213 lines
5.5 KiB
Plaintext
213 lines
5.5 KiB
Plaintext
import gab.opencv.*;
|
|
import org.opencv.imgproc.Imgproc;
|
|
import org.opencv.core.Core;
|
|
|
|
import org.opencv.core.Mat;
|
|
import org.opencv.core.MatOfPoint;
|
|
import org.opencv.core.MatOfPoint2f;
|
|
import org.opencv.core.MatOfPoint2f;
|
|
import org.opencv.core.CvType;
|
|
|
|
import org.opencv.core.Point;
|
|
import org.opencv.core.Size;
|
|
|
|
//import java.util.list;
|
|
|
|
OpenCV opencv;
|
|
PImage src, dst, markerImg;
|
|
ArrayList<MatOfPoint> contours;
|
|
ArrayList<MatOfPoint2f> approximations;
|
|
ArrayList<MatOfPoint2f> markers;
|
|
|
|
boolean[][] markerCells;
|
|
|
|
void setup() {
|
|
opencv = new OpenCV(this, "marker_test.jpg");
|
|
size(opencv.width, opencv.height/2);
|
|
src = opencv.getInput();
|
|
|
|
// hold on to this for later, since adaptiveThreshold is destructive
|
|
Mat gray = OpenCV.imitate(opencv.getGray());
|
|
opencv.getGray().copyTo(gray);
|
|
|
|
Mat thresholdMat = OpenCV.imitate(opencv.getGray());
|
|
|
|
opencv.blur(5);
|
|
|
|
Imgproc.adaptiveThreshold(opencv.getGray(), thresholdMat, 255, Imgproc.ADAPTIVE_THRESH_GAUSSIAN_C, Imgproc.THRESH_BINARY_INV, 451, -65);
|
|
|
|
contours = new ArrayList<MatOfPoint>();
|
|
Imgproc.findContours(thresholdMat, contours, new Mat(), Imgproc.RETR_LIST, Imgproc.CHAIN_APPROX_NONE);
|
|
|
|
approximations = createPolygonApproximations(contours);
|
|
|
|
markers = new ArrayList<MatOfPoint2f>();
|
|
markers = selectMarkers(approximations);
|
|
|
|
//// Mat markerMat = grat.submat();
|
|
// Mat warped = OpenCVPro.imitate(gray);
|
|
//
|
|
MatOfPoint2f canonicalMarker = new MatOfPoint2f();
|
|
Point[] canonicalPoints = new Point[4];
|
|
canonicalPoints[0] = new Point(0, 350);
|
|
canonicalPoints[1] = new Point(0, 0);
|
|
canonicalPoints[2] = new Point(350, 0);
|
|
canonicalPoints[3] = new Point(350, 350);
|
|
canonicalMarker.fromArray(canonicalPoints);
|
|
|
|
println("num points: " + markers.get(0).height());
|
|
|
|
Mat transform = Imgproc.getPerspectiveTransform(markers.get(0), canonicalMarker);
|
|
Mat unWarpedMarker = new Mat(50, 50, CvType.CV_8UC1);
|
|
Imgproc.warpPerspective(gray, unWarpedMarker, transform, new Size(350, 350));
|
|
|
|
|
|
Imgproc.threshold(unWarpedMarker, unWarpedMarker, 125, 255, Imgproc.THRESH_BINARY | Imgproc.THRESH_OTSU);
|
|
|
|
float cellSize = 350/7.0;
|
|
|
|
markerCells = new boolean[7][7];
|
|
|
|
for (int row = 0; row < 7; row++) {
|
|
for (int col = 0; col < 7; col++) {
|
|
int cellX = int(col*cellSize);
|
|
int cellY = int(row*cellSize);
|
|
|
|
Mat cell = unWarpedMarker.submat(cellX, cellX +(int)cellSize, cellY, cellY+ (int)cellSize);
|
|
markerCells[row][col] = (Core.countNonZero(cell) > (cellSize*cellSize)/2);
|
|
}
|
|
}
|
|
|
|
for (int col = 0; col < 7; col++) {
|
|
for (int row = 0; row < 7; row++) {
|
|
if (markerCells[row][col]) {
|
|
print(1);
|
|
}
|
|
else {
|
|
print(0);
|
|
}
|
|
}
|
|
println();
|
|
}
|
|
|
|
dst = createImage(350, 350, RGB);
|
|
opencv.toPImage(unWarpedMarker, dst);
|
|
}
|
|
|
|
|
|
|
|
ArrayList<MatOfPoint2f> selectMarkers(ArrayList<MatOfPoint2f> candidates) {
|
|
float minAllowedContourSide = 50;
|
|
minAllowedContourSide = minAllowedContourSide * minAllowedContourSide;
|
|
|
|
ArrayList<MatOfPoint2f> result = new ArrayList<MatOfPoint2f>();
|
|
|
|
for (MatOfPoint2f candidate : candidates) {
|
|
|
|
if (candidate.size().height != 4) {
|
|
continue;
|
|
}
|
|
|
|
if (!Imgproc.isContourConvex(new MatOfPoint(candidate.toArray()))) {
|
|
continue;
|
|
}
|
|
|
|
// eliminate markers where consecutive
|
|
// points are too close together
|
|
float minDist = src.width * src.width;
|
|
Point[] points = candidate.toArray();
|
|
for (int i = 0; i < points.length; i++) {
|
|
Point side = new Point(points[i].x - points[(i+1)%4].x, points[i].y - points[(i+1)%4].y);
|
|
float squaredLength = (float)side.dot(side);
|
|
// println("minDist: " + minDist + " squaredLength: " +squaredLength);
|
|
minDist = min(minDist, squaredLength);
|
|
}
|
|
|
|
// println(minDist);
|
|
|
|
|
|
if (minDist < minAllowedContourSide) {
|
|
continue;
|
|
}
|
|
|
|
result.add(candidate);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
ArrayList<MatOfPoint2f> createPolygonApproximations(ArrayList<MatOfPoint> cntrs) {
|
|
ArrayList<MatOfPoint2f> result = new ArrayList<MatOfPoint2f>();
|
|
|
|
double epsilon = cntrs.get(0).size().height * 0.01;
|
|
println(epsilon);
|
|
|
|
for (MatOfPoint contour : cntrs) {
|
|
MatOfPoint2f approx = new MatOfPoint2f();
|
|
Imgproc.approxPolyDP(new MatOfPoint2f(contour.toArray()), approx, epsilon, true);
|
|
result.add(approx);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
void drawContours(ArrayList<MatOfPoint> cntrs) {
|
|
for (MatOfPoint contour : cntrs) {
|
|
beginShape();
|
|
Point[] points = contour.toArray();
|
|
for (int i = 0; i < points.length; i++) {
|
|
vertex((float)points[i].x, (float)points[i].y);
|
|
}
|
|
endShape();
|
|
}
|
|
}
|
|
|
|
void drawContours2f(ArrayList<MatOfPoint2f> cntrs) {
|
|
for (MatOfPoint2f contour : cntrs) {
|
|
beginShape();
|
|
Point[] points = contour.toArray();
|
|
|
|
for (int i = 0; i < points.length; i++) {
|
|
vertex((float)points[i].x, (float)points[i].y);
|
|
}
|
|
endShape(CLOSE);
|
|
}
|
|
}
|
|
|
|
void draw() {
|
|
pushMatrix();
|
|
background(125);
|
|
scale(0.5);
|
|
image(src, 0, 0);
|
|
|
|
noFill();
|
|
smooth();
|
|
strokeWeight(5);
|
|
stroke(0, 255, 0);
|
|
drawContours2f(markers);
|
|
popMatrix();
|
|
|
|
pushMatrix();
|
|
translate(src.width/2, 0);
|
|
strokeWeight(1);
|
|
image(dst, 0, 0);
|
|
|
|
float cellSize = dst.width/7.0;
|
|
for (int col = 0; col < 7; col++) {
|
|
for (int row = 0; row < 7; row++) {
|
|
if(markerCells[row][col]){
|
|
fill(255);
|
|
} else {
|
|
fill(0);
|
|
}
|
|
stroke(0,255,0);
|
|
rect(col*cellSize, row*cellSize, cellSize, cellSize);
|
|
//line(i*cellSize, 0, i*cellSize, dst.width);
|
|
//line(0, i*cellSize, dst.width, i*cellSize);
|
|
}
|
|
}
|
|
|
|
popMatrix();
|
|
}
|
|
|