functions
//////////////////////////
void initControls() {
// Slider for contrast
cp5.addSlider("contrast")
.setLabel("contrast")
.setPosition(20,50)
.setRange(0.0,6.0)
;
// Slider for threshold
cp5.addSlider("threshold")
.setLabel("threshold")
.setPosition(20,110)
.setRange(0,255)
;
// Toggle to activae adaptive threshold
cp5.addToggle("toggleAdaptiveThreshold")
.setLabel("use adaptive threshold")
.setSize(10,10)
.setPosition(20,144)
;
// Slider for adaptive threshold block size
cp5.addSlider("thresholdBlockSize")
.setLabel("a.t. block size")
.setPosition(20,180)
.setRange(1,700)
;
// Slider for adaptive threshold constant
cp5.addSlider("thresholdConstant")
.setLabel("a.t. constant")
.setPosition(20,200)
.setRange(-100,100)
;
// Slider for blur size
cp5.addSlider("blurSize")
.setLabel("blur size")
.setPosition(20,260)
.setRange(1,20)
;
// Slider for minimum blob size
cp5.addSlider("blobSizeThreshold")
.setLabel("min blob size")
.setPosition(20,290)
.setRange(0,60)
;
// Store the default background color, we gonna need it later
buttonColor = cp5.getController("contrast").getColor().getForeground();
buttonBgColor = cp5.getController("contrast").getColor().getBackground();
}
void toggleAdaptiveThreshold(boolean theFlag) {
useAdaptiveThreshold = theFlag;
if (useAdaptiveThreshold) {
// Lock basic threshold
setLock(cp5.getController("threshold"), true);
// Unlock adaptive threshold
setLock(cp5.getController("thresholdBlockSize"), false);
setLock(cp5.getController("thresholdConstant"), false);
} else {
// Unlock basic threshold
setLock(cp5.getController("threshold"), false);
// Lock adaptive threshold
setLock(cp5.getController("thresholdBlockSize"), true);
setLock(cp5.getController("thresholdConstant"), true);
}
}
void setLock(Controller theController, boolean theValue) {
theController.setLock(theValue);
if (theValue) {
theController.setColorBackground(color(150,150));
theController.setColorForeground(color(100,100));
} else {
theController.setColorBackground(color(buttonBgColor));
theController.setColorForeground(color(buttonColor));
}
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 221 KiB

View File

@ -0,0 +1,38 @@
import gab.opencv.*;
import processing.video.*;
import java.awt.*;
Capture video;
OpenCV opencv;
void setup() {
size(640, 480);
video = new Capture(this, 640/2, 480/2);
opencv = new OpenCV(this, 640/2, 480/2);
opencv.loadCascade(OpenCV.CASCADE_FRONTALFACE);
video.start();
}
void draw() {
scale(2);
opencv.loadImage(video);
image(video, 0, 0 );
noFill();
stroke(0, 255, 0);
strokeWeight(3);
Rectangle[] faces = opencv.detect();
println(faces.length);
for (int i = 0; i < faces.length; i++) {
println(faces[i].x + "," + faces[i].y);
rect(faces[i].x, faces[i].y, faces[i].width, faces[i].height);
}
}
void captureEvent(Capture c) {
c.read();
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,13 @@
import gab.opencv.*;
OpenCV opencv;
void setup() {
opencv = new OpenCV(this, "test.jpg");
size(opencv.width, opencv.height);
}
void draw() {
image(opencv.getOutput(), 0, 0);
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 100 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 100 KiB

View File

@ -0,0 +1,43 @@
/*
Luma is a better measure of perceived brightness than
the tradition grayscale created by averaging R, G, and B channels.
This sketch demonstrates converting an image to LAB color space
and accessign the Luma channel for comparison with the more common
grayscale version. Uses un-wrapped OpenCV cvtColor() function.
*/
import gab.opencv.*;
// Import the OpenCV Improc class,
// it has the cvtColor() function we need.
import org.opencv.imgproc.Imgproc;
OpenCV opencv;
PImage colorImage, grayImage;
void setup() {
colorImage = loadImage("flashlight.jpg");
opencv = new OpenCV(this, colorImage);
size(opencv.width, opencv.height);
// Save the gray image so we can compare it to Luma
grayImage = opencv.getSnapshot();
// Use built-in OpenCV function to conver the color image from BGR to LAB color space.
Imgproc.cvtColor(opencv.getColor(), opencv.getColor(), Imgproc.COLOR_BGR2Lab);
// Since the channels start out in the order BGRA,
// Converting to LAB will put the Luma in the B channel
opencv.setGray(opencv.getB());
}
void draw() {
background(0);
pushMatrix();
scale(0.5);
image(colorImage, colorImage.width/2, 0);
image(grayImage, 0, colorImage.height);
image(opencv.getOutput(), colorImage.width, colorImage.height);
popMatrix();
fill(255);
text("GRAY", 30, height -25);
text("LUMA", width/2 + 30, height - 25);
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 113 KiB

View File

@ -0,0 +1,212 @@
import gab.opencv.*;
import org.opencv.imgproc.Imgproc;
import org.opencv.core.Core;
import org.opencv.core.Mat;
import org.opencv.core.MatOfPoint;
import org.opencv.core.MatOfPoint2f;
import org.opencv.core.MatOfPoint2f;
import org.opencv.core.CvType;
import org.opencv.core.Point;
import org.opencv.core.Size;
//import java.util.list;
OpenCV opencv;
PImage src, dst, markerImg;
ArrayList<MatOfPoint> contours;
ArrayList<MatOfPoint2f> approximations;
ArrayList<MatOfPoint2f> markers;
boolean[][] markerCells;
void setup() {
opencv = new OpenCV(this, "marker_test.jpg");
size(opencv.width, opencv.height/2);
src = opencv.getInput();
// hold on to this for later, since adaptiveThreshold is destructive
Mat gray = OpenCV.imitate(opencv.getGray());
opencv.getGray().copyTo(gray);
Mat thresholdMat = OpenCV.imitate(opencv.getGray());
opencv.blur(5);
Imgproc.adaptiveThreshold(opencv.getGray(), thresholdMat, 255, Imgproc.ADAPTIVE_THRESH_GAUSSIAN_C, Imgproc.THRESH_BINARY_INV, 451, -65);
contours = new ArrayList<MatOfPoint>();
Imgproc.findContours(thresholdMat, contours, new Mat(), Imgproc.RETR_LIST, Imgproc.CHAIN_APPROX_NONE);
approximations = createPolygonApproximations(contours);
markers = new ArrayList<MatOfPoint2f>();
markers = selectMarkers(approximations);
//// Mat markerMat = grat.submat();
// Mat warped = OpenCVPro.imitate(gray);
//
MatOfPoint2f canonicalMarker = new MatOfPoint2f();
Point[] canonicalPoints = new Point[4];
canonicalPoints[0] = new Point(0, 350);
canonicalPoints[1] = new Point(0, 0);
canonicalPoints[2] = new Point(350, 0);
canonicalPoints[3] = new Point(350, 350);
canonicalMarker.fromArray(canonicalPoints);
println("num points: " + markers.get(0).height());
Mat transform = Imgproc.getPerspectiveTransform(markers.get(0), canonicalMarker);
Mat unWarpedMarker = new Mat(50, 50, CvType.CV_8UC1);
Imgproc.warpPerspective(gray, unWarpedMarker, transform, new Size(350, 350));
Imgproc.threshold(unWarpedMarker, unWarpedMarker, 125, 255, Imgproc.THRESH_BINARY | Imgproc.THRESH_OTSU);
float cellSize = 350/7.0;
markerCells = new boolean[7][7];
for (int row = 0; row < 7; row++) {
for (int col = 0; col < 7; col++) {
int cellX = int(col*cellSize);
int cellY = int(row*cellSize);
Mat cell = unWarpedMarker.submat(cellX, cellX +(int)cellSize, cellY, cellY+ (int)cellSize);
markerCells[row][col] = (Core.countNonZero(cell) > (cellSize*cellSize)/2);
}
}
for (int col = 0; col < 7; col++) {
for (int row = 0; row < 7; row++) {
if (markerCells[row][col]) {
print(1);
}
else {
print(0);
}
}
println();
}
dst = createImage(350, 350, RGB);
opencv.toPImage(unWarpedMarker, dst);
}
ArrayList<MatOfPoint2f> selectMarkers(ArrayList<MatOfPoint2f> candidates) {
float minAllowedContourSide = 50;
minAllowedContourSide = minAllowedContourSide * minAllowedContourSide;
ArrayList<MatOfPoint2f> result = new ArrayList<MatOfPoint2f>();
for (MatOfPoint2f candidate : candidates) {
if (candidate.size().height != 4) {
continue;
}
if (!Imgproc.isContourConvex(new MatOfPoint(candidate.toArray()))) {
continue;
}
// eliminate markers where consecutive
// points are too close together
float minDist = src.width * src.width;
Point[] points = candidate.toArray();
for (int i = 0; i < points.length; i++) {
Point side = new Point(points[i].x - points[(i+1)%4].x, points[i].y - points[(i+1)%4].y);
float squaredLength = (float)side.dot(side);
// println("minDist: " + minDist + " squaredLength: " +squaredLength);
minDist = min(minDist, squaredLength);
}
// println(minDist);
if (minDist < minAllowedContourSide) {
continue;
}
result.add(candidate);
}
return result;
}
ArrayList<MatOfPoint2f> createPolygonApproximations(ArrayList<MatOfPoint> cntrs) {
ArrayList<MatOfPoint2f> result = new ArrayList<MatOfPoint2f>();
double epsilon = cntrs.get(0).size().height * 0.01;
println(epsilon);
for (MatOfPoint contour : cntrs) {
MatOfPoint2f approx = new MatOfPoint2f();
Imgproc.approxPolyDP(new MatOfPoint2f(contour.toArray()), approx, epsilon, true);
result.add(approx);
}
return result;
}
void drawContours(ArrayList<MatOfPoint> cntrs) {
for (MatOfPoint contour : cntrs) {
beginShape();
Point[] points = contour.toArray();
for (int i = 0; i < points.length; i++) {
vertex((float)points[i].x, (float)points[i].y);
}
endShape();
}
}
void drawContours2f(ArrayList<MatOfPoint2f> cntrs) {
for (MatOfPoint2f contour : cntrs) {
beginShape();
Point[] points = contour.toArray();
for (int i = 0; i < points.length; i++) {
vertex((float)points[i].x, (float)points[i].y);
}
endShape(CLOSE);
}
}
void draw() {
pushMatrix();
background(125);
scale(0.5);
image(src, 0, 0);
noFill();
smooth();
strokeWeight(5);
stroke(0, 255, 0);
drawContours2f(markers);
popMatrix();
pushMatrix();
translate(src.width/2, 0);
strokeWeight(1);
image(dst, 0, 0);
float cellSize = dst.width/7.0;
for (int col = 0; col < 7; col++) {
for (int row = 0; row < 7; row++) {
if(markerCells[row][col]){
fill(255);
} else {
fill(0);
}
stroke(0,255,0);
rect(col*cellSize, row*cellSize, cellSize, cellSize);
//line(i*cellSize, 0, i*cellSize, dst.width);
//line(0, i*cellSize, dst.width, i*cellSize);
}
}
popMatrix();
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 372 KiB

View File

@ -0,0 +1,197 @@
/**
* MultipleColorTracking
* Select 4 colors to track them separately
*
* It uses the OpenCV for Processing library by Greg Borenstein
* https://github.com/atduskgreg/opencv-processing
*
* @author: Jordi Tost (@jorditost)
* @url: https://github.com/jorditost/ImageFiltering/tree/master/MultipleColorTracking
*
* University of Applied Sciences Potsdam, 2014
*
* Instructions:
* Press one numerical key [1-4] and click on one color to track it
*/
import gab.opencv.*;
import processing.video.*;
import java.awt.Rectangle;
Capture video;
OpenCV opencv;
PImage src;
ArrayList<Contour> contours;
// <1> Set the range of Hue values for our filter
//ArrayList<Integer> colors;
int maxColors = 4;
int[] hues;
int[] colors;
int rangeWidth = 10;
PImage[] outputs;
int colorToChange = -1;
void setup() {
video = new Capture(this, 640, 480);
opencv = new OpenCV(this, video.width, video.height);
contours = new ArrayList<Contour>();
size(opencv.width + opencv.width/4 + 30, opencv.height, P2D);
// Array for detection colors
colors = new int[maxColors];
hues = new int[maxColors];
outputs = new PImage[maxColors];
video.start();
}
void draw() {
background(150);
if (video.available()) {
video.read();
}
// <2> Load the new frame of our movie in to OpenCV
opencv.loadImage(video);
// Tell OpenCV to use color information
opencv.useColor();
src = opencv.getSnapshot();
// <3> Tell OpenCV to work in HSV color space.
opencv.useColor(HSB);
detectColors();
// Show images
image(src, 0, 0);
for (int i=0; i<outputs.length; i++) {
if (outputs[i] != null) {
image(outputs[i], width-src.width/4, i*src.height/4, src.width/4, src.height/4);
noStroke();
fill(colors[i]);
rect(src.width, i*src.height/4, 30, src.height/4);
}
}
// Print text if new color expected
textSize(20);
stroke(255);
fill(255);
if (colorToChange > -1) {
text("click to change color " + colorToChange, 10, 25);
} else {
text("press key [1-4] to select color", 10, 25);
}
displayContoursBoundingBoxes();
}
//////////////////////
// Detect Functions
//////////////////////
void detectColors() {
for (int i=0; i<hues.length; i++) {
if (hues[i] <= 0) continue;
opencv.loadImage(src);
opencv.useColor(HSB);
// <4> Copy the Hue channel of our image into
// the gray channel, which we process.
opencv.setGray(opencv.getH().clone());
int hueToDetect = hues[i];
//println("index " + i + " - hue to detect: " + hueToDetect);
// <5> Filter the image based on the range of
// hue values that match the object we want to track.
opencv.inRange(hueToDetect-rangeWidth/2, hueToDetect+rangeWidth/2);
//opencv.dilate();
opencv.erode();
// TO DO:
// Add here some image filtering to detect blobs better
// <6> Save the processed image for reference.
outputs[i] = opencv.getSnapshot();
}
// <7> Find contours in our range image.
// Passing 'true' sorts them by descending area.
if (outputs[0] != null) {
opencv.loadImage(outputs[0]);
contours = opencv.findContours(true,true);
}
}
void displayContoursBoundingBoxes() {
for (int i=0; i<contours.size(); i++) {
Contour contour = contours.get(i);
Rectangle r = contour.getBoundingBox();
if (r.width < 20 || r.height < 20)
continue;
stroke(255, 0, 0);
fill(255, 0, 0, 150);
strokeWeight(2);
rect(r.x, r.y, r.width, r.height);
}
}
//////////////////////
// Keyboard / Mouse
//////////////////////
void mousePressed() {
if (colorToChange > -1) {
color c = get(mouseX, mouseY);
println("r: " + red(c) + " g: " + green(c) + " b: " + blue(c));
int hue = int(map(hue(c), 0, 255, 0, 180));
colors[colorToChange-1] = c;
hues[colorToChange-1] = hue;
println("color index " + (colorToChange-1) + ", value: " + hue);
}
}
void keyPressed() {
if (key == '1') {
colorToChange = 1;
} else if (key == '2') {
colorToChange = 2;
} else if (key == '3') {
colorToChange = 3;
} else if (key == '4') {
colorToChange = 4;
}
}
void keyReleased() {
colorToChange = -1;
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 606 KiB

View File

@ -0,0 +1,2 @@
mode.id=processing.mode.java.JavaMode
mode=Java

View File

@ -0,0 +1,36 @@
import gab.opencv.*;
import processing.video.*;
OpenCV opencv;
Movie video;
void setup() {
size(568*2, 320);
video = new Movie(this, "sample1.mov");
opencv = new OpenCV(this, 568, 320);
video.loop();
video.play();
}
void draw() {
background(0);
opencv.loadImage(video);
opencv.calculateOpticalFlow();
image(video, 0, 0);
translate(video.width,0);
stroke(255,0,0);
opencv.drawOpticalFlow();
PVector aveFlow = opencv.getAverageFlow();
int flowScale = 50;
stroke(255);
strokeWeight(2);
line(video.width/2, video.height/2, video.width/2 + aveFlow.x*flowScale, video.height/2 + aveFlow.y*flowScale);
}
void movieEvent(Movie m) {
m.read();
}

View File

@ -0,0 +1,36 @@
import gab.opencv.*;
PImage src;
OpenCV opencv;
int roiWidth = 150;
int roiHeight = 150;
boolean useROI = true;
void setup() {
src = loadImage("test.jpg");
opencv = new OpenCV(this, src);
size(opencv.width, opencv.height);
}
void draw() {
opencv.loadImage(src);
if (useROI) {
opencv.setROI(mouseX, mouseY, roiWidth, roiHeight);
}
opencv.findCannyEdges(20,75);
image(opencv.getOutput(), 0, 0);
}
// toggle ROI on and off
void keyPressed() {
useROI = !useROI;
if (!useROI) {
opencv.releaseROI();
}
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 100 KiB

View File

@ -0,0 +1,76 @@
import gab.opencv.*;
import org.opencv.imgproc.Imgproc;
import org.opencv.core.MatOfPoint2f;
import org.opencv.core.Point;
import org.opencv.core.Size;
import org.opencv.core.Mat;
import org.opencv.core.CvType;
OpenCV opencv;
PImage src;
PImage card;
int cardWidth = 250;
int cardHeight = 350;
Contour contour;
void setup() {
src = loadImage("cards.png");
size(src.width + cardWidth, src.height);
opencv = new OpenCV(this, src);
opencv.blur(1);
opencv.threshold(120);
contour = opencv.findContours(false, true).get(0).getPolygonApproximation();
card = createImage(cardWidth, cardHeight, ARGB);
opencv.toPImage(warpPerspective(contour.getPoints(), cardWidth, cardHeight), card);
}
Mat getPerspectiveTransformation(ArrayList<PVector> inputPoints, int w, int h) {
Point[] canonicalPoints = new Point[4];
canonicalPoints[0] = new Point(w, 0);
canonicalPoints[1] = new Point(0, 0);
canonicalPoints[2] = new Point(0, h);
canonicalPoints[3] = new Point(w, h);
MatOfPoint2f canonicalMarker = new MatOfPoint2f();
canonicalMarker.fromArray(canonicalPoints);
Point[] points = new Point[4];
for (int i = 0; i < 4; i++) {
points[i] = new Point(inputPoints.get(i).x, inputPoints.get(i).y);
}
MatOfPoint2f marker = new MatOfPoint2f(points);
return Imgproc.getPerspectiveTransform(marker, canonicalMarker);
}
Mat warpPerspective(ArrayList<PVector> inputPoints, int w, int h) {
Mat transform = getPerspectiveTransformation(inputPoints, w, h);
Mat unWarpedMarker = new Mat(w, h, CvType.CV_8UC1);
Imgproc.warpPerspective(opencv.getColor(), unWarpedMarker, transform, new Size(w, h));
return unWarpedMarker;
}
void draw() {
image(src, 0, 0);
noFill();
stroke(0, 255, 0);
strokeWeight(4);
contour.draw();
fill(255, 0);
ArrayList<PVector> points = contour.getPoints();
for (int i = 0; i < points.size(); i++) {
text(i, points.get(i).x, points.get(i).y);
}
pushMatrix();
translate(src.width, 0);
image(card, 0, 0);
popMatrix();
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 846 KiB

View File

@ -0,0 +1,64 @@
/**
* Which Face Is Which
* Daniel Shiffman
* http://shiffman.net/2011/04/26/opencv-matching-faces-over-time/
*
* Modified by Jordi Tost (call the constructor specifying an ID)
* @updated: 01/10/2014
*/
class Face {
// A Rectangle
Rectangle r;
// Am I available to be matched?
boolean available;
// Should I be deleted?
boolean delete;
// How long should I live if I have disappeared?
int timer = 127;
// Assign a number to each face
int id;
// Make me
Face(int newID, int x, int y, int w, int h) {
r = new Rectangle(x,y,w,h);
available = true;
delete = false;
id = newID;
}
// Show me
void display() {
fill(0,0,255,timer);
stroke(0,0,255);
rect(r.x,r.y,r.width, r.height);
//rect(r.x*scl,r.y*scl,r.width*scl, r.height*scl);
fill(255,timer*2);
text(""+id,r.x+10,r.y+30);
//text(""+id,r.x*scl+10,r.y*scl+30);
//text(""+id,r.x*scl+10,r.y*scl+30);
}
// Give me a new location / size
// Oooh, it would be nice to lerp here!
void update(Rectangle newR) {
r = (Rectangle) newR.clone();
}
// Count me down, I am gone
void countDown() {
timer--;
}
// I am deed, delete me
boolean dead() {
if (timer < 0) return true;
return false;
}
}

View File

@ -0,0 +1,162 @@
/**
* WhichFace
* Daniel Shiffman
* http://shiffman.net/2011/04/26/opencv-matching-faces-over-time/
*
* Modified by Jordi Tost (@jorditost) to work with the OpenCV library by Greg Borenstein:
* https://github.com/atduskgreg/opencv-processing
*
* @url: https://github.com/jorditost/BlobPersistence/
*
* University of Applied Sciences Potsdam, 2014
*/
import gab.opencv.*;
import processing.video.*;
import java.awt.*;
Capture video;
OpenCV opencv;
// List of my Face objects (persistent)
ArrayList<Face> faceList;
// List of detected faces (every frame)
Rectangle[] faces;
// Number of faces detected over all time. Used to set IDs.
int faceCount = 0;
// Scaling down the video
int scl = 2;
void setup() {
size(640, 480);
video = new Capture(this, width/scl, height/scl);
opencv = new OpenCV(this, width/scl, height/scl);
opencv.loadCascade(OpenCV.CASCADE_FRONTALFACE);
faceList = new ArrayList<Face>();
video.start();
}
void draw() {
scale(scl);
opencv.loadImage(video);
image(video, 0, 0 );
detectFaces();
// Draw all the faces
for (int i = 0; i < faces.length; i++) {
noFill();
strokeWeight(5);
stroke(255,0,0);
//rect(faces[i].x*scl,faces[i].y*scl,faces[i].width*scl,faces[i].height*scl);
rect(faces[i].x, faces[i].y, faces[i].width, faces[i].height);
}
for (Face f : faceList) {
strokeWeight(2);
f.display();
}
}
void detectFaces() {
// Faces detected in this frame
faces = opencv.detect();
// Check if the detected faces already exist are new or some has disappeared.
// SCENARIO 1
// faceList is empty
if (faceList.isEmpty()) {
// Just make a Face object for every face Rectangle
for (int i = 0; i < faces.length; i++) {
println("+++ New face detected with ID: " + faceCount);
faceList.add(new Face(faceCount, faces[i].x,faces[i].y,faces[i].width,faces[i].height));
faceCount++;
}
// SCENARIO 2
// We have fewer Face objects than face Rectangles found from OPENCV
} else if (faceList.size() <= faces.length) {
boolean[] used = new boolean[faces.length];
// Match existing Face objects with a Rectangle
for (Face f : faceList) {
// Find faces[index] that is closest to face f
// set used[index] to true so that it can't be used twice
float record = 50000;
int index = -1;
for (int i = 0; i < faces.length; i++) {
float d = dist(faces[i].x,faces[i].y,f.r.x,f.r.y);
if (d < record && !used[i]) {
record = d;
index = i;
}
}
// Update Face object location
used[index] = true;
f.update(faces[index]);
}
// Add any unused faces
for (int i = 0; i < faces.length; i++) {
if (!used[i]) {
println("+++ New face detected with ID: " + faceCount);
faceList.add(new Face(faceCount, faces[i].x,faces[i].y,faces[i].width,faces[i].height));
faceCount++;
}
}
// SCENARIO 3
// We have more Face objects than face Rectangles found
} else {
// All Face objects start out as available
for (Face f : faceList) {
f.available = true;
}
// Match Rectangle with a Face object
for (int i = 0; i < faces.length; i++) {
// Find face object closest to faces[i] Rectangle
// set available to false
float record = 50000;
int index = -1;
for (int j = 0; j < faceList.size(); j++) {
Face f = faceList.get(j);
float d = dist(faces[i].x,faces[i].y,f.r.x,f.r.y);
if (d < record && f.available) {
record = d;
index = j;
}
}
// Update Face object location
Face f = faceList.get(index);
f.available = false;
f.update(faces[i]);
}
// Start to kill any left over Face objects
for (Face f : faceList) {
if (f.available) {
f.countDown();
if (f.dead()) {
f.delete = true;
}
}
}
}
// Delete any that should be deleted
for (int i = faceList.size()-1; i >= 0; i--) {
Face f = faceList.get(i);
if (f.delete) {
faceList.remove(i);
}
}
}
void captureEvent(Capture c) {
c.read();
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 390 KiB

View File

@ -0,0 +1,43 @@
import gab.opencv.*;
OpenCV opencv;
PImage threshold, blur, adaptive, gray;
void setup() {
PImage img = loadImage("test.jpg");
size(img.width, img.height);
// By default, OpenCV for Processing works with a gray
// version of the source image
opencv = new OpenCV(this, img);
// but you can tell it explicitly to use color instead:
opencv.useColor();
// A lot of OpenCV operations only work on grayscale images.
// But some do work in color, like threshold, blur, findCannyEdges, findChessboardCorners, etc.:
opencv.threshold(75);
threshold = opencv.getSnapshot();
opencv.blur(30);
blur = opencv.getSnapshot();
// If you try an operation that does not work in color
// it will print out an error message and leave the image unaffected
opencv.adaptiveThreshold(591, 1);
adaptive = opencv.getSnapshot();
// if you convert the image to gray then you can
// do gray-only operations
opencv.gray();
opencv.adaptiveThreshold(591, 1);
gray = opencv.getSnapshot();
}
void draw() {
scale(0.5);
image(threshold, 0, 0);
image(blur, threshold.width,0);
image(adaptive, 0,threshold.height);
image(gray, threshold.width, threshold.height);
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 100 KiB

View File

@ -0,0 +1,11 @@
name=OpenCV for Processing
category=Video & Vision
authors=[Greg Borenstein](http://gregborenstein.com)
url=https://github.com/atduskgreg/opencv-processing
sentence=Computer vision with OpenCV.
paragraph=Based on the official OpenCV Java API. A nice Processing-style API for common tasks and access to the full power of the OpenCV API for the advanced stuff.
version=13
prettyVersion=0.5.2
lastUpdated=0
minRevision=0
maxRevision=0

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Some files were not shown because too many files have changed in this diff Show More