""" Functionality for extracting geometry and label info from `masque` patterns. """ from typing import Sequence, Dict, List, Any, Tuple, Optional, Mapping, Callable from collections import defaultdict import numpy from numpy.typing import NDArray from masque import Pattern from masque.file import oasis, gdsii from masque.shapes import Polygon from ..types import layer_t from ..utils import connectivity2layers def prepare_cell( cell: Pattern, label_mapping: Optional[Mapping[layer_t, layer_t]] = None, ) -> Callable[[layer_t], Tuple[ List[NDArray[numpy.float64]], List[Tuple[float, float, str]] ]]: """ Generate a function for extracting `polys` and `labels` from a `masque.Pattern`. The returned function can be passed to `snarled.trace_connectivity`. Args: cell: A `masque` `Pattern` object. Usually your topcell. label_mapping: A mapping of `{label_layer: metal_layer}`. This allows labels to refer to nets on metal layers without the labels themselves being on that layer. Default `None` reads labels from the same layer as the geometry. Returns: `get_layer` function, to be passed to `snarled.trace_connectivity`. """ def get_layer( layer: layer_t, ) -> Tuple[ List[NDArray[numpy.float64]], List[Tuple[float, float, str]] ]: if label_mapping is None: label_layers = {layer: layer} else: label_layers = {label_layer for label_layer, metal_layer in label_mapping.items() if metal_layer == layer} subset = cell.deepcopy().subset( # TODO add single-op subset-and-copy, to avoid copying unwanted stuff shapes_func=lambda ss: ss.layer == layer, labels_func=lambda ll: ll.layer in label_layers, subpatterns_func=lambda ss: True, recursive=True, ) polygonized = subset.polygonize() # Polygonize Path shapes flat = polygonized.flatten() # load polygons polys = [] for ss in flat.shapes: assert(isinstance(ss, Polygon)) if ss.repetition is None: displacements = [(0, 0)] else: displacements = ss.repetition.displacements for displacement in displacements: polys.append( ss.vertices + ss.offset + displacement ) # load metal labels labels = [] for ll in flat.labels: if ll.repetition is None: displacements = [(0, 0)] else: displacements = ll.repetition.displacements for displacement in displacements: offset = ll.offset + displacement labels.append((*offset, ll.string)) return polys, labels return get_layer def read_cell( cell: Pattern, connectivity: Sequence[Tuple[layer_t, Optional[layer_t], layer_t]], label_mapping: Optional[Mapping[layer_t, layer_t]] = None, ) -> Tuple[ defaultdict[layer_t, List[NDArray[numpy.float64]]], defaultdict[layer_t, List[Tuple[float, float, str]]]]: """ Extract `polys` and `labels` from a `masque.Pattern`. This function extracts the data needed by `snarled.trace_connectivity`. Args: cell: A `masque` `Pattern` object. Usually your topcell. connectivity: A sequence of 3-tuples specifying the layer connectivity. Same as what is provided to `snarled.trace_connectivity`. label_mapping: A mapping of `{label_layer: metal_layer}`. This allows labels to refer to nets on metal layers without the labels themselves being on that layer. Returns: `polys` and `labels` data structures, to be passed to `snarled.trace_connectivity`. """ metal_layers, via_layers = connectivity2layers(connectivity) poly_layers = metal_layers | via_layers get_layer = prepare_cell(cell, label_mapping) polys = defaultdict(list) labels = defaultdict(list) for layer in poly_layers: polys[layer], labels[layer] = get_layer(layer) return polys, labels