Simplify csr.cg and use operations from .ops
This commit is contained in:
parent
c9cb48d175
commit
e94a07db28
@ -1,128 +1,12 @@
|
||||
import numpy
|
||||
from numpy.linalg import norm
|
||||
|
||||
import pyopencl
|
||||
import pyopencl.array
|
||||
from pyopencl.elementwise import ElementwiseKernel
|
||||
from pyopencl.reduction import ReductionKernel
|
||||
|
||||
import time
|
||||
|
||||
|
||||
def type_to_C(float_type: numpy.float32 or numpy.float64) -> str:
|
||||
"""
|
||||
Returns a string corresponding to the C equivalent of a numpy type.
|
||||
|
||||
:param float_type: numpy type: float32, float64, complex64, complex128
|
||||
:return: string containing the corresponding C type (eg. 'double')
|
||||
"""
|
||||
types = {
|
||||
numpy.float32: 'float',
|
||||
numpy.float64: 'double',
|
||||
numpy.complex64: 'cfloat_t',
|
||||
numpy.complex128: 'cdouble_t',
|
||||
}
|
||||
if float_type not in types:
|
||||
raise Exception('Unsupported type')
|
||||
|
||||
return types[float_type]
|
||||
|
||||
|
||||
def create_ops(context):
|
||||
preamble = '''
|
||||
#define PYOPENCL_DEFINE_CDOUBLE
|
||||
#include <pyopencl-complex.h>
|
||||
'''
|
||||
|
||||
ctype = type_to_C(numpy.complex128)
|
||||
|
||||
# -------------------------------------
|
||||
|
||||
spmv_source = '''
|
||||
int start = m_row_ptr[i];
|
||||
int stop = m_row_ptr[i+1];
|
||||
cdouble_t dot = cdouble_new(0.0, 0.0);
|
||||
|
||||
int col_ind, d_ind;
|
||||
for (int j=start; j<stop; j++) {
|
||||
col_ind = m_col_ind[j];
|
||||
d_ind = j;
|
||||
|
||||
dot = cdouble_add(dot, cdouble_mul(v_in[col_ind], m_data[d_ind]));
|
||||
}
|
||||
v_out[i] = dot;
|
||||
'''
|
||||
|
||||
v_out_args = ctype + ' *v_out'
|
||||
m_args = 'int *m_row_ptr, int *m_col_ind, ' + ctype + ' *m_data'
|
||||
v_in_args = ctype + ' *v_in'
|
||||
|
||||
spmv_kernel = ElementwiseKernel(context, operation=spmv_source, preamble=preamble,
|
||||
arguments=', '.join((v_out_args, m_args, v_in_args)))
|
||||
|
||||
def spmv(v_out, m, v_in, e):
|
||||
return spmv_kernel(v_out, m.row_ptr, m.col_ind, m.data, v_in, wait_for=e)
|
||||
|
||||
# -------------------------------------
|
||||
|
||||
update_xr_source = '''
|
||||
x[i] = cdouble_add(x[i], cdouble_mul(alpha, p[i]));
|
||||
r[i] = cdouble_sub(r[i], cdouble_mul(alpha, v[i]));
|
||||
'''
|
||||
|
||||
xr_args = ', '.join([ctype + ' ' + f for f in ('*x', '*p', '*r', '*v', 'alpha')])
|
||||
|
||||
xr_kernel = ElementwiseKernel(context, operation=update_xr_source, preamble=preamble,
|
||||
arguments=xr_args)
|
||||
|
||||
def xr_update(x, p, r, v, alpha, e):
|
||||
return xr_kernel(x, p, r, v, alpha, wait_for=e)
|
||||
|
||||
# -------------------------------------
|
||||
|
||||
update_ri_source = '''
|
||||
(double3)(r[i].real * r[i].real, \
|
||||
r[i].real * r[i].imag, \
|
||||
r[i].imag * r[i].imag)
|
||||
'''
|
||||
|
||||
ri_dtype = pyopencl.array.vec.double3
|
||||
|
||||
ri_kernel = ReductionKernel(context, preamble=preamble,
|
||||
dtype_out=ri_dtype,
|
||||
neutral='(double3)(0.0, 0.0, 0.0)',
|
||||
map_expr=update_ri_source,
|
||||
reduce_expr='a + b',
|
||||
arguments=ctype + ' *r')
|
||||
|
||||
def ri_update(r, e):
|
||||
g = ri_kernel(r, wait_for=e).astype(ri_dtype).get()
|
||||
rr, ri, ii = [g[q] for q in 'xyz']
|
||||
rho = rr + 2j * ri - ii
|
||||
err = rr + ii
|
||||
return rho, err
|
||||
|
||||
# -------------------------------------
|
||||
|
||||
update_p_source = '''
|
||||
p[i] = cdouble_add(r[i], cdouble_mul(beta, p[i]));
|
||||
'''
|
||||
p_args = ctype + ' *p, ' + ctype + ' *r, ' + ctype + ' beta'
|
||||
|
||||
p_kernel = ElementwiseKernel(context, preamble=preamble, operation=update_p_source,
|
||||
arguments=p_args)
|
||||
|
||||
def p_update(p, r, beta, e):
|
||||
return p_kernel(p, r, beta, wait_for=e)
|
||||
|
||||
ops = {
|
||||
'spmv': spmv,
|
||||
'p_update': p_update,
|
||||
'ri_update': ri_update,
|
||||
'xr_update': xr_update,
|
||||
}
|
||||
|
||||
return ops
|
||||
from . import ops
|
||||
|
||||
|
||||
class CSRMatrix(object):
|
||||
@ -145,32 +29,51 @@ def cg(a, b, max_iters=10000, err_thresh=1e-6, context=None, queue=None, verbose
|
||||
if queue is None:
|
||||
queue = pyopencl.CommandQueue(context)
|
||||
|
||||
ops = create_ops(context)
|
||||
def load_field(v, dtype=numpy.complex128):
|
||||
return pyopencl.array.to_device(queue, v.astype(dtype))
|
||||
|
||||
r = load_field(b)
|
||||
x = pyopencl.array.zeros_like(r)
|
||||
v = pyopencl.array.zeros_like(r)
|
||||
p = pyopencl.array.zeros_like(r)
|
||||
|
||||
x = pyopencl.array.zeros(queue, dtype=numpy.complex128, shape=b.shape)
|
||||
v = pyopencl.array.zeros_like(x)
|
||||
p = pyopencl.array.zeros_like(x)
|
||||
r = pyopencl.array.to_device(queue, b)
|
||||
alpha = 1.0 + 0j
|
||||
rho = 1.0 + 0j
|
||||
errs = []
|
||||
|
||||
m = CSRMatrix(queue, a)
|
||||
|
||||
_, err2 = ops['ri_update'](r, [])
|
||||
|
||||
'''
|
||||
Generate OpenCL kernels
|
||||
'''
|
||||
a_step = ops.create_a_csr(context)
|
||||
xr_step = ops.create_xr_step(context)
|
||||
rhoerr_step = ops.create_rhoerr_step(context)
|
||||
p_step = ops.create_p_step(context)
|
||||
dot = ops.create_dot(context)
|
||||
|
||||
def a_step(E, H, p, events):
|
||||
return a_step_full(E, H, p, inv_dxes, oeps, invm, gpec, gpmc, Pl, Pr, events)
|
||||
|
||||
'''
|
||||
Start the solve
|
||||
'''
|
||||
start_time2 = time.perf_counter()
|
||||
|
||||
_, err2 = rhoerr_step(r, [])
|
||||
b_norm = numpy.sqrt(err2)
|
||||
print('b_norm check: ', b_norm)
|
||||
|
||||
start_time2 = time.perf_counter()
|
||||
|
||||
success = False
|
||||
for k in range(max_iters):
|
||||
if verbose:
|
||||
print('[{:06d}] rho {:.4} alpha {:4.4}'.format(k, rho, alpha), end=' ')
|
||||
|
||||
rho_prev = rho
|
||||
e = ops['xr_update'](x, p, r, v, alpha, [])
|
||||
rho, err2 = ops['ri_update'](r, [e])
|
||||
e = xr_step(x, p, r, v, alpha, [])
|
||||
rho, err2 = rhoerr_step(r, e)
|
||||
|
||||
errs += [numpy.sqrt(err2) / b_norm]
|
||||
|
||||
if verbose:
|
||||
@ -179,13 +82,10 @@ def cg(a, b, max_iters=10000, err_thresh=1e-6, context=None, queue=None, verbose
|
||||
if errs[-1] < err_thresh:
|
||||
success = True
|
||||
break
|
||||
e = ops['p_update'](p, r, rho/rho_prev, [])
|
||||
ops['spmv'](v, m, p, [e]).wait()
|
||||
|
||||
# v2 = a @ p.get()
|
||||
# print('norm', norm(v2 - v.get()))
|
||||
|
||||
alpha = rho / pyopencl.array.dot(p, v).get()
|
||||
e = p_step(p, r, rho/rho_prev, [])
|
||||
e = a_step(v, m, p, e)
|
||||
alpha = rho / dot(p, v, e)
|
||||
|
||||
if k % 1000 == 0:
|
||||
print(k)
|
||||
|
Loading…
Reference in New Issue
Block a user