Enable nonuniform grids (minimally tested)

master
Jan Petykiewicz 5 years ago
parent 5ffe547640
commit f5a5a0ad04

@ -5,9 +5,12 @@
* common_header: Rendered contents of common.cl * common_header: Rendered contents of common.cl
* pmls: [{'axis': 'x', 'polarity': 'n', 'thickness': 8}, ...] list of pml dicts containing * pmls: [{'axis': 'x', 'polarity': 'n', 'thickness': 8}, ...] list of pml dicts containing
* axes, polarities, and thicknesses. * axes, polarities, and thicknesses.
* uniform_dx: If grid is uniform, uniform_dx should be the grid spacing.
* Otherwise, uniform_dx should be False and [inv_dh{xyz}] arrays must be supplied as
* OpenCL args.
* *
* OpenCL args: * OpenCL args:
* E, H, dt, eps, [p{01}e{np}, Psi_{xyz}{np}_E] * E, H, dt, eps, [p{012}e{np}, Psi_{xyz}{np}_E], [inv_dh{xyz}]
*/ */
{{common_header}} {{common_header}}
@ -19,17 +22,28 @@ __global ftype *epsy = eps + YY;
__global ftype *epsz = eps + ZZ; __global ftype *epsz = eps + ZZ;
{%- if uniform_dx %}
ftype inv_dx = 1.0 / {{uniform_dx}};
ftype inv_dy = 1.0 / {{uniform_dx}};
ftype inv_dz = 1.0 / {{uniform_dx}};
{%- else %}
ftype inv_dx = inv_dhx[x];
ftype inv_dy = inv_dhy[y];
ftype inv_dz = inv_dhz[z];
{%- endif %}
/* /*
* Precalculate derivatives * Precalculate derivatives
*/ */
ftype dHxy = Hx[i] - Hx[i + my]; ftype dHxy = (Hx[i] - Hx[i + my]) * inv_dy;
ftype dHxz = Hx[i] - Hx[i + mz]; ftype dHxz = (Hx[i] - Hx[i + mz]) * inv_dz;
ftype dHyx = Hy[i] - Hy[i + mx]; ftype dHyx = (Hy[i] - Hy[i + mx]) * inv_dx;
ftype dHyz = Hy[i] - Hy[i + mz]; ftype dHyz = (Hy[i] - Hy[i + mz]) * inv_dz;
ftype dHzx = Hz[i] - Hz[i + mx]; ftype dHzx = (Hz[i] - Hz[i + mx]) * inv_dx;
ftype dHzy = Hz[i] - Hz[i + my]; ftype dHzy = (Hz[i] - Hz[i + my]) * inv_dy;
{% for bloch in bloch_boundaries -%} {% for bloch in bloch_boundaries -%}
{%- set r = bloch['axis'] -%} {%- set r = bloch['axis'] -%}

@ -7,9 +7,12 @@
* pmls: [{'axis': 'x', 'polarity': 'n', 'thickness': 8}, ...] list of pml dicts containing * pmls: [{'axis': 'x', 'polarity': 'n', 'thickness': 8}, ...] list of pml dicts containing
* axes, polarities, and thicknesses. * axes, polarities, and thicknesses.
* do_poynting: Whether to precalculate poynting vector components (boolean) * do_poynting: Whether to precalculate poynting vector components (boolean)
* uniform_dx: If grid is uniform, uniform_dx should be the grid spacing.
* Otherwise, uniform_dx should be False and [inv_de{xyz}] arrays must be supplied as
* OpenCL args.
* *
* OpenCL args: * OpenCL args:
* E, H, dt, [p{xyz}{01}h{np}, Psi_{xyz}{np}_H], [oS] * E, H, dt, [inv_de{xyz}], [p{xyz}{01}h{np}, Psi_{xyz}{np}_H], [oS]
*/ */
{{common_header}} {{common_header}}
@ -19,14 +22,25 @@
/* /*
* Precalculate derivatives * Precalculate derivatives
*/ */
ftype dExy = Ex[i + py] - Ex[i]; {%- if uniform_dx %}
ftype dExz = Ex[i + pz] - Ex[i]; ftype inv_dx = 1.0 / {{uniform_dx}};
ftype inv_dy = 1.0 / {{uniform_dx}};
ftype inv_dz = 1.0 / {{uniform_dx}};
{%- else %}
ftype inv_dx = inv_dex[x];
ftype inv_dy = inv_dey[y];
ftype inv_dz = inv_dez[z];
{%- endif %}
ftype dEyx = Ey[i + px] - Ey[i];
ftype dEyz = Ey[i + pz] - Ey[i];
ftype dEzx = Ez[i + px] - Ez[i]; ftype dExy = (Ex[i + py] - Ex[i]) * inv_dy;
ftype dEzy = Ez[i + py] - Ez[i]; ftype dExz = (Ex[i + pz] - Ex[i]) * inv_dz;
ftype dEyx = (Ey[i + px] - Ey[i]) * inv_dx;
ftype dEyz = (Ey[i + pz] - Ey[i]) * inv_dz;
ftype dEzx = (Ez[i + px] - Ez[i]) * inv_dx;
ftype dEzy = (Ez[i + py] - Ez[i]) * inv_dy;
{% for bloch in bloch_boundaries -%} {% for bloch in bloch_boundaries -%}

@ -61,6 +61,7 @@ class Simulation(object):
S = None # type: pyopencl.array.Array S = None # type: pyopencl.array.Array
eps = None # type: pyopencl.array.Array eps = None # type: pyopencl.array.Array
dt = None # type: float dt = None # type: float
inv_dxes = None # type: List[pyopencl.array.Array]
arg_type = None # type: numpy.float32 or numpy.float64 arg_type = None # type: numpy.float32 or numpy.float64
@ -77,7 +78,8 @@ class Simulation(object):
epsilon: List[numpy.ndarray], epsilon: List[numpy.ndarray],
pmls: List[Dict[str, int or float]], pmls: List[Dict[str, int or float]],
bloch_boundaries: List[Dict[str, int or float]] = (), bloch_boundaries: List[Dict[str, int or float]] = (),
dt: float = .99/numpy.sqrt(3), dxes: List[List[numpy.ndarray]] or float = None,
dt: float = None,
initial_fields: Dict[str, List[numpy.ndarray]] = None, initial_fields: Dict[str, List[numpy.ndarray]] = None,
context: pyopencl.Context = None, context: pyopencl.Context = None,
queue: pyopencl.CommandQueue = None, queue: pyopencl.CommandQueue = None,
@ -98,7 +100,7 @@ class Simulation(object):
'ln_R_per_layer': Desired (ln(R) / thickness) value. Default -1.6. 'ln_R_per_layer': Desired (ln(R) / thickness) value. Default -1.6.
'm': Polynomial grading exponent. Default 3.5. 'm': Polynomial grading exponent. Default 3.5.
'ma': Exponent for alpha. Default 1. 'ma': Exponent for alpha. Default 1.
:param dt: Time step. Default is .99/sqrt(3). :param dt: Time step. Default is min(dxes) * .99/sqrt(3).
:param initial_E: Initial E-field (default is 0 everywhere). Same format as epsilon. :param initial_E: Initial E-field (default is 0 everywhere). Same format as epsilon.
:param initial_H: Initial H-field (default is 0 everywhere). Same format as epsilon. :param initial_H: Initial H-field (default is 0 everywhere). Same format as epsilon.
:param context: pyOpenCL context. If not given, pyopencl.create_some_context(False) is called. :param context: pyOpenCL context. If not given, pyopencl.create_some_context(False) is called.
@ -124,7 +126,22 @@ class Simulation(object):
self._create_context(context, queue) self._create_context(context, queue)
self._create_eps(epsilon) self._create_eps(epsilon)
if dt > .99/numpy.sqrt(3): if dxes is None:
dxes = 1.0
if isinstance(dxes, (float, int)):
uniform_dx = dxes
min_dx = dxes
else:
uniform_dx = False
self.inv_dxes = [self._create_field(1 / dxn) for dxn in dxes[0] + dxes[1]]
min_dx = min(min(dxn) for dxn in dxes[0] + dxes[1])
max_dt = min_dx * .99 / numpy.sqrt(3)
if dt is None:
self.dt = max_dt
elif dt > max_dt:
warnings.warn('Warning: unstable dt: {}'.format(dt)) warnings.warn('Warning: unstable dt: {}'.format(dt))
elif dt <= 0: elif dt <= 0:
raise Exception('Invalid dt: {}'.format(dt)) raise Exception('Invalid dt: {}'.format(dt))
@ -154,6 +171,10 @@ class Simulation(object):
base_fields[ptr('E')] = self.E base_fields[ptr('E')] = self.E
base_fields[ptr('H')] = self.H base_fields[ptr('H')] = self.H
base_fields[ctype + ' dt'] = self.dt base_fields[ctype + ' dt'] = self.dt
if uniform_dx == False:
inv_dx_names = ['inv_d' + eh + r for eh in 'eh' for r in 'xyz']
for name, field in zip(inv_dx_names, self.inv_dxes):
base_fields[ptr(name)] = field
eps_field = OrderedDict() eps_field = OrderedDict()
eps_field[ptr('eps')] = self.eps eps_field[ptr('eps')] = self.eps
@ -178,6 +199,7 @@ class Simulation(object):
'pmls': pmls, 'pmls': pmls,
'do_poynting': do_poynting, 'do_poynting': do_poynting,
'bloch': bloch_boundaries, 'bloch': bloch_boundaries,
'uniform_dx': uniform_dx,
} }
E_source = jinja_env.get_template('update_e.cl').render(**jinja_args) E_source = jinja_env.get_template('update_e.cl').render(**jinja_args)
H_source = jinja_env.get_template('update_h.cl').render(**jinja_args) H_source = jinja_env.get_template('update_h.cl').render(**jinja_args)

Loading…
Cancel
Save