You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
opencl_fdtd/fdtd/boundary.py

174 lines
5.4 KiB
Python

from typing import List, Dict
import numpy
def conductor(direction: int,
polarity: int,
) -> List[str]:
"""
Create source code for conducting boundary conditions.
:param direction: integer in range(3), corresponding to x,y,z.
:param polarity: -1 or 1, specifying eg. a -x or +x boundary.
:return: [E_source, H_source] source code for E and H boundary update steps.
"""
if direction not in range(3):
raise Exception('Invalid direction: {}'.format(direction))
if polarity not in (-1, 1):
raise Exception('Invalid polarity: {}'.format(polarity))
r = 'xyz'[direction]
uv = 'xyz'.replace(r, '')
if polarity < 0:
bc_e = """
if ({r} == 0) {{
E{r}[i] = 0;
E{u}[i] = E{u}[i+di{r}];
E{v}[i] = E{v}[i+di{r}];
}}
"""
bc_h = """
if ({r} == 0) {{
H{r}[i] = H{r}[i+di{r}];
H{u}[i] = 0;
H{v}[i] = 0;
}}
"""
elif polarity > 0:
bc_e = """
if ({r} == s{r} - 1) {{
E{r}[i] = -E{r}[i-2*di{r}];
E{u}[i] = +E{u}[i-di{r}];
E{v}[i] = +E{v}[i-di{r}];
}} else if ({r} == s{r} - 2) {{
E{r}[i] = 0;
}}
"""
bc_h = """
if ({r} == s{r} - 1) {{
H{r}[i] = +H{r}[i-di{r}];
H{u}[i] = -H{u}[i-2*di{r}];
H{v}[i] = -H{v}[i-2*di{r}];
}} else if ({r} == s{r} - 2) {{
H{u}[i] = 0;
H{v}[i] = 0;
}}
"""
else:
raise Exception()
replacements = {'r': r, 'u': uv[0], 'v': uv[1]}
return [s.format(**replacements) for s in (bc_e, bc_h)]
def cpml(direction: int,
polarity: int,
dt: float,
thickness: int=8,
epsilon_eff: float=1,
) -> Dict:
"""
Generate source code for complex phase matched layer (cpml) absorbing boundaries.
These are not full boundary conditions and require a conducting boundary to be added
in the same direction as the pml.
:param direction: integer in range(3), corresponding to x, y, z directions.
:param polarity: -1 or 1, corresponding to eg. -x or +x direction.
:param dt: timestep used by the simulation
:param thickness: Number of cells used by the pml (the grid is NOT expanded to add these cells). Default 8.
:param epsilon_eff: Effective epsilon_r of the pml layer. Default 1.
:return: Dict with entries 'E', 'H' (update equations for E and H) and 'psi_E', 'psi_H' (lists of str,
specifying the field names of the cpml fields used in the E and H update steps. Eg.,
Psi_xn_Ex for the complex Ex component for the x- pml.)
"""
if direction not in range(3):
raise Exception('Invalid direction: {}'.format(direction))
if polarity not in (-1, 1):
raise Exception('Invalid polarity: {}'.format(polarity))
if thickness <= 2:
raise Exception('It would be wise to have a pml with 4+ cells of thickness')
if epsilon_eff <= 0:
raise Exception('epsilon_eff must be positive')
m = (3.5, 1)
sigma_max = 0.8 * (m[0] + 1) / numpy.sqrt(epsilon_eff)
alpha_max = 0 # TODO: Decide what to do about non-zero alpha
transverse = numpy.delete(range(3), direction)
r = 'xyz'[direction]
np = 'nVp'[numpy.sign(polarity)+1]
uv = ['xyz'[i] for i in transverse]
xe = numpy.arange(1, thickness+1, dtype=float)[::-1]
xh = numpy.arange(1, thickness+1, dtype=float)[::-1]
if polarity > 0:
xe -= 0.5
elif polarity < 0:
xh -= 0.5
def par(x):
sigma = ((x / thickness) ** m[0]) * sigma_max
alpha = ((1 - x / thickness) ** m[1]) * alpha_max
p0 = numpy.exp(-(sigma + alpha) * dt)
p1 = sigma / (sigma + alpha) * (p0 - 1)
return p0, p1
vals = {'r': r,
'u': uv[0],
'v': uv[1],
'np': np,
'th': thickness,
'se': '-+'[direction % 2],
'sh': '+-'[direction % 2]}
if polarity < 0:
bounds_if = """
if ( 0 < {r} && {r} < {th} + 1 ) {{
const int ir = {r} - 1; // index into pml parameters
const int ip = {v} + {u} * s{v} + ir * s{v} * s{u}; // linear index into Psi
"""
elif polarity > 0:
bounds_if = """
if ( (s{r} - 1) > {r} && {r} > (s{r} - 1) - ({th} + 1) ) {{
const int ir = (s{r} - 1) - ({r} + 1); // index into pml parameters
const int ip = {v} + {u} * s{v} + ir * s{v} * s{u}; // linear index into Psi
"""
else:
raise Exception('Bad polarity (=0)')
code_e = """
Psi_{r}{np}_E{u}[ip] = p0e[ir] * Psi_{r}{np}_E{u}[ip] + p1e[ir] * (H{v}[i] - H{v}[i-di{r}]);
Psi_{r}{np}_E{v}[ip] = p0e[ir] * Psi_{r}{np}_E{v}[ip] + p1e[ir] * (H{u}[i] - H{u}[i-di{r}]);
E{u}[i] {se}= dt / eps{u}[i] * Psi_{r}{np}_E{u}[ip];
E{v}[i] {sh}= dt / eps{v}[i] * Psi_{r}{np}_E{v}[ip];
}}
"""
code_h = """
Psi_{r}{np}_H{u}[ip] = p0h[ir] * Psi_{r}{np}_H{u}[ip] + p1h[ir] * (E{v}[i+di{r}] - E{v}[i]);
Psi_{r}{np}_H{v}[ip] = p0h[ir] * Psi_{r}{np}_H{v}[ip] + p1h[ir] * (E{u}[i+di{r}] - E{u}[i]);
H{u}[i] {sh}= dt * Psi_{r}{np}_H{u}[ip];
H{v}[i] {se}= dt * Psi_{r}{np}_H{v}[ip];
}}
"""
pml_data = {
'E': (bounds_if + code_e).format(**vals),
'H': (bounds_if + code_h).format(**vals),
'psi_E': ['Psi_{r}{np}_E{u}'.format(**vals),
'Psi_{r}{np}_E{v}'.format(**vals)],
'psi_H': ['Psi_{r}{np}_H{u}'.format(**vals),
'Psi_{r}{np}_H{v}'.format(**vals)],
'pe': par(xe),
'ph': par(xh),
}
return pml_data