diff --git a/opencl_fdfd/main.py b/opencl_fdfd/main.py new file mode 100644 index 0000000..1e131fa --- /dev/null +++ b/opencl_fdfd/main.py @@ -0,0 +1,529 @@ +import numpy +from numpy.linalg import norm + +import jinja2 +import pyopencl +import pyopencl.array +from pyopencl.elementwise import ElementwiseKernel +from pyopencl.reduction import ReductionKernel + +import time + +import fdfd_tools.operators + + +def type_to_C(float_type: numpy.float32 or numpy.float64) -> str: + """ + Returns a string corresponding to the C equivalent of a numpy type. + + :param float_type: numpy type: float32, float64, complex64, complex128 + :return: string containing the corresponding C type (eg. 'double') + """ + types = { + numpy.float32: 'float', + numpy.float64: 'double', + numpy.complex64: 'cfloat_t', + numpy.complex128: 'cdouble_t', + } + if float_type not in types: + raise Exception('Unsupported type') + + return types[float_type] + + +def shape_source(shape) -> str: + """ + Defines sx, sy, sz C constants specifying the shape of the grid in each of the 3 dimensions. + + :param shape: [sx, sy, sz] values. + :return: String containing C source. + """ + sxyz = """ +// Field sizes +const int sx = {shape[0]}; +const int sy = {shape[1]}; +const int sz = {shape[2]}; +""".format(shape=shape) + return sxyz + +# Defines dix, diy, diz constants used for stepping in the x, y, z directions in a linear array +# (ie, given Ex[i] referring to position (x, y, z), Ex[i+diy] will refer to position (x, y+1, z)) +dixyz_source = """ +// Convert offset in field xyz to linear index offset +const int dix = 1; +const int diy = sx; +const int diz = sx * sy; +""" + +# Given a linear index i and shape sx, sy, sz, defines x, y, and z +# as the 3D indices of the current element (i). +xyz_source = """ +// Convert linear index to field index (xyz) +const int z = i / (sx * sy); +const int y = (i - z * sx * sy) / sx; +const int x = (i - y * sx - z * sx * sy); +""" + +vec_source = """ +if (i >= sx * sy * sz) { + PYOPENCL_ELWISE_CONTINUE; +} + +//Pointers into the components of a vectorized vector-field +const int XX = 0; +const int YY = sx * sy * sz; +const int ZZ = sx * sy * sz * 2; +""" + +E_ptrs = """ +__global cdouble_t *Ex = E + XX; +__global cdouble_t *Ey = E + YY; +__global cdouble_t *Ez = E + ZZ; +""" + +H_ptrs = """ +__global cdouble_t *Hx = H + XX; +__global cdouble_t *Hy = H + YY; +__global cdouble_t *Hz = H + ZZ; +""" + +# Source code for updating the E field; maxes use of dixyz_source. +maxwell_E_source = """ +// E update equations +int imx, imy, imz; +if ( x == 0 ) { + imx = i + (sx - 1) * dix; +} else { + imx = i - dix; +} + +if ( y == 0 ) { + imy = i + (sy - 1) * diy; +} else { + imy = i - diy; +} + +if ( z == 0 ) { + imz = i + (sz - 1) * diz; +} else { + imz = i - diz; +} + +// E update equations + +{% if pec -%} +if (pec[XX + i]) { + Ex[i] = cdouble_new(0.0, 0.0); +} else +{%- endif -%} +{ + cdouble_t tEx = cdouble_mul(Ex[i], oeps[XX + i]); + cdouble_t Dzy = cdouble_mul(cdouble_sub(Hz[i], Hz[imy]), inv_dhy[y]); + cdouble_t Dyz = cdouble_mul(cdouble_sub(Hy[i], Hy[imz]), inv_dhz[z]); + tEx = cdouble_add(tEx, cdouble_sub(Dzy, Dyz)); + Ex[i] = cdouble_mul(tEx, Pl[XX + i]); +} + +{% if pec -%} +if (pec[YY + i]) { + Ey[i] = cdouble_new(0.0, 0.0); +} else +{%- endif -%} +{ + cdouble_t tEy = cdouble_mul(Ey[i], oeps[YY + i]); + cdouble_t Dxz = cdouble_mul(cdouble_sub(Hx[i], Hx[imz]), inv_dhz[z]); + cdouble_t Dzx = cdouble_mul(cdouble_sub(Hz[i], Hz[imx]), inv_dhx[x]); + tEy = cdouble_add(tEy, cdouble_sub(Dxz, Dzx)); + Ey[i] = cdouble_mul(tEy, Pl[YY + i]); +} + +{% if pec -%} +if (pec[ZZ + i]) { + Ez[i] = cdouble_new(0.0, 0.0); +} else +{%- endif -%} +{ + cdouble_t tEz = cdouble_mul(Ez[i], oeps[ZZ + i]); + cdouble_t Dyx = cdouble_mul(cdouble_sub(Hy[i], Hy[imx]), inv_dhx[x]); + cdouble_t Dxy = cdouble_mul(cdouble_sub(Hx[i], Hx[imy]), inv_dhy[y]); + tEz = cdouble_add(tEz, cdouble_sub(Dyx, Dxy)); + Ez[i] = cdouble_mul(tEz, Pl[ZZ + i]); +} +""" + +# Source code for updating the H field; maxes use of dixyz_source and assumes mu=0 +maxwell_H_source = """ +// H update equations +int ipx, ipy, ipz; +if ( x == sx - 1 ) { + ipx = i - (sx - 1) * dix; +} else { + ipx = i + dix; +} + +if ( y == sy - 1 ) { + ipy = i - (sy - 1) * diy; +} else { + ipy = i + diy; +} + +if ( z == sz - 1 ) { + ipz = i - (sz - 1) * diz; +} else { + ipz = i + diz; +} + +{% if pmc -%} +if (pmc[XX + i]) { + Hx[i] = cdouble_new(0.0, 0.0); +} else +{%- endif -%} +{ + cdouble_t Dzy = cdouble_mul(cdouble_sub(Ez[ipy], Ez[i]), inv_dey[y]); + cdouble_t Dyz = cdouble_mul(cdouble_sub(Ey[ipz], Ey[i]), inv_dez[z]); + + {%- if mu -%} + Hx[i] = cdouble_mul(inv_mu[XX + i], cdouble_sub(Dzy, Dyz)); + {%- else -%} + Hx[i] = cdouble_sub(Dzy, Dyz); + {%- endif %} +} + +{% if pmc -%} +if (pmc[YY + i]) { + Hy[i] = cdouble_new(0.0, 0.0); +} else +{%- endif -%} +{ + cdouble_t Dxz = cdouble_mul(cdouble_sub(Ex[ipz], Ex[i]), inv_dez[z]); + cdouble_t Dzx = cdouble_mul(cdouble_sub(Ez[ipx], Ez[i]), inv_dex[x]); + + {%- if mu -%} + Hy[i] = cdouble_mul(inv_mu[YY + i], cdouble_sub(Dxz, Dzx)); + {%- else -%} + Hy[i] = cdouble_sub(Dxz, Dzx); + {%- endif %} +} + +{% if pmc -%} +if (pmc[XX + i]) { + Hx[i] = cdouble_new(0.0, 0.0); +} else +{%- endif -%} +{ + cdouble_t Dyx = cdouble_mul(cdouble_sub(Ey[ipx], Ey[i]), inv_dex[x]); + cdouble_t Dxy = cdouble_mul(cdouble_sub(Ex[ipy], Ex[i]), inv_dey[y]); + + {%- if mu -%} + Hz[i] = cdouble_mul(inv_mu[ZZ + i], cdouble_sub(Dyx, Dxy)); + {%- else -%} + Hz[i] = cdouble_sub(Dyx, Dxy); + {%- endif %} +} +""" + +p2e_source = ''' +Ex[i] = cdouble_mul(Pr[XX + i], p[XX + i]); +Ey[i] = cdouble_mul(Pr[YY + i], p[YY + i]); +Ez[i] = cdouble_mul(Pr[ZZ + i], p[ZZ + i]); +''' + +preamble = ''' +#define PYOPENCL_DEFINE_CDOUBLE +#include +''' + +ctype = type_to_C(numpy.complex128) + + +def ptrs(*args): + return [ctype + ' *' + s for s in args] + + +def create_a(context, shape, mu=False, pec=False, pmc=False): + dhs = [ctype + ' *inv_dh' + a for a in 'xyz'] + des = [ctype + ' *inv_de' + a for a in 'xyz'] + + header = shape_source(shape) + dixyz_source + xyz_source + vec_source + E_ptrs + P2E_kernel = ElementwiseKernel(context, + name='P2E', + preamble=preamble, + operation=header + p2e_source, + arguments=', '.join(ptrs('E', 'p', 'Pr'))) + + pmc_arg = ['int *pmc'] + e2h_source = header + H_ptrs + jinja2.Template(maxwell_H_source).render(mu=mu, pmc=pmc) + E2H_kernel = ElementwiseKernel(context, + name='E2H', + preamble=preamble, + operation=e2h_source, + arguments=', '.join(ptrs('E', 'H', 'inv_mu') + pmc_arg + des)) + + pec_arg = ['int *pec'] + h2e_source = header + H_ptrs + jinja2.Template(maxwell_E_source).render(pec=pec) + H2E_kernel = ElementwiseKernel(context, + name='H2E', + preamble=preamble, + operation=h2e_source, + arguments=', '.join(ptrs('E', 'H', 'oeps', 'Pl') + pec_arg + dhs)) + + def spmv(E, H, p, idxes, oeps, inv_mu, pec, pmc, Pl, Pr, e): + e2 = P2E_kernel(E, p, Pr, wait_for=e) + e2 = E2H_kernel(E, H, inv_mu, pmc, *idxes[0], wait_for=[e2]) + e2 = H2E_kernel(E, H, oeps, Pl, pec, *idxes[1], wait_for=[e2]) + return [e2] + + return spmv + + +def create_xr_step(context): + update_xr_source = ''' + x[i] = cdouble_add(x[i], cdouble_mul(alpha, p[i])); + r[i] = cdouble_sub(r[i], cdouble_mul(alpha, v[i])); + ''' + + xr_args = ', '.join(ptrs('x', 'p', 'r', 'v') + [ctype + ' alpha']) + + xr_kernel = ElementwiseKernel(context, + name='XR', + preamble=preamble, + operation=update_xr_source, + arguments=xr_args) + + def xr_update(x, p, r, v, alpha, e): + return [xr_kernel(x, p, r, v, alpha, wait_for=e)] + + return xr_update + + +def create_rhoerr_step(context): + update_ri_source = ''' + (double3)(r[i].real * r[i].real, \ + r[i].real * r[i].imag, \ + r[i].imag * r[i].imag) + ''' + + ri_dtype = pyopencl.array.vec.double3 + + ri_kernel = ReductionKernel(context, + name='RHOERR', + preamble=preamble, + dtype_out=ri_dtype, + neutral='(double3)(0.0, 0.0, 0.0)', + map_expr=update_ri_source, + reduce_expr='a+b', + arguments=ctype + ' *r') + + def ri_update(r, e): + g = ri_kernel(r, wait_for=e).astype(ri_dtype).get() + rr, ri, ii = [g[q] for q in 'xyz'] + rho = rr + 2j * ri - ii + err = rr + ii + return rho, err + + return ri_update + + +def create_p_step(context): + update_p_source = ''' + p[i] = cdouble_add(r[i], cdouble_mul(beta, p[i])); + ''' + p_args = ptrs('p', 'r') + [ctype + ' beta'] + + p_kernel = ElementwiseKernel(context, + name='P', + preamble=preamble, + operation=update_p_source, + arguments=', '.join(p_args)) + + def p_update(p, r, beta, e): + return [p_kernel(p, r, beta, wait_for=e)] + + return p_update + + +def create_dot(context): + dot_dtype = numpy.complex128 + + dot_kernel = ReductionKernel(context, + name='dot', + preamble=preamble, + dtype_out=dot_dtype, + neutral='cdouble_new(0.0, 0.0)', + map_expr='cdouble_mul(p[i], v[i])', + reduce_expr='cdouble_add(a, b)', + arguments=ptrs('p', 'v')) + + def ri_update(p, v, e): + g = dot_kernel(p, v, wait_for=e) + return g.get() + + return ri_update + + +def cg_solver(omega, dxes, J, epsilon, mu=None, pec=None, pmc=None, adjoint=False, + max_iters=40000, err_thresh=1e-6, context=None, verbose=False): + start_time = time.perf_counter() + + b = -1j * omega * J + + shape = [d.size for d in dxes[0]] + + ''' + ** In this comment, I use the notation M* = conj(M), + M.T = transpose(M), M' = ctranspose(M), M N = dot(M, N) + + This solver uses a symmetrized wave operator M = (L A R) = (L A R).T + (where L = inv(R) are diagonal preconditioner matrices) when + solving the wave equation; therefore, it solves the problem + M y = d + => (L A R) (inv(R) x) = (L b) + => A x = b + with x = R y + + From the fact that M is symmetric, we can write + (L A R)* = M* = M' = (L A R)' = R' A' L' = R* A' L* + We obtain M* by conjugating all of our arguments (except J). + + Then we solve + (R* A' L*) v = (R* b) + and obtain x: + x = L* v + + We can accomplish all this simply by conjugating everything (except J) and + reversing the order of L and R + ''' + if adjoint: + # Conjugate everything + dxes = [[numpy.conj(d) for d in dd] for dd in dxes] + omega = numpy.conj(omega) + epsilon = numpy.conj(epsilon) + if mu is not None: + mu = numpy.conj(mu) + + L, R = fdfd_tools.operators.e_full_preconditioners(dxes) + + if adjoint: + b_preconditioned = R @ b + else: + b_preconditioned = L @ b + + ''' + Allocate GPU memory and load in data + ''' + if context is None: + context = pyopencl.create_some_context(False) + + queue = pyopencl.CommandQueue(context) + + def load_field(v, dtype=numpy.complex128): + return pyopencl.array.to_device(queue, v.astype(dtype)) + + r = load_field(b_preconditioned) # load preconditioned b into r + H = pyopencl.array.zeros_like(r) + x = pyopencl.array.zeros_like(r) + v = pyopencl.array.zeros_like(r) + p = pyopencl.array.zeros_like(r) + + alpha = 1.0 + 0j + rho = 1.0 + 0j + errs = [] + + inv_dxes = [[load_field(1 / d) for d in dd] for dd in dxes] + oeps = load_field(-omega ** 2 * epsilon) + Pl = load_field(L.diagonal()) + Pr = load_field(R.diagonal()) + + mu = numpy.ones_like(epsilon) + # pec = numpy.zeros_like(epsilon) + # pmc = numpy.zeros_like(epsilon) + + if mu is None: + invm = load_field(numpy.array([])) + else: + invm = load_field(1 / mu) + + if pec is None: + gpec = load_field(numpy.array([]), dtype=int) + else: + gpec = load_field(pec, dtype=int) + + if pmc is None: + gpmc = load_field(numpy.array([]), dtype=int) + else: + gpmc = load_field(pmc, dtype=int) + + ''' + Generate OpenCL kernels + ''' + has_mu, has_pec, has_pmc = [q is not None for q in (mu, pec, pmc)] + + a_step_full = create_a(context, shape, has_mu, has_pec, has_pmc) + xr_step = create_xr_step(context) + rhoerr_step = create_rhoerr_step(context) + p_step = create_p_step(context) + dot = create_dot(context) + + def a_step(E, H, p, events): + return a_step_full(E, H, p, inv_dxes, oeps, invm, gpec, gpmc, Pl, Pr, events) + + ''' + Start the solve + ''' + start_time2 = time.perf_counter() + + _, err2 = rhoerr_step(r, []) + b_norm = numpy.sqrt(err2) + print('b_norm check: ', b_norm) + + success = False + for k in range(max_iters): + if verbose: + print('[{:06d}] rho {:.4} alpha {:4.4}'.format(k, rho, alpha), end=' ') + + rho_prev = rho + e = xr_step(x, p, r, v, alpha, []) + rho, err2 = rhoerr_step(r, e) + + errs += [numpy.sqrt(err2) / b_norm] + + if verbose: + print('err', errs[-1]) + + if errs[-1] < err_thresh: + success = True + break + + e = p_step(p, r, rho/rho_prev, []) + e = a_step(v, H, p, e) + alpha = rho / dot(p, v, e) + + if k % 1000 == 0: + print(k) + + ''' + Done solving + ''' + time_elapsed = time.perf_counter() - start_time + + # Undo preconditioners + if adjoint: + x = (Pl * x).get() + else: + x = (Pr * x).get() + + if success: + print('Success', end='') + else: + print('Failure', end=', ') + print(', {} iterations in {} sec: {} iterations/sec \ + '.format(k, time_elapsed, k / time_elapsed)) + print('final error', errs[-1]) + print('overhead {} sec'.format(start_time2 - start_time)) + + A0 = fdfd_tools.operators.e_full(omega, dxes, epsilon, mu).tocsr() + if adjoint: + # Remember we conjugated all the contents of A earlier + A0 = A0.T + print('Post-everything residual:', norm(A0 @ x - b) / norm(b)) + return x \ No newline at end of file