331 lines
10 KiB
Python
331 lines
10 KiB
Python
"""
|
|
Basic PyOpenCL operations
|
|
|
|
The functions are mostly concerned with creating and compiling OpenCL
|
|
kernels for use by the other solvers.
|
|
|
|
See kernels/ for any of the .cl files loaded in this file.
|
|
"""
|
|
|
|
from typing import List, Callable
|
|
|
|
import numpy
|
|
import jinja2
|
|
|
|
import pyopencl
|
|
import pyopencl.array
|
|
from pyopencl.elementwise import ElementwiseKernel
|
|
from pyopencl.reduction import ReductionKernel
|
|
|
|
|
|
# Create jinja2 env on module load
|
|
jinja_env = jinja2.Environment(loader=jinja2.PackageLoader(__name__, 'kernels'))
|
|
|
|
# Return type for the create_opname(...) functions
|
|
operation = Callable[..., List[pyopencl.Event]]
|
|
|
|
|
|
def type_to_C(float_type: numpy.float32 or numpy.float64) -> str:
|
|
"""
|
|
Returns a string corresponding to the C equivalent of a numpy type.
|
|
|
|
:param float_type: numpy type: float32, float64, complex64, complex128
|
|
:return: string containing the corresponding C type (eg. 'double')
|
|
"""
|
|
types = {
|
|
numpy.float32: 'float',
|
|
numpy.float64: 'double',
|
|
numpy.complex64: 'cfloat_t',
|
|
numpy.complex128: 'cdouble_t',
|
|
}
|
|
if float_type not in types:
|
|
raise Exception('Unsupported type')
|
|
|
|
return types[float_type]
|
|
|
|
# Type names
|
|
ctype = type_to_C(numpy.complex128)
|
|
ctype_bare = 'cdouble'
|
|
|
|
# Preamble for all OpenCL code
|
|
preamble = '''
|
|
#define PYOPENCL_DEFINE_CDOUBLE
|
|
#include <pyopencl-complex.h>
|
|
|
|
//Defines to clean up operation and type names
|
|
#define ctype {ctype}_t
|
|
#define zero {ctype}_new(0.0, 0.0)
|
|
#define add {ctype}_add
|
|
#define sub {ctype}_sub
|
|
#define mul {ctype}_mul
|
|
'''.format(ctype=ctype_bare)
|
|
|
|
|
|
def ptrs(*args: str) -> List[str]:
|
|
return [ctype + ' *' + s for s in args]
|
|
|
|
|
|
def create_a(context: pyopencl.Context,
|
|
shape: numpy.ndarray,
|
|
mu: bool = False,
|
|
pec: bool = False,
|
|
pmc: bool = False,
|
|
) -> operation:
|
|
"""
|
|
Return a function which performs (A @ p), where A is the FDFD wave equation for E-field.
|
|
|
|
The returned function has the signature
|
|
spmv(E, H, p, idxes, oeps, inv_mu, pec, pmc, Pl, Pr, e)
|
|
with arguments (all except e are of type pyopencl.array.Array (or contain it)):
|
|
E E-field (output)
|
|
H Temporary variable for holding intermediate H-field values on GPU (same size as E)
|
|
p p-vector (input vector)
|
|
idxes list holding [[1/dx_e, 1/dy_e, 1/dz_e], [1/dx_h, 1/dy_h, 1/dz_h]] (complex cell widths)
|
|
oeps omega * epsilon
|
|
inv_mu 1/mu
|
|
pec array of bytes; nonzero value indicates presence of PEC
|
|
pmc array of bytes; nonzero value indicates presence of PMC
|
|
Pl Left preconditioner (array containing diagonal entries only)
|
|
Pr Right preconditioner (array containing diagonal entries only)
|
|
e List of pyopencl.Event; execution will wait until these are finished.
|
|
|
|
and returns a list of pyopencl.Event.
|
|
|
|
:param context: PyOpenCL context
|
|
:param shape: Dimensions of the E-field
|
|
:param mu: False iff (mu == 1) everywhere
|
|
:param pec: False iff no PEC anywhere
|
|
:param pmc: False iff no PMC anywhere
|
|
:return: Function for computing (A @ p)
|
|
"""
|
|
|
|
common_source = jinja_env.get_template('common.cl').render(shape=shape)
|
|
|
|
pec_arg = ['char *pec']
|
|
pmc_arg = ['char *pmc']
|
|
des = [ctype + ' *inv_de' + a for a in 'xyz']
|
|
dhs = [ctype + ' *inv_dh' + a for a in 'xyz']
|
|
|
|
'''
|
|
Convert p to initial E (ie, apply right preconditioner and PEC)
|
|
'''
|
|
p2e_source = jinja_env.get_template('p2e.cl').render(pec=pec)
|
|
P2E_kernel = ElementwiseKernel(context,
|
|
name='P2E',
|
|
preamble=preamble,
|
|
operation=p2e_source,
|
|
arguments=', '.join(ptrs('E', 'p', 'Pr') + pec_arg))
|
|
|
|
'''
|
|
Calculate intermediate H from intermediate E
|
|
'''
|
|
e2h_source = jinja_env.get_template('e2h.cl').render(mu=mu,
|
|
pmc=pmc,
|
|
common_cl=common_source)
|
|
E2H_kernel = ElementwiseKernel(context,
|
|
name='E2H',
|
|
preamble=preamble,
|
|
operation=e2h_source,
|
|
arguments=', '.join(ptrs('E', 'H', 'inv_mu') + pmc_arg + des))
|
|
|
|
'''
|
|
Calculate final E (including left preconditioner)
|
|
'''
|
|
h2e_source = jinja_env.get_template('h2e.cl').render(pec=pec,
|
|
common_cl=common_source)
|
|
H2E_kernel = ElementwiseKernel(context,
|
|
name='H2E',
|
|
preamble=preamble,
|
|
operation=h2e_source,
|
|
arguments=', '.join(ptrs('E', 'H', 'oeps', 'Pl') + pec_arg + dhs))
|
|
|
|
def spmv(E, H, p, idxes, oeps, inv_mu, pec, pmc, Pl, Pr, e):
|
|
e2 = P2E_kernel(E, p, Pr, pec, wait_for=e)
|
|
e2 = E2H_kernel(E, H, inv_mu, pmc, *idxes[0], wait_for=[e2])
|
|
e2 = H2E_kernel(E, H, oeps, Pl, pec, *idxes[1], wait_for=[e2])
|
|
return [e2]
|
|
|
|
return spmv
|
|
|
|
|
|
def create_xr_step(context: pyopencl.Context) -> operation:
|
|
"""
|
|
Return a function
|
|
xr_update(x, p, r, v, alpha, e)
|
|
which performs the operations
|
|
x += alpha * p
|
|
r -= alpha * v
|
|
|
|
after waiting for all in the list e
|
|
and returns a list of pyopencl.Event
|
|
|
|
:param context: PyOpenCL context
|
|
:return: Function for performing x and r updates
|
|
"""
|
|
update_xr_source = '''
|
|
x[i] = add(x[i], mul(alpha, p[i]));
|
|
r[i] = sub(r[i], mul(alpha, v[i]));
|
|
'''
|
|
|
|
xr_args = ', '.join(ptrs('x', 'p', 'r', 'v') + [ctype + ' alpha'])
|
|
|
|
xr_kernel = ElementwiseKernel(context,
|
|
name='XR',
|
|
preamble=preamble,
|
|
operation=update_xr_source,
|
|
arguments=xr_args)
|
|
|
|
def xr_update(x, p, r, v, alpha, e):
|
|
return [xr_kernel(x, p, r, v, alpha, wait_for=e)]
|
|
|
|
return xr_update
|
|
|
|
|
|
def create_rhoerr_step(context: pyopencl.Context) -> operation:
|
|
"""
|
|
Return a function
|
|
ri_update(r, e)
|
|
which performs the operations
|
|
rho = r * r.conj()
|
|
err = r * r
|
|
|
|
after waiting for all pyopencl.Event in the list e
|
|
and returns a list of pyopencl.Event
|
|
|
|
:param context: PyOpenCL context
|
|
:return: Function for performing x and r updates
|
|
"""
|
|
|
|
update_ri_source = '''
|
|
(double3)(r[i].real * r[i].real, \
|
|
r[i].real * r[i].imag, \
|
|
r[i].imag * r[i].imag)
|
|
'''
|
|
|
|
# Use a vector type (double3) to make the reduction simpler
|
|
ri_dtype = pyopencl.array.vec.double3
|
|
|
|
ri_kernel = ReductionKernel(context,
|
|
name='RHOERR',
|
|
preamble=preamble,
|
|
dtype_out=ri_dtype,
|
|
neutral='(double3)(0.0, 0.0, 0.0)',
|
|
map_expr=update_ri_source,
|
|
reduce_expr='a+b',
|
|
arguments=ctype + ' *r')
|
|
|
|
def ri_update(r, e):
|
|
g = ri_kernel(r, wait_for=e).astype(ri_dtype).get()
|
|
rr, ri, ii = [g[q] for q in 'xyz']
|
|
rho = rr + 2j * ri - ii
|
|
err = rr + ii
|
|
return rho, err
|
|
|
|
return ri_update
|
|
|
|
|
|
def create_p_step(context: pyopencl.Context) -> operation:
|
|
"""
|
|
Return a function
|
|
p_update(p, r, beta, e)
|
|
which performs the operation
|
|
p = r + beta * p
|
|
|
|
after waiting for all pyopencl.Event in the list e
|
|
and returns a list of pyopencl.Event
|
|
|
|
:param context: PyOpenCL context
|
|
:return: Function for performing the p update
|
|
"""
|
|
update_p_source = '''
|
|
p[i] = add(r[i], mul(beta, p[i]));
|
|
'''
|
|
p_args = ptrs('p', 'r') + [ctype + ' beta']
|
|
|
|
p_kernel = ElementwiseKernel(context,
|
|
name='P',
|
|
preamble=preamble,
|
|
operation=update_p_source,
|
|
arguments=', '.join(p_args))
|
|
|
|
def p_update(p, r, beta, e):
|
|
return [p_kernel(p, r, beta, wait_for=e)]
|
|
|
|
return p_update
|
|
|
|
|
|
def create_dot(context: pyopencl.Context) -> operation:
|
|
"""
|
|
Return a function for performing the dot product
|
|
p @ v
|
|
with the signature
|
|
dot(p, v, e) -> float
|
|
|
|
:param context: PyOpenCL context
|
|
:return: Function for performing the dot product
|
|
"""
|
|
dot_dtype = numpy.complex128
|
|
|
|
dot_kernel = ReductionKernel(context,
|
|
name='dot',
|
|
preamble=preamble,
|
|
dtype_out=dot_dtype,
|
|
neutral='zero',
|
|
map_expr='mul(p[i], v[i])',
|
|
reduce_expr='add(a, b)',
|
|
arguments=ptrs('p', 'v'))
|
|
|
|
def dot(p, v, e):
|
|
g = dot_kernel(p, v, wait_for=e)
|
|
return g.get()
|
|
|
|
return dot
|
|
|
|
|
|
def create_a_csr(context: pyopencl.Context) -> operation:
|
|
"""
|
|
Return a function for performing the operation
|
|
(N @ v)
|
|
where N is stored in CSR (compressed sparse row) format.
|
|
|
|
The function signature is
|
|
spmv(v_out, m, v_in, e)
|
|
where m is an opencl_fdfd.csr.CSRMatrix
|
|
and v_out, v_in are (dense) vectors (of type pyopencl.array.Array).
|
|
|
|
The function waits on all the pyopencl.Event in e before running, and returns
|
|
a list of pyopencl.Event.
|
|
|
|
:param context: PyOpenCL context
|
|
:return: Function for sparse (M @ v) operation where M is in CSR format
|
|
"""
|
|
spmv_source = '''
|
|
int start = m_row_ptr[i];
|
|
int stop = m_row_ptr[i+1];
|
|
ctype dot = zero;
|
|
|
|
int col_ind, d_ind;
|
|
for (int j=start; j<stop; j++) {
|
|
col_ind = m_col_ind[j];
|
|
d_ind = j;
|
|
|
|
dot = add(dot, mul(v_in[col_ind], m_data[d_ind]));
|
|
}
|
|
v_out[i] = dot;
|
|
'''
|
|
|
|
v_out_args = ctype + ' *v_out'
|
|
m_args = 'int *m_row_ptr, int *m_col_ind, ' + ctype + ' *m_data'
|
|
v_in_args = ctype + ' *v_in'
|
|
|
|
spmv_kernel = ElementwiseKernel(context,
|
|
name='csr_spmv',
|
|
preamble=preamble,
|
|
operation=spmv_source,
|
|
arguments=', '.join((v_out_args, m_args, v_in_args)))
|
|
|
|
def spmv(v_out, m, v_in, e):
|
|
return [spmv_kernel(v_out, m.row_ptr, m.col_ind, m.data, v_in, wait_for=e)]
|
|
|
|
return spmv
|