opencl_fdtd/fdtd/simulation.py

239 lines
9.0 KiB
Python
Raw Normal View History

2016-03-30 15:00:00 -07:00
"""
Class for constructing and holding the basic FDTD operations and fields
"""
from typing import List, Dict, Callable
from collections import OrderedDict
2016-03-30 15:00:00 -07:00
import numpy
import jinja2
2016-03-30 15:00:00 -07:00
import warnings
import pyopencl
import pyopencl.array
from pyopencl.elementwise import ElementwiseKernel
from fdfd_tools import vec
__author__ = 'Jan Petykiewicz'
# Create jinja2 env on module load
jinja_env = jinja2.Environment(loader=jinja2.PackageLoader(__name__, 'kernels'))
2016-03-30 15:00:00 -07:00
class Simulation(object):
"""
Constructs and holds the basic FDTD operations and related fields
"""
E = None # type: List[pyopencl.array.Array]
H = None # type: List[pyopencl.array.Array]
S = None # type: List[pyopencl.array.Array]
2016-03-30 15:00:00 -07:00
eps = None # type: List[pyopencl.array.Array]
dt = None # type: float
arg_type = None # type: numpy.float32 or numpy.float64
context = None # type: pyopencl.Context
queue = None # type: pyopencl.CommandQueue
update_E = None # type: Callable[[],pyopencl.Event]
update_H = None # type: Callable[[],pyopencl.Event]
update_S = None # type: Callable[[],pyopencl.Event]
sources = None # type: Dict[str, str]
2016-03-30 15:00:00 -07:00
def __init__(self,
epsilon: List[numpy.ndarray],
dt: float = .99/numpy.sqrt(3),
initial_E: List[numpy.ndarray] = None,
initial_H: List[numpy.ndarray] = None,
context: pyopencl.Context = None,
queue: pyopencl.CommandQueue = None,
float_type: numpy.float32 or numpy.float64 = numpy.float32,
pml_thickness: int = 10,
pmls: List[List[str]] = None,
do_poynting: bool = True):
2016-03-30 15:00:00 -07:00
"""
Initialize the simulation.
:param epsilon: List containing [eps_r,xx, eps_r,yy, eps_r,zz], where each element is a Yee-shifted ndarray
spanning the simulation domain. Relative epsilon is used.
:param dt: Time step. Default is the Courant factor.
:param initial_E: Initial E-field (default is 0 everywhere). Same format as epsilon.
:param initial_H: Initial H-field (default is 0 everywhere). Same format as epsilon.
:param context: pyOpenCL context. If not given, pyopencl.create_some_context(False) is called.
:param queue: pyOpenCL command queue. If not given, pyopencl.CommandQueue(context) is called.
:param float_type: numpy.float32 or numpy.float64. Default numpy.float32.
"""
if len(epsilon) != 3:
Exception('Epsilon must be a list with length of 3')
if not all((e.shape == epsilon[0].shape for e in epsilon[1:])):
Exception('All epsilon grids must have the same shape. Shapes are {}', [e.shape for e in epsilon])
if context is None:
self.context = pyopencl.create_some_context()
2016-03-30 15:00:00 -07:00
else:
self.context = context
if queue is None:
self.queue = pyopencl.CommandQueue(self.context)
else:
self.queue = queue
if dt > .99/numpy.sqrt(3):
warnings.warn('Warning: unstable dt: {}'.format(dt))
elif dt <= 0:
raise Exception('Invalid dt: {}'.format(dt))
else:
self.dt = dt
self.arg_type = float_type
self.sources = {}
self.eps = pyopencl.array.to_device(self.queue, vec(epsilon).astype(float_type))
2016-03-30 15:00:00 -07:00
if initial_E is None:
self.E = pyopencl.array.zeros_like(self.eps)
2016-03-30 15:00:00 -07:00
else:
if len(initial_E) != 3:
Exception('Initial_E must be a list of length 3')
if not all((E.shape == epsilon[0].shape for E in initial_E)):
Exception('Initial_E list elements must have same shape as epsilon elements')
self.E = pyopencl.array.to_device(self.queue, vec(E).astype(float_type))
2016-03-30 15:00:00 -07:00
if initial_H is None:
self.H = pyopencl.array.zeros_like(self.eps)
2016-03-30 15:00:00 -07:00
else:
if len(initial_H) != 3:
Exception('Initial_H must be a list of length 3')
if not all((H.shape == epsilon[0].shape for H in initial_H)):
Exception('Initial_H list elements must have same shape as epsilon elements')
self.H = pyopencl.array.to_device(self.queue, vec(H).astype(float_type))
2016-03-30 15:00:00 -07:00
if pmls is None:
pmls = [[d, p] for d in 'xyz' for p in 'np']
2016-03-30 15:00:00 -07:00
ctype = type_to_C(self.arg_type)
2016-03-30 15:00:00 -07:00
def ptr(arg: str) -> str:
return ctype + ' *' + arg
base_fields = OrderedDict()
base_fields[ptr('E')] = self.E
base_fields[ptr('H')] = self.H
base_fields[ctype + ' dt'] = self.dt
eps_field = OrderedDict()
eps_field[ptr('eps')] = self.eps
common_source = jinja_env.get_template('common.cl').render(
ftype=ctype,
shape=epsilon[0].shape,
)
jinja_args = {
'common_header': common_source,
'pml_thickness': pml_thickness,
'pmls': pmls,
'do_poynting': do_poynting,
}
E_source = jinja_env.get_template('update_e.cl').render(**jinja_args)
H_source = jinja_env.get_template('update_h.cl').render(**jinja_args)
self.sources['E'] = E_source
self.sources['H'] = H_source
if do_poynting:
S_source = jinja_env.get_template('update_s.cl').render(**jinja_args)
self.sources['S'] = S_source
self.oS = pyopencl.array.zeros(self.queue, self.E.shape + (2,), dtype=float_type)
self.S = pyopencl.array.zeros_like(self.E)
S_fields = OrderedDict()
S_fields[ptr('oS')] = self.oS
S_fields[ptr('S')] = self.S
else:
S_fields = OrderedDict()
'''
PML
'''
m = (3.5, 1)
sigma_max = 0.8 * (m[0] + 1) / numpy.sqrt(1.0) # TODO: epsilon_eff (not 1.0)
alpha_max = 0 # TODO: Decide what to do about non-zero alpha
def par(x):
sigma = ((x / pml_thickness) ** m[0]) * sigma_max
alpha = ((1 - x / pml_thickness) ** m[1]) * alpha_max
p0 = numpy.exp(-(sigma + alpha) * dt)
p1 = sigma / (sigma + alpha) * (p0 - 1)
return p0, p1
xen, xep, xhn, xhp = (numpy.arange(1, pml_thickness + 1, dtype=float_type)[::-1] for _ in range(4))
xep -= 0.5
xhn -= 0.5
pml_p_names = [['p' + a + eh + np for np in 'np' for a in '01'] for eh in 'eh']
pml_e_fields = OrderedDict()
pml_h_fields = OrderedDict()
for ne, nh, pe, ph in zip(*pml_p_names, par(xen) + par(xep), par(xhn) + par(xhp)):
pml_e_fields[ptr(ne)] = pyopencl.array.to_device(self.queue, pe)
pml_h_fields[ptr(nh)] = pyopencl.array.to_device(self.queue, ph)
for pml in pmls:
uv = 'xyz'.replace(pml[0], '')
psi_base = 'Psi_' + ''.join(pml) + '_'
psi_names = [[psi_base + eh + c for c in uv] for eh in 'EH']
psi_shape = list(epsilon[0].shape)
psi_shape['xyz'.find(pml[0])] = pml_thickness
for ne, nh in zip(*psi_names):
pml_e_fields[ptr(ne)] = pyopencl.array.zeros(self.queue, tuple(psi_shape), dtype=self.arg_type)
pml_h_fields[ptr(nh)] = pyopencl.array.zeros(self.queue, tuple(psi_shape), dtype=self.arg_type)
self.pml_e_fields = pml_e_fields
self.pml_h_fields = pml_h_fields
'''
Create operations
'''
E_args = OrderedDict()
[E_args.update(d) for d in (base_fields, eps_field, pml_e_fields)]
2016-03-30 15:00:00 -07:00
E_update = ElementwiseKernel(self.context, operation=E_source,
arguments=', '.join(E_args.keys()))
2016-03-30 15:00:00 -07:00
H_args = OrderedDict()
[H_args.update(d) for d in (base_fields, pml_h_fields, S_fields)]
2016-03-30 15:00:00 -07:00
H_update = ElementwiseKernel(self.context, operation=H_source,
arguments=', '.join(H_args.keys()))
self.update_E = lambda e: E_update(*E_args.values(), wait_for=e)
self.update_H = lambda e: H_update(*H_args.values(), wait_for=e)
2016-03-30 15:00:00 -07:00
if do_poynting:
S_args = OrderedDict()
[S_args.update(d) for d in (base_fields, S_fields)]
S_update = ElementwiseKernel(self.context, operation=S_source,
arguments=', '.join(S_args.keys()))
2016-03-30 15:00:00 -07:00
self.update_S = lambda e: S_update(*S_args.values(), wait_for=e)
2016-03-30 15:00:00 -07:00
def type_to_C(float_type) -> str:
"""
Returns a string corresponding to the C equivalent of a numpy type.
Only works for float16, float32, float64.
2016-03-30 15:00:00 -07:00
:param float_type: e.g. numpy.float32
:return: string containing the corresponding C type (eg. 'double')
"""
if float_type == numpy.float16:
arg_type = 'half'
elif float_type == numpy.float32:
arg_type = 'float'
elif float_type == numpy.float64:
arg_type = 'double'
else:
raise Exception('Unsupported type')
return arg_type