196 lines
5.2 KiB
Python
196 lines
5.2 KiB
Python
"""
|
|
Sparse matrix solvers
|
|
|
|
This file holds the sparse matrix solvers, as well as the
|
|
CSRMatrix sparse matrix representation.
|
|
|
|
The FDFD solver (fdfd_cg_solver()) solves an FDFD problem by
|
|
creating a sparse matrix representing the problem (using
|
|
meanas) and then passing it to cg(), which performs a
|
|
conjugate gradient solve.
|
|
|
|
cg() is capable of solving arbitrary sparse matrices which
|
|
satisfy the constraints for the 'conjugate gradient' algorithm
|
|
(positive definite, symmetric) and some that don't.
|
|
"""
|
|
|
|
from typing import Any, TYPE_CHECKING
|
|
import time
|
|
import logging
|
|
|
|
import numpy
|
|
from numpy.typing import NDArray, ArrayLike
|
|
from numpy.linalg import norm
|
|
from numpy import complexfloating
|
|
import pyopencl
|
|
import pyopencl.array
|
|
import meanas.fdfd.solvers
|
|
|
|
from . import ops
|
|
|
|
if TYPE_CHECKING:
|
|
import scipy
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class CSRMatrix:
|
|
"""
|
|
Matrix stored in Compressed Sparse Row format, in GPU RAM.
|
|
"""
|
|
row_ptr: pyopencl.array.Array
|
|
col_ind: pyopencl.array.Array
|
|
data: pyopencl.array.Array
|
|
|
|
def __init__(
|
|
self,
|
|
queue: pyopencl.CommandQueue,
|
|
m: 'scipy.sparse.csr_matrix',
|
|
) -> None:
|
|
self.row_ptr = pyopencl.array.to_device(queue, m.indptr)
|
|
self.col_ind = pyopencl.array.to_device(queue, m.indices)
|
|
self.data = pyopencl.array.to_device(queue, m.data.astype(numpy.complex128))
|
|
|
|
|
|
def cg(
|
|
A: 'scipy.sparse.csr_matrix',
|
|
b: ArrayLike,
|
|
max_iters: int = 10000,
|
|
err_threshold: float = 1e-6,
|
|
context: pyopencl.Context | None = None,
|
|
queue: pyopencl.CommandQueue | None = None,
|
|
) -> NDArray[complexfloating]:
|
|
"""
|
|
General conjugate-gradient solver for sparse matrices, where A @ x = b.
|
|
|
|
Args:
|
|
A: Matrix to solve (CSR format)
|
|
b: Right-hand side vector (dense ndarray)
|
|
max_iters: Maximum number of iterations
|
|
err_threshold: Error threshold for successful solve, relative to norm(b)
|
|
context: PyOpenCL context. Will be created if not given.
|
|
queue: PyOpenCL command queue. Will be created if not given.
|
|
|
|
Returns:
|
|
Solution vector x; returned even if solve doesn't converge.
|
|
"""
|
|
|
|
start_time = time.perf_counter()
|
|
|
|
if context is None:
|
|
context = pyopencl.create_some_context(False)
|
|
|
|
if queue is None:
|
|
queue = pyopencl.CommandQueue(context)
|
|
|
|
def load_field(v: NDArray[numpy.complexfloating], dtype: type = numpy.complex128) -> pyopencl.array.Array:
|
|
return pyopencl.array.to_device(queue, v.astype(dtype))
|
|
|
|
r = load_field(numpy.asarray(b))
|
|
x = pyopencl.array.zeros_like(r)
|
|
v = pyopencl.array.zeros_like(r)
|
|
p = pyopencl.array.zeros_like(r)
|
|
|
|
alpha = 1.0 + 0j
|
|
rho = 1.0 + 0j
|
|
errs = []
|
|
|
|
m = CSRMatrix(queue, A)
|
|
|
|
#
|
|
# Generate OpenCL kernels
|
|
#
|
|
a_step = ops.create_a_csr(context)
|
|
xr_step = ops.create_xr_step(context)
|
|
rhoerr_step = ops.create_rhoerr_step(context)
|
|
p_step = ops.create_p_step(context)
|
|
dot = ops.create_dot(context)
|
|
|
|
#
|
|
# Start the solve
|
|
#
|
|
start_time2 = time.perf_counter()
|
|
|
|
_, err2 = rhoerr_step(r, [])
|
|
b_norm = numpy.sqrt(err2)
|
|
logging.debug(f'b_norm check: {b_norm}')
|
|
|
|
success = False
|
|
for k in range(max_iters):
|
|
logging.debug(f'[{k:06d}] rho {rho:.4} alpha {alpha:4.4}')
|
|
|
|
rho_prev = rho
|
|
e = xr_step(x, p, r, v, alpha, [])
|
|
rho, err2 = rhoerr_step(r, e)
|
|
|
|
errs += [numpy.sqrt(err2) / b_norm]
|
|
|
|
logging.debug(f'err {errs[-1]}')
|
|
|
|
if errs[-1] < err_threshold:
|
|
success = True
|
|
break
|
|
|
|
e = p_step(p, r, rho/rho_prev, [])
|
|
e = a_step(v, m, p, e)
|
|
alpha = rho / dot(p, v, e)
|
|
|
|
if k % 1000 == 0:
|
|
logger.info(f'iteration {k}')
|
|
|
|
#
|
|
# Done solving
|
|
#
|
|
time_elapsed = time.perf_counter() - start_time
|
|
|
|
x = x.get()
|
|
|
|
if success:
|
|
logging.info('Solve success')
|
|
else:
|
|
logging.warning('Solve failure')
|
|
logging.info(f'{k} iterations in {time_elapsed} sec: {k / time_elapsed} iterations/sec')
|
|
logging.debug(f'final error {errs[-1]}')
|
|
logging.debug(f'overhead {start_time2 - start_time} sec')
|
|
|
|
residual = norm(A @ x - b) / norm(b)
|
|
logging.info(f'Final residual: {residual}')
|
|
return x
|
|
|
|
|
|
def fdfd_cg_solver(
|
|
solver_opts: dict[str, Any] | None = None,
|
|
**fdfd_args,
|
|
) -> NDArray[complexfloating]:
|
|
"""
|
|
Conjugate gradient FDFD solver using CSR sparse matrices, mainly for
|
|
testing and development since it's much slower than the solver in main.py.
|
|
|
|
Calls meanas.fdfd.solvers.generic(
|
|
**fdfd_args,
|
|
matrix_solver=opencl_fdfd.csr.cg,
|
|
matrix_solver_opts=solver_opts,
|
|
)
|
|
|
|
Args:
|
|
solver_opts: Passed as matrix_solver_opts to fdfd_tools.solver.generic(...).
|
|
Default {}.
|
|
fdfd_args: Passed as **fdfd_args to fdfd_tools.solver.generic(...).
|
|
Should include all of the arguments **except** matrix_solver and matrix_solver_opts
|
|
|
|
Returns:
|
|
E-field which solves the system.
|
|
"""
|
|
|
|
if solver_opts is None:
|
|
solver_opts = dict()
|
|
|
|
x = meanas.fdfd.solvers.generic(
|
|
matrix_solver=cg,
|
|
matrix_solver_opts=solver_opts,
|
|
**fdfd_args,
|
|
)
|
|
|
|
return x
|