""" Utilities for working with polygons """ import numpy from numpy.typing import NDArray, ArrayLike def poly_contains_points( vertices: ArrayLike, points: ArrayLike, include_boundary: bool = True, ) -> NDArray[numpy.int_]: """ Tests whether the provided points are inside the implicitly closed polygon described by the provided list of vertices. Args: vertices: Nx2 Arraylike of form [[x0, y0], [x1, y1], ...], describing an implicitly- closed polygon. Note that this should include any offsets. points: Nx2 ArrayLike of form [[x0, y0], [x1, y1], ...] containing the points to test. include_boundary: True if points on the boundary should be count as inside the shape. Default True. Returns: ndarray of booleans, [point0_is_in_shape, point1_is_in_shape, ...] """ points = numpy.array(points, copy=False) vertices = numpy.array(vertices, copy=False) if points.size == 0: return numpy.zeros(0) min_bounds = numpy.min(vertices, axis=0)[None, :] max_bounds = numpy.max(vertices, axis=0)[None, :] trivially_outside = ((points < min_bounds).any(axis=1) | (points > max_bounds).any(axis=1)) nontrivial = ~trivially_outside if trivially_outside.all(): inside = numpy.zeros_like(trivially_outside, dtype=bool) return inside ntpts = points[None, nontrivial, :] # nontrivial points, along axis 1 of ndarray verts = vertices[:, None, :] # vertices, along axis 0 xydiff = ntpts - verts # Expands into (n_vertices, n_ntpts, 2) y0_le = xydiff[:, :, 1] >= 0 # y_point >= y_vertex (axes 0, 1 for all points & vertices) y1_le = numpy.roll(y0_le, -1, axis=0) # same thing for next vertex upward = y0_le & ~y1_le # edge passes point y coord going upwards downward = ~y0_le & y1_le # edge passes point y coord going downwards dv = numpy.roll(verts, -1, axis=0) - verts is_left = (dv[..., 0] * xydiff[..., 1] # >0 if left of dv, <0 if right, 0 if on the line - dv[..., 1] * xydiff[..., 0]) winding_number = ((upward & (is_left > 0)).sum(axis=0) - (downward & (is_left < 0)).sum(axis=0)) nontrivial_inside = winding_number != 0 # filter nontrivial points based on winding number if include_boundary: nontrivial_inside[(is_left == 0).any(axis=0)] = True # check if point lies on any edge inside = nontrivial.copy() inside[nontrivial] = nontrivial_inside return inside