style and type fixes
This commit is contained in:
parent
77c10feead
commit
689b3176cc
48
fdtd.py
48
fdtd.py
@ -30,24 +30,27 @@ def perturbed_l3(a: float, radius: float, **kwargs) -> Pattern:
|
||||
"""
|
||||
Generate a masque.Pattern object containing a perturbed L3 cavity.
|
||||
|
||||
:param a: Lattice constant.
|
||||
:param radius: Hole radius, in units of a (lattice constant).
|
||||
:param kwargs: Keyword arguments:
|
||||
hole_dose, trench_dose, hole_layer, trench_layer: Shape properties for Pattern.
|
||||
Defaults *_dose=1, hole_layer=0, trench_layer=1.
|
||||
shifts_a, shifts_r: passed to pcgen.l3_shift; specifies lattice constant (1 -
|
||||
multiplicative factor) and radius (multiplicative factor) for shifting
|
||||
holes adjacent to the defect (same row). Defaults are 0.15 shift for
|
||||
first hole, 0.075 shift for third hole, and no radius change.
|
||||
Args:
|
||||
a: Lattice constant.
|
||||
radius: Hole radius, in units of a (lattice constant).
|
||||
hole_dose: Dose for all holes. Default 1.
|
||||
trench_dose: Dose for undercut trenches. Default 1.
|
||||
hole_layer: Layer for holes. Default (0, 0).
|
||||
trench_layer: Layer for undercut trenches. Default (1, 0).
|
||||
shifts_a: passed to pcgen.l3_shift
|
||||
shifts_r: passed to pcgen.l3_shift
|
||||
xy_size: [x, y] number of mirror periods in each direction; total size is
|
||||
2 * n + 1 holes in each direction. Default [10, 10].
|
||||
2 * n + 1 holes in each direction. Default (10, 10).
|
||||
perturbed_radius: radius of holes perturbed to form an upwards-driected beam
|
||||
(multiplicative factor). Default 1.1.
|
||||
trench width: Width of the undercut trenches. Default 1.2e3.
|
||||
:return: masque.Pattern object containing the L3 design
|
||||
|
||||
Returns:
|
||||
`masque.Pattern` object containing the L3 design
|
||||
"""
|
||||
|
||||
default_args = {'hole_dose': 1,
|
||||
default_args = {
|
||||
'hole_dose': 1,
|
||||
'trench_dose': 1,
|
||||
'hole_layer': 0,
|
||||
'trench_layer': 1,
|
||||
@ -59,25 +62,31 @@ def perturbed_l3(a: float, radius: float, **kwargs) -> Pattern:
|
||||
}
|
||||
kwargs = {**default_args, **kwargs}
|
||||
|
||||
xyr = pcgen.l3_shift_perturbed_defect(mirror_dims=kwargs['xy_size'],
|
||||
xyr = pcgen.l3_shift_perturbed_defect(
|
||||
mirror_dims=kwargs['xy_size'],
|
||||
perturbed_radius=kwargs['perturbed_radius'],
|
||||
shifts_a=kwargs['shifts_a'],
|
||||
shifts_r=kwargs['shifts_r'])
|
||||
shifts_r=kwargs['shifts_r'],
|
||||
)
|
||||
xyr *= a
|
||||
xyr[:, 2] *= radius
|
||||
|
||||
pat = Pattern()
|
||||
pat.name = 'L3p-a{:g}r{:g}rp{:g}'.format(a, radius, kwargs['perturbed_radius'])
|
||||
pat.name = f'L3p-a{a:g}r{radius:g}rp{kwargs["perturbed_radius"]:g}'
|
||||
pat.shapes += [shapes.Circle(radius=r, offset=(x, y),
|
||||
dose=kwargs['hole_dose'],
|
||||
layer=kwargs['hole_layer'])
|
||||
for x, y, r in xyr]
|
||||
|
||||
maxes = numpy.max(numpy.fabs(xyr), axis=0)
|
||||
pat.shapes += [shapes.Polygon.rectangle(
|
||||
lx=(2 * maxes[0]), ly=kwargs['trench_width'],
|
||||
pat.shapes += [
|
||||
shapes.Polygon.rectangle(
|
||||
lx=(2 * maxes[0]),
|
||||
ly=kwargs['trench_width'],
|
||||
offset=(0, s * (maxes[1] + a + kwargs['trench_width'] / 2)),
|
||||
dose=kwargs['trench_dose'], layer=kwargs['trench_layer'])
|
||||
dose=kwargs['trench_dose'],
|
||||
layer=kwargs['trench_layer'],
|
||||
)
|
||||
for s in (-1, 1)]
|
||||
return pat
|
||||
|
||||
@ -226,7 +235,8 @@ def main():
|
||||
# pml_thickness+m:-pml_thickness-m, :].sum() * dx * dx * dx
|
||||
|
||||
if t % 100 == 0:
|
||||
logger.info('iteration {}: average {} iterations per sec'.format(t, (t+1)/(time.perf_counter()-start)))
|
||||
avg = (t + 1) / (time.perf_counter() - start)
|
||||
logger.info(f'iteration {t}: average {avg} iterations per sec')
|
||||
sys.stdout.flush()
|
||||
|
||||
with lzma.open('saved_simulation', 'wb') as f:
|
||||
|
@ -2,9 +2,10 @@
|
||||
Class for constructing and holding the basic FDTD operations and fields
|
||||
"""
|
||||
|
||||
from typing import List, Dict, Callable
|
||||
from typing import List, Dict, Callable, Type, Union, Optional, Sequence
|
||||
from collections import OrderedDict
|
||||
import numpy
|
||||
from numpy.typing import NDArray
|
||||
import jinja2
|
||||
import warnings
|
||||
|
||||
@ -31,8 +32,8 @@ class Simulation(object):
|
||||
|
||||
pmls = [{'axis': a, 'polarity': p} for a in 'xyz' for p in 'np']
|
||||
sim = Simulation(grid.grids, do_poynting=True, pmls=pmls)
|
||||
with open('sources.c', 'wt') as f:
|
||||
f.write(repr(sim.sources))
|
||||
with open('sources.c', 'w') as f:
|
||||
f.write(f'{sim.sources}')
|
||||
|
||||
for t in range(max_t):
|
||||
sim.update_E([]).wait()
|
||||
@ -56,36 +57,36 @@ class Simulation(object):
|
||||
event0 and event1 to occur (i.e. previous operations to finish) before starting execution.
|
||||
event2 can then be used to prepare further operations to be run after update_H.
|
||||
"""
|
||||
E = None # type: pyopencl.array.Array
|
||||
H = None # type: pyopencl.array.Array
|
||||
S = None # type: pyopencl.array.Array
|
||||
eps = None # type: pyopencl.array.Array
|
||||
dt = None # type: float
|
||||
inv_dxes = None # type: List[pyopencl.array.Array]
|
||||
E: pyopencl.array.Array
|
||||
H: pyopencl.array.Array
|
||||
S: pyopencl.array.Array
|
||||
eps: pyopencl.array.Array
|
||||
dt: float
|
||||
inv_dxes: List[pyopencl.array.Array]
|
||||
|
||||
arg_type = None # type: numpy.float32 or numpy.float64
|
||||
arg_type: Type
|
||||
|
||||
context = None # type: pyopencl.Context
|
||||
queue = None # type: pyopencl.CommandQueue
|
||||
context: pyopencl.Context
|
||||
queue: pyopencl.CommandQueue
|
||||
|
||||
update_E = None # type: Callable[[List[pyopencl.Event]], pyopencl.Event]
|
||||
update_H = None # type: Callable[[List[pyopencl.Event]], pyopencl.Event]
|
||||
update_S = None # type: Callable[[List[pyopencl.Event]], pyopencl.Event]
|
||||
update_J = None # type: Callable[[List[pyopencl.Event]], pyopencl.Event]
|
||||
sources = None # type: Dict[str, str]
|
||||
update_E: Callable[[List[pyopencl.Event]], pyopencl.Event]
|
||||
update_H: Callable[[List[pyopencl.Event]], pyopencl.Event]
|
||||
update_S: Callable[[List[pyopencl.Event]], pyopencl.Event]
|
||||
update_J: Callable[[List[pyopencl.Event]], pyopencl.Event]
|
||||
sources: Dict[str, str]
|
||||
|
||||
def __init__(self,
|
||||
epsilon: List[numpy.ndarray],
|
||||
pmls: List[Dict[str, int or float]],
|
||||
bloch_boundaries: List[Dict[str, int or float]] = (),
|
||||
dxes: List[List[numpy.ndarray]] or float = None,
|
||||
dt: float = None,
|
||||
initial_fields: Dict[str, List[numpy.ndarray]] = None,
|
||||
context: pyopencl.Context = None,
|
||||
queue: pyopencl.CommandQueue = None,
|
||||
float_type: numpy.float32 or numpy.float64 = numpy.float32,
|
||||
def __init__(
|
||||
self,
|
||||
epsilon: NDArray,
|
||||
pmls: Sequence[Dict[str, float]],
|
||||
bloch_boundaries: Sequence[Dict[str, float]] = (),
|
||||
dxes: Union[List[List[NDArray]], float, None] = None,
|
||||
dt: Optional[float] = None,
|
||||
initial_fields: Optional[Dict[str, NDArray]] = None,
|
||||
context: Optional[pyopencl.Context] = None,
|
||||
queue: Optional[pyopencl.CommandQueue] = None,
|
||||
float_type: Type = numpy.float32,
|
||||
do_poynting: bool = True,
|
||||
do_poynting_halves: bool = False,
|
||||
do_fieldsrc: bool = False,
|
||||
) -> None:
|
||||
"""
|
||||
@ -113,14 +114,13 @@ class Simulation(object):
|
||||
context: pyOpenCL context. If not given, pyopencl.create_some_context(False) is called.
|
||||
queue: pyOpenCL command queue. If not given, pyopencl.CommandQueue(context) is called.
|
||||
float_type: numpy.float32 or numpy.float64. Default numpy.float32.
|
||||
do_poynting: If true, enables calculation of the poynting vector, S.
|
||||
do_poynting: If True, enables calculation of the poynting vector, S.
|
||||
Poynting vector calculation adds the following computational burdens:
|
||||
* During update_H, ~6 extra additions/cell are performed in order to temporally
|
||||
sum H. The results are then multiplied by E (6 multiplications/cell) and
|
||||
* During update_H, 12 extra additions/cell are performed in order to temporally
|
||||
sum E and H. The results are then multiplied by E (6 multiplications/cell) and
|
||||
then stored (6 writes/cell, cache-friendly). The E-field components are
|
||||
reused from the H-field update and do not require additional H
|
||||
* GPU memory requirements increase by 50% (for storing S)
|
||||
do_poynting_halves: TODO DOCUMENT
|
||||
"""
|
||||
if initial_fields is None:
|
||||
initial_fields = {}
|
||||
@ -147,9 +147,9 @@ class Simulation(object):
|
||||
if dt is None:
|
||||
self.dt = max_dt
|
||||
elif dt > max_dt:
|
||||
warnings.warn('Warning: unstable dt: {}'.format(dt))
|
||||
warnings.warn(f'Warning: unstable dt: {dt}')
|
||||
elif dt <= 0:
|
||||
raise Exception('Invalid dt: {}'.format(dt))
|
||||
raise Exception(f'Invalid dt: {dt}')
|
||||
else:
|
||||
self.dt = dt
|
||||
|
||||
@ -216,9 +216,11 @@ class Simulation(object):
|
||||
if bloch_boundaries:
|
||||
bloch_args = jinja_args.copy()
|
||||
bloch_args['do_poynting'] = False
|
||||
bloch_args['bloch'] = [{'axis': b['axis'],
|
||||
bloch_args['bloch'] = [
|
||||
{'axis': b['axis'],
|
||||
'real': b['imag'],
|
||||
'imag': b['real']}
|
||||
'imag': b['real'],
|
||||
}
|
||||
for b in bloch_boundaries]
|
||||
F_source = jinja_env.get_template('update_e.cl').render(**bloch_args)
|
||||
G_source = jinja_env.get_template('update_h.cl').render(**bloch_args)
|
||||
@ -316,15 +318,22 @@ class Simulation(object):
|
||||
pml_h_fields[ptr(nh)] = pyopencl.array.zeros(self.queue, tuple(psi_shape), dtype=self.arg_type)
|
||||
return pml_e_fields, pml_h_fields
|
||||
|
||||
def _create_operation(self, source, args_fields):
|
||||
def _create_operation(self, source, args_fields) -> Callable[..., pyopencl.Event]:
|
||||
args = OrderedDict()
|
||||
[args.update(d) for d in args_fields]
|
||||
update = ElementwiseKernel(self.context, operation=source,
|
||||
arguments=', '.join(args.keys()))
|
||||
for d in args_fields:
|
||||
args.update(d)
|
||||
update = ElementwiseKernel(
|
||||
self.context,
|
||||
operation=source,
|
||||
arguments=', '.join(args.keys()),
|
||||
)
|
||||
return lambda e: update(*args.values(), wait_for=e)
|
||||
|
||||
def _create_context(self, context: pyopencl.Context = None,
|
||||
queue: pyopencl.CommandQueue = None):
|
||||
def _create_context(
|
||||
self,
|
||||
context: Optional[pyopencl.Context] = None,
|
||||
queue: Optional[pyopencl.CommandQueue] = None,
|
||||
) -> None:
|
||||
if context is None:
|
||||
self.context = pyopencl.create_some_context()
|
||||
else:
|
||||
@ -335,16 +344,16 @@ class Simulation(object):
|
||||
else:
|
||||
self.queue = queue
|
||||
|
||||
def _create_eps(self, epsilon: List[numpy.ndarray]):
|
||||
def _create_eps(self, epsilon: NDArray) -> pyopencl.array.Array:
|
||||
if len(epsilon) != 3:
|
||||
raise Exception('Epsilon must be a list with length of 3')
|
||||
if not all((e.shape == epsilon[0].shape for e in epsilon[1:])):
|
||||
raise Exception('All epsilon grids must have the same shape. Shapes are {}', [e.shape for e in epsilon])
|
||||
if not epsilon[0].shape == self.shape:
|
||||
raise Exception('Epsilon shape mismatch. Expected {}, got {}'.format(self.shape, epsilon[0].shape))
|
||||
raise Exception(f'Epsilon shape mismatch. Expected {self.shape}, got {epsilon[0].shape}')
|
||||
self.eps = pyopencl.array.to_device(self.queue, vec(epsilon).astype(self.arg_type))
|
||||
|
||||
def _create_field(self, initial_value: List[numpy.ndarray] = None):
|
||||
def _create_field(self, initial_value: Optional[NDArray] = None) -> pyopencl.array.Array:
|
||||
if initial_value is None:
|
||||
return pyopencl.array.zeros_like(self.eps)
|
||||
else:
|
||||
@ -355,23 +364,30 @@ class Simulation(object):
|
||||
return pyopencl.array.to_device(self.queue, vec(initial_value).astype(self.arg_type))
|
||||
|
||||
|
||||
def type_to_C(float_type: numpy.dtype) -> str:
|
||||
def type_to_C(
|
||||
float_type: Type,
|
||||
) -> str:
|
||||
"""
|
||||
Returns a string corresponding to the C equivalent of a numpy type.
|
||||
Only works for float16, float32, float64.
|
||||
|
||||
:param float_type: e.g. numpy.float32
|
||||
:return: string containing the corresponding C type (eg. 'double')
|
||||
Args:
|
||||
float_type: e.g. numpy.float32
|
||||
|
||||
Returns:
|
||||
string containing the corresponding C type (eg. 'double')
|
||||
"""
|
||||
if float_type == numpy.float16:
|
||||
arg_type = 'half'
|
||||
elif float_type == numpy.float32:
|
||||
arg_type = 'float'
|
||||
elif float_type == numpy.float64:
|
||||
arg_type = 'double'
|
||||
else:
|
||||
raise Exception('Unsupported type')
|
||||
return arg_type
|
||||
types = {
|
||||
numpy.float16: 'half',
|
||||
numpy.float32: 'float',
|
||||
numpy.float64: 'double',
|
||||
numpy.complex64: 'cfloat_t',
|
||||
numpy.complex128: 'cdouble_t',
|
||||
}
|
||||
if float_type not in types:
|
||||
raise Exception(f'Unsupported type: {float_type}')
|
||||
|
||||
return types[float_type]
|
||||
|
||||
# def par(x):
|
||||
# scaling = ((x / (pml['thickness'])) ** pml['m'])
|
||||
|
@ -2,7 +2,7 @@ import unittest
|
||||
import numpy
|
||||
|
||||
from opencl_fdtd import Simulation
|
||||
from fdfd_tools import fdtd
|
||||
from meanas import fdtd
|
||||
|
||||
|
||||
class BasicTests():
|
||||
@ -25,16 +25,18 @@ class BasicTests():
|
||||
dxes = self.dxes if self.dxes is not None else tuple(tuple(numpy.ones(s) for s in e0.shape[1:]) for _ in range(2))
|
||||
dV = numpy.prod(numpy.meshgrid(*dxes[0], indexing='ij'), axis=0)
|
||||
u0 = self.j_mag * self.j_mag / self.epsilon[self.src_mask] * dV[mask]
|
||||
args = {'dxes': self.dxes,
|
||||
'epsilon': self.epsilon}
|
||||
args = {
|
||||
'dxes': self.dxes,
|
||||
'epsilon': self.epsilon,
|
||||
}
|
||||
|
||||
# Make sure initial energy and E dot J are correct
|
||||
energy0 = fdtd.energy_estep(h0=h0, e1=e0, h2=self.hs[1], **args)
|
||||
e_dot_j_0 = fdtd.delta_energy_j(j0=(e0 - 0) * self.epsilon, e1=e0, dxes=self.dxes)
|
||||
self.assertTrue(numpy.allclose(energy0[mask], u0))
|
||||
self.assertFalse(energy0[~mask].any(), msg='energy0: {}'.format(energy0))
|
||||
self.assertFalse(energy0[~mask].any(), msg=f'{energy0=}')
|
||||
self.assertTrue(numpy.allclose(e_dot_j_0[mask], u0))
|
||||
self.assertFalse(e_dot_j_0[~mask].any(), msg='e_dot_j_0: {}'.format(e_dot_j_0))
|
||||
self.assertFalse(e_dot_j_0[~mask].any(), msg=f'{e_dot_j_0=}')
|
||||
|
||||
|
||||
def test_energy_conservation(self):
|
||||
@ -47,22 +49,25 @@ class BasicTests():
|
||||
with self.subTest(i=ii):
|
||||
u_hstep = fdtd.energy_hstep(e0=self.es[ii-1], h1=self.hs[ii], e2=self.es[ii], **args)
|
||||
u_estep = fdtd.energy_estep(h0=self.hs[ii], e1=self.es[ii], h2=self.hs[ii + 1], **args)
|
||||
self.assertTrue(numpy.allclose(u_hstep.sum(), u0), msg='u_hstep: {}\n{}'.format(u_hstep.sum(), numpy.rollaxis(u_hstep, -1)))
|
||||
self.assertTrue(numpy.allclose(u_estep.sum(), u0), msg='u_estep: {}\n{}'.format(u_estep.sum(), numpy.rollaxis(u_estep, -1)))
|
||||
self.assertTrue(numpy.allclose(u_hstep.sum(), u0), msg=f'u_hstep: {u_hstep.sum()}\n{numpy.moveaxis(u_hstep, -1, 0)}')
|
||||
self.assertTrue(numpy.allclose(u_estep.sum(), u0), msg=f'u_estep: {u_estep.sum()}\n{numpy.moveaxis(u_estep, -1, 0)}')
|
||||
|
||||
|
||||
def test_poynting(self):
|
||||
for ii in range(1, 3):
|
||||
with self.subTest(i=ii):
|
||||
s = fdtd.poynting(e=self.es[ii], h=self.hs[ii+1] + self.hs[ii])
|
||||
sf = numpy.moveaxis(s, -1, 0)
|
||||
ss = numpy.moveaxis(self.ss[ii], -1, 0)
|
||||
self.assertTrue(numpy.allclose(s, self.ss[ii], rtol=1e-4),
|
||||
msg='From ExH:\n{}\nFrom sim.S:\n{}'.format(numpy.rollaxis(s, -1),
|
||||
numpy.rollaxis(self.ss[ii], -1)))
|
||||
msg=f'From ExH:\n{sf}\nFrom sim.S:\n{ss}')
|
||||
|
||||
|
||||
def test_poynting_divergence(self):
|
||||
args = {'dxes': self.dxes,
|
||||
'epsilon': self.epsilon}
|
||||
args = {
|
||||
'dxes': self.dxes,
|
||||
'epsilon': self.epsilon,
|
||||
}
|
||||
|
||||
dxes = self.dxes if self.dxes is not None else tuple(tuple(numpy.ones(s) for s in self.epsilon.shape[1:]) for _ in range(2))
|
||||
dV = numpy.prod(numpy.meshgrid(*dxes[0], indexing='ij'), axis=0)
|
||||
@ -75,9 +80,11 @@ class BasicTests():
|
||||
|
||||
du_half_h2e = u_estep - u_hstep
|
||||
div_s_h2e = self.dt * fdtd.poynting_divergence(e=self.es[ii], h=self.hs[ii], dxes=self.dxes) * dV
|
||||
|
||||
du_half_h2e_f = numpy.moveaxis(du_half_h2e, -1, 0)
|
||||
div_s_h2e_f = -numpy.moveaxis(div_s_h2e, -1, 0)
|
||||
self.assertTrue(numpy.allclose(du_half_h2e, -div_s_h2e, rtol=1e-4),
|
||||
msg='du_half_h2e\n{}\ndiv_s_h2e\n{}'.format(numpy.rollaxis(du_half_h2e, -1),
|
||||
-numpy.rollaxis(div_s_h2e, -1)))
|
||||
msg=f'du_half_h2e\n{du_half_h2e_f}\ndiv_s_h2e\n{div_s_h2e_f}')
|
||||
|
||||
if u_eprev is None:
|
||||
u_eprev = u_estep
|
||||
@ -86,15 +93,18 @@ class BasicTests():
|
||||
# previous half-step
|
||||
du_half_e2h = u_hstep - u_eprev
|
||||
div_s_e2h = self.dt * fdtd.poynting_divergence(e=self.es[ii-1], h=self.hs[ii], dxes=self.dxes) * dV
|
||||
du_half_e2h_f = numpy.moveaxis(du_half_e2h, -1, 0)
|
||||
div_s_e2h_f = -numpy.moveaxis(div_s_e2h, -1, 0)
|
||||
self.assertTrue(numpy.allclose(du_half_e2h, -div_s_e2h, rtol=1e-4),
|
||||
msg='du_half_e2h\n{}\ndiv_s_e2h\n{}'.format(numpy.rollaxis(du_half_e2h, -1),
|
||||
-numpy.rollaxis(div_s_e2h, -1)))
|
||||
msg=f'du_half_e2h\n{du_half_e2h_f}\ndiv_s_e2h\n{div_s_e2h_f}')
|
||||
u_eprev = u_estep
|
||||
|
||||
|
||||
def test_poynting_planes(self):
|
||||
args = {'dxes': self.dxes,
|
||||
'epsilon': self.epsilon}
|
||||
args = {
|
||||
'dxes': self.dxes,
|
||||
'epsilon': self.epsilon,
|
||||
}
|
||||
dxes = self.dxes if self.dxes is not None else tuple(tuple(numpy.ones(s) for s in self.epsilon.shape[1:]) for _ in range(2))
|
||||
dV = numpy.prod(numpy.meshgrid(*dxes[0], indexing='ij'), axis=0)
|
||||
|
||||
@ -118,8 +128,9 @@ class BasicTests():
|
||||
planes = [s_h2e[px].sum(), -s_h2e[mx].sum(),
|
||||
s_h2e[py].sum(), -s_h2e[my].sum(),
|
||||
s_h2e[pz].sum(), -s_h2e[mz].sum()]
|
||||
du = (u_estep - u_hstep)[self.src_mask[1]]
|
||||
self.assertTrue(numpy.allclose(sum(planes), (u_estep - u_hstep)[self.src_mask[1]]),
|
||||
msg='planes: {} (sum: {})\n du:\n {}'.format(planes, sum(planes), (u_estep - u_hstep)[self.src_mask[1]]))
|
||||
msg=f'planes: {planes} (sum: {sum(planes)})\n du:\n {du}')
|
||||
|
||||
if u_eprev is None:
|
||||
u_eprev = u_estep
|
||||
@ -132,15 +143,14 @@ class BasicTests():
|
||||
planes = [s_e2h[px].sum(), -s_e2h[mx].sum(),
|
||||
s_e2h[py].sum(), -s_e2h[my].sum(),
|
||||
s_e2h[pz].sum(), -s_e2h[mz].sum()]
|
||||
du = (u_hstep - u_eprev)[self.src_mask[1]]
|
||||
self.assertTrue(numpy.allclose(sum(planes), (u_hstep - u_eprev)[self.src_mask[1]]),
|
||||
msg='planes: {} (sum: {})\n du:\n {}'.format(planes, sum(planes), (u_hstep - u_eprev)[self.src_mask[1]]))
|
||||
msg=f'planes: {du} (sum: {sum(planes)})\n du:\n {du}')
|
||||
|
||||
# previous half-step
|
||||
u_eprev = u_estep
|
||||
|
||||
|
||||
|
||||
|
||||
class Basic2DNoDXOnlyVacuum(unittest.TestCase, BasicTests):
|
||||
def setUp(self):
|
||||
shape = [3, 5, 5, 1]
|
||||
@ -348,8 +358,10 @@ class JdotE_3DUniformDX(unittest.TestCase):
|
||||
e1 = self.es[2]
|
||||
j0 = numpy.zeros_like(e0)
|
||||
j0[self.src_mask] = self.j_mag
|
||||
args = {'dxes': self.dxes,
|
||||
'epsilon': self.epsilon}
|
||||
args = {
|
||||
'dxes': self.dxes,
|
||||
'epsilon': self.epsilon,
|
||||
}
|
||||
e2h = fdtd.maxwell_h(dt=self.dt, dxes=self.dxes)
|
||||
|
||||
#ee = j0 * (2 * e0 - j0)
|
||||
@ -365,4 +377,5 @@ class JdotE_3DUniformDX(unittest.TestCase):
|
||||
u_hstep = fdtd.energy_hstep(e0=self.es[0], h1=self.hs[1], e2=self.es[1], **args)
|
||||
u_estep = fdtd.energy_estep(h0=self.hs[-2], e1=self.es[-2], h2=self.hs[-1], **args)
|
||||
#breakpoint()
|
||||
self.assertTrue(numpy.allclose(u0.sum(), (u_estep - u_hstep).sum()), msg='{} != {}'.format(u0.sum(), (u_estep - u_hstep).sum()))
|
||||
du = (u_estep - u_hstep).sum()
|
||||
self.assertTrue(numpy.allclose(u0.sum(), (u_estep - u_hstep).sum()), msg=f'{u0.sum()} != {du}')
|
||||
|
Loading…
Reference in New Issue
Block a user