Documentation!
This commit is contained in:
parent
78d3e17d92
commit
89caff471f
36
README.md
36
README.md
@ -1,3 +1,37 @@
|
||||
# opencl_fdfd
|
||||
|
||||
OpenCL FDFD solver
|
||||
**opencl_fdfd** is a 3D Finite Difference Frequency Domain (FDFD)
|
||||
solver implemented in Python and OpenCL.
|
||||
|
||||
**Capabilities**
|
||||
* Arbitrary distributions of the following:
|
||||
* Dielectric constant (epsilon)
|
||||
* Magnetic permeabilty (mu)
|
||||
* Perfect electric conductor (PEC)
|
||||
* Perfect magnetic conductor (PMC)
|
||||
* Variable-sized rectangular grids
|
||||
* Stretched-coordinate PMLs (complex cell sizes allowed)
|
||||
|
||||
Currently, only periodic boundary conditions are included.
|
||||
PEC/PMC boundaries can be implemented by drawing PEC/PMC cells near the edges.
|
||||
Bloch boundary conditions are not included but wouldn't be very hard to add.
|
||||
|
||||
The default solver (opencl_fdfd.cg_solver(...)) located in main.py implements
|
||||
the E-field wave operator directly (ie, as a list of OpenCL instructions
|
||||
rather than a matrix). Additionally, there is a slower (and slightly more
|
||||
versatile) sovler in csr.py which attempts to solve an arbitrary sparse
|
||||
matrix in compressed sparse row (CSR) format using the same conjugate gradient
|
||||
method as the default solver. The CSR solver is significantly slower, but can
|
||||
be very useful for testing alternative formulations of the FDFD wave equation.
|
||||
|
||||
Currently, this solver only uses a single GPU or other OpenCL accelerator;
|
||||
generalization to multiple GPUs should be pretty straightforward
|
||||
(ie, just copy over edge values during the matrix multiplication step).
|
||||
|
||||
|
||||
**Dependencies:**
|
||||
* python 3 (written and tested with 3.5)
|
||||
* numpy
|
||||
* pyopencl
|
||||
* jinja2
|
||||
* [fdfd_tools](https://mpxd.net/gogs/jan/fdfd_tools)
|
@ -1 +1,42 @@
|
||||
from .main import cg_solver
|
||||
"""
|
||||
opencl_fdfd OpenCL 3D FDFD solver
|
||||
|
||||
opencl_fdfd is a 3D Finite Difference Frequency Domain (FDFD) solver implemented in
|
||||
Python and OpenCL. Its capabilities include:
|
||||
|
||||
- Arbitrary distributions of the following:
|
||||
- Dielectric constant (epsilon)
|
||||
- Magnetic permeabilty (mu)
|
||||
- Perfect electric conductor (PEC)
|
||||
- Perfect magnetic conductor (PMC)
|
||||
- Variable-sized rectangular grids
|
||||
- Stretched-coordinate PMLs (complex cell sizes allowed)
|
||||
|
||||
Currently, only periodic boundary conditions are included.
|
||||
PEC/PMC boundaries can be implemented by drawing PEC/PMC cells near the edges.
|
||||
Bloch boundary conditions are not included but wouldn't be very hard to add.
|
||||
|
||||
The default solver (opencl_fdfd.cg_solver(...)) located in main.py implements
|
||||
the E-field wave operator directly (ie, as a list of OpenCL instructions
|
||||
rather than a matrix). Additionally, there is a slower (and slightly more
|
||||
versatile) sovler in csr.py which attempts to solve an arbitrary sparse
|
||||
matrix in compressed sparse row (CSR) format using the same conjugate gradient
|
||||
method as the default solver. The CSR solver is significantly slower, but can
|
||||
be very useful for testing alternative formulations of the FDFD wave equation.
|
||||
|
||||
Currently, this solver only uses a single GPU or other OpenCL accelerator; generalization
|
||||
to multiple GPUs should be pretty straightforward (ie, just copy over edge values during the
|
||||
matrix multiplication step).
|
||||
|
||||
|
||||
Dependencies:
|
||||
- fdfd_tools ( https://mpxd.net/gogs/jan/fdfd_tools )
|
||||
- numpy
|
||||
- pyopencl
|
||||
- jinja2
|
||||
"""
|
||||
|
||||
from .main import cg_solver
|
||||
|
||||
__author__ = 'Jan Petykiewicz'
|
||||
|
||||
|
@ -1,27 +1,53 @@
|
||||
from typing import List, Dict, Any
|
||||
import time
|
||||
|
||||
import numpy
|
||||
from numpy.linalg import norm
|
||||
import pyopencl
|
||||
import pyopencl.array
|
||||
|
||||
import time
|
||||
|
||||
import fdfd_tools.operators
|
||||
|
||||
from . import ops
|
||||
|
||||
|
||||
class CSRMatrix(object):
|
||||
"""
|
||||
Matrix stored in Compressed Sparse Row format, in GPU RAM.
|
||||
"""
|
||||
row_ptr = None # type: pyopencl.array.Array
|
||||
col_ind = None # type: pyopencl.array.Array
|
||||
data = None # type: pyopencl.array.Array
|
||||
|
||||
def __init__(self, queue, m):
|
||||
def __init__(self,
|
||||
queue: pyopencl.CommandQueue,
|
||||
m: 'scipy.sparse.csr_matrix'):
|
||||
self.row_ptr = pyopencl.array.to_device(queue, m.indptr)
|
||||
self.col_ind = pyopencl.array.to_device(queue, m.indices)
|
||||
self.data = pyopencl.array.to_device(queue, m.data.astype(numpy.complex128))
|
||||
|
||||
|
||||
def cg(a, b, max_iters=10000, err_thresh=1e-6, context=None, queue=None, verbose=False):
|
||||
def cg(a: 'scipy.sparse.csr_matrix',
|
||||
b: numpy.ndarray,
|
||||
max_iters: int = 10000,
|
||||
err_threshold: float = 1e-6,
|
||||
context: pyopencl.Context = None,
|
||||
queue: pyopencl.CommandQueue = None,
|
||||
verbose: bool = False,
|
||||
) -> numpy.ndarray:
|
||||
"""
|
||||
General conjugate-gradient solver for sparse matrices, where A @ x = b.
|
||||
|
||||
:param a: Matrix to solve (CSR format)
|
||||
:param b: Right-hand side vector (dense ndarray)
|
||||
:param max_iters: Maximum number of iterations
|
||||
:param err_threshold: Error threshold for successful solve, relative to norm(b)
|
||||
:param context: PyOpenCL context. Will be created if not given.
|
||||
:param queue: PyOpenCL command queue. Will be created if not given.
|
||||
:param verbose: Whether to print statistics to screen.
|
||||
:return: Solution vector x; returned even if solve doesn't converge.
|
||||
"""
|
||||
|
||||
start_time = time.perf_counter()
|
||||
|
||||
if context is None:
|
||||
@ -44,7 +70,6 @@ def cg(a, b, max_iters=10000, err_thresh=1e-6, context=None, queue=None, verbose
|
||||
|
||||
m = CSRMatrix(queue, a)
|
||||
|
||||
|
||||
'''
|
||||
Generate OpenCL kernels
|
||||
'''
|
||||
@ -77,7 +102,7 @@ def cg(a, b, max_iters=10000, err_thresh=1e-6, context=None, queue=None, verbose
|
||||
if verbose:
|
||||
print('err', errs[-1])
|
||||
|
||||
if errs[-1] < err_thresh:
|
||||
if errs[-1] < err_threshold:
|
||||
success = True
|
||||
break
|
||||
|
||||
@ -108,7 +133,38 @@ def cg(a, b, max_iters=10000, err_thresh=1e-6, context=None, queue=None, verbose
|
||||
return x
|
||||
|
||||
|
||||
def cg_solver(omega, dxes, J, epsilon, mu=None, pec=None, pmc=None, adjoint=False, solver_opts=None):
|
||||
def cg_solver(omega: complex,
|
||||
dxes: List[List[numpy.ndarray]],
|
||||
J: numpy.ndarray,
|
||||
epsilon: numpy.ndarray,
|
||||
mu: numpy.ndarray = None,
|
||||
pec: numpy.ndarray = None,
|
||||
pmc: numpy.ndarray = None,
|
||||
adjoint: bool = False,
|
||||
solver_opts: Dict[str, Any] = None,
|
||||
) -> numpy.ndarray:
|
||||
"""
|
||||
Conjugate gradient FDFD solver using CSR sparse matrices, mainly for
|
||||
testing and development since it's much slower than the solver in main.py.
|
||||
|
||||
All ndarray arguments should be 1D arrays. To linearize a list of 3 3D ndarrays,
|
||||
either use fdfd_tools.vec() or numpy:
|
||||
f_1D = numpy.hstack(tuple((fi.flatten(order='F') for fi in [f_x, f_y, f_z])))
|
||||
|
||||
:param omega: Complex frequency to solve at.
|
||||
:param dxes: [[dx_e, dy_e, dz_e], [dx_h, dy_h, dz_h]] (complex cell sizes)
|
||||
:param J: Electric current distribution (at E-field locations)
|
||||
:param epsilon: Dielectric constant distribution (at E-field locations)
|
||||
:param mu: Magnetic permeability distribution (at H-field locations)
|
||||
:param pec: Perfect electric conductor distribution
|
||||
(at E-field locations; non-zero value indicates PEC is present)
|
||||
:param pmc: Perfect magnetic conductor distribution
|
||||
(at H-field locations; non-zero value indicates PMC is present)
|
||||
:param adjoint: If true, solves the adjoint problem.
|
||||
:param solver_opts: Passed as kwargs to opencl_fdfd.csr.cg(**solver_opts)
|
||||
:return: E-field which solves the system.
|
||||
"""
|
||||
|
||||
if solver_opts is None:
|
||||
solver_opts = dict()
|
||||
|
||||
|
@ -1,17 +1,58 @@
|
||||
from typing import List
|
||||
import time
|
||||
|
||||
import numpy
|
||||
from numpy.linalg import norm
|
||||
import pyopencl
|
||||
import pyopencl.array
|
||||
|
||||
import time
|
||||
|
||||
import fdfd_tools.operators
|
||||
|
||||
from . import ops
|
||||
|
||||
__author__ = 'Jan Petykiewicz'
|
||||
|
||||
|
||||
def cg_solver(omega: complex,
|
||||
dxes: List[List[numpy.ndarray]],
|
||||
J: numpy.ndarray,
|
||||
epsilon: numpy.ndarray,
|
||||
mu: numpy.ndarray = None,
|
||||
pec: numpy.ndarray = None,
|
||||
pmc: numpy.ndarray = None,
|
||||
adjoint: bool = False,
|
||||
max_iters: int = 40000,
|
||||
err_threshold: float = 1e-6,
|
||||
context: pyopencl.Context = None,
|
||||
verbose: bool = False,
|
||||
) -> numpy.ndarray:
|
||||
"""
|
||||
OpenCL FDFD solver using the iterative conjugate gradient (cg) method
|
||||
and implementing the diagonalized E-field wave operator directly in
|
||||
OpenCL.
|
||||
|
||||
All ndarray arguments should be 1D arrays. To linearize a list of 3 3D ndarrays,
|
||||
either use fdfd_tools.vec() or numpy:
|
||||
f_1D = numpy.hstack(tuple((fi.flatten(order='F') for fi in [f_x, f_y, f_z])))
|
||||
|
||||
:param omega: Complex frequency to solve at.
|
||||
:param dxes: [[dx_e, dy_e, dz_e], [dx_h, dy_h, dz_h]] (complex cell sizes)
|
||||
:param J: Electric current distribution (at E-field locations)
|
||||
:param epsilon: Dielectric constant distribution (at E-field locations)
|
||||
:param mu: Magnetic permeability distribution (at H-field locations)
|
||||
:param pec: Perfect electric conductor distribution
|
||||
(at E-field locations; non-zero value indicates PEC is present)
|
||||
:param pmc: Perfect magnetic conductor distribution
|
||||
(at H-field locations; non-zero value indicates PMC is present)
|
||||
:param adjoint: If true, solves the adjoint problem.
|
||||
:param max_iters: Maximum number of iterations. Default 40,000.
|
||||
:param err_threshold: If (r @ r.conj()) / norm(1j * omega * J) < err_threshold, success.
|
||||
Default 1e-6.
|
||||
:param context: PyOpenCL context to run in. If not given, construct a new context.
|
||||
:param verbose: If True, print progress to stdout. Default False.
|
||||
:return: E-field which solves the system. Returned even if we did not converge.
|
||||
"""
|
||||
|
||||
def cg_solver(omega, dxes, J, epsilon, mu=None, pec=None, pmc=None, adjoint=False,
|
||||
max_iters=40000, err_thresh=1e-6, context=None, verbose=False):
|
||||
start_time = time.perf_counter()
|
||||
|
||||
b = -1j * omega * J
|
||||
@ -138,7 +179,7 @@ def cg_solver(omega, dxes, J, epsilon, mu=None, pec=None, pmc=None, adjoint=Fals
|
||||
if verbose:
|
||||
print('err', errs[-1])
|
||||
|
||||
if errs[-1] < err_thresh:
|
||||
if errs[-1] < err_threshold:
|
||||
success = True
|
||||
break
|
||||
|
||||
|
@ -1,3 +1,5 @@
|
||||
from typing import List, Callable
|
||||
|
||||
import numpy
|
||||
import jinja2
|
||||
|
||||
@ -9,6 +11,9 @@ from pyopencl.reduction import ReductionKernel
|
||||
# Create jinja2 env on module load
|
||||
jinja_env = jinja2.Environment(loader=jinja2.PackageLoader(__name__, 'kernels'))
|
||||
|
||||
# Return type for the create_opname(...) functions
|
||||
operation = Callable[..., List[pyopencl.Event]]
|
||||
|
||||
|
||||
def type_to_C(float_type: numpy.float32 or numpy.float64) -> str:
|
||||
"""
|
||||
@ -28,9 +33,11 @@ def type_to_C(float_type: numpy.float32 or numpy.float64) -> str:
|
||||
|
||||
return types[float_type]
|
||||
|
||||
# Type names
|
||||
ctype = type_to_C(numpy.complex128)
|
||||
ctype_bare = 'cdouble'
|
||||
|
||||
# Preamble for all OpenCL code
|
||||
preamble = '''
|
||||
#define PYOPENCL_DEFINE_CDOUBLE
|
||||
#include <pyopencl-complex.h>
|
||||
@ -44,11 +51,43 @@ preamble = '''
|
||||
'''.format(ctype=ctype_bare)
|
||||
|
||||
|
||||
def ptrs(*args):
|
||||
def ptrs(*args: str) -> List[str]:
|
||||
return [ctype + ' *' + s for s in args]
|
||||
|
||||
|
||||
def create_a(context, shape, mu=False, pec=False, pmc=False):
|
||||
def create_a(context: pyopencl.Context,
|
||||
shape: numpy.ndarray,
|
||||
mu: bool = False,
|
||||
pec: bool = False,
|
||||
pmc: bool = False,
|
||||
) -> operation:
|
||||
"""
|
||||
Return a function which performs (A @ p), where A is the FDFD wave equation for E-field.
|
||||
|
||||
The returned function has the signature
|
||||
spmv(E, H, p, idxes, oeps, inv_mu, pec, pmc, Pl, Pr, e)
|
||||
with arguments (all except e are of type pyopencl.array.Array (or contain it)):
|
||||
E E-field (output)
|
||||
H Temporary variable for holding intermediate H-field values on GPU (same size as E)
|
||||
p p-vector (input vector)
|
||||
idxes list holding [[1/dx_e, 1/dy_e, 1/dz_e], [1/dx_h, 1/dy_h, 1/dz_h]] (complex cell widths)
|
||||
oeps omega * epsilon
|
||||
inv_mu 1/mu
|
||||
pec array of bytes; nonzero value indicates presence of PEC
|
||||
pmc array of bytes; nonzero value indicates presence of PMC
|
||||
Pl Left preconditioner (array containing diagonal entries only)
|
||||
Pr Right preconditioner (array containing diagonal entries only)
|
||||
e List of pyopencl.Event; execution will wait until these are finished.
|
||||
|
||||
and returns a list of pyopencl.Event.
|
||||
|
||||
:param context: PyOpenCL context
|
||||
:param shape: Dimensions of the E-field
|
||||
:param mu: False iff (mu == 1) everywhere
|
||||
:param pec: False iff no PEC anywhere
|
||||
:param pmc: False iff no PMC anywhere
|
||||
:return: Function for computing (A @ p)
|
||||
"""
|
||||
|
||||
common_source = jinja_env.get_template('common.cl').render(shape=shape)
|
||||
|
||||
@ -57,6 +96,9 @@ def create_a(context, shape, mu=False, pec=False, pmc=False):
|
||||
des = [ctype + ' *inv_de' + a for a in 'xyz']
|
||||
dhs = [ctype + ' *inv_dh' + a for a in 'xyz']
|
||||
|
||||
'''
|
||||
Convert p to initial E (ie, apply right preconditioner and PEC)
|
||||
'''
|
||||
p2e_source = jinja_env.get_template('p2e.cl').render(pec=pec)
|
||||
P2E_kernel = ElementwiseKernel(context,
|
||||
name='P2E',
|
||||
@ -64,6 +106,9 @@ def create_a(context, shape, mu=False, pec=False, pmc=False):
|
||||
operation=p2e_source,
|
||||
arguments=', '.join(ptrs('E', 'p', 'Pr') + pec_arg))
|
||||
|
||||
'''
|
||||
Calculate intermediate H from intermediate E
|
||||
'''
|
||||
e2h_source = jinja_env.get_template('e2h.cl').render(mu=mu,
|
||||
pmc=pmc,
|
||||
common_cl=common_source)
|
||||
@ -73,6 +118,9 @@ def create_a(context, shape, mu=False, pec=False, pmc=False):
|
||||
operation=e2h_source,
|
||||
arguments=', '.join(ptrs('E', 'H', 'inv_mu') + pmc_arg + des))
|
||||
|
||||
'''
|
||||
Calculate final E (including left preconditioner)
|
||||
'''
|
||||
h2e_source = jinja_env.get_template('h2e.cl').render(pec=pec,
|
||||
common_cl=common_source)
|
||||
H2E_kernel = ElementwiseKernel(context,
|
||||
@ -90,7 +138,20 @@ def create_a(context, shape, mu=False, pec=False, pmc=False):
|
||||
return spmv
|
||||
|
||||
|
||||
def create_xr_step(context):
|
||||
def create_xr_step(context: pyopencl.Context) -> operation:
|
||||
"""
|
||||
Return a function
|
||||
xr_update(x, p, r, v, alpha, e)
|
||||
which performs the operations
|
||||
x += alpha * p
|
||||
r -= alpha * v
|
||||
|
||||
after waiting for all in the list e
|
||||
and returns a list of pyopencl.Event
|
||||
|
||||
:param context: PyOpenCL context
|
||||
:return: Function for performing x and r updates
|
||||
"""
|
||||
update_xr_source = '''
|
||||
x[i] = add(x[i], mul(alpha, p[i]));
|
||||
r[i] = sub(r[i], mul(alpha, v[i]));
|
||||
@ -110,13 +171,28 @@ def create_xr_step(context):
|
||||
return xr_update
|
||||
|
||||
|
||||
def create_rhoerr_step(context):
|
||||
def create_rhoerr_step(context: pyopencl.Context) -> operation:
|
||||
"""
|
||||
Return a function
|
||||
ri_update(r, e)
|
||||
which performs the operations
|
||||
rho = r * r.conj()
|
||||
err = r * r
|
||||
|
||||
after waiting for all pyopencl.Event in the list e
|
||||
and returns a list of pyopencl.Event
|
||||
|
||||
:param context: PyOpenCL context
|
||||
:return: Function for performing x and r updates
|
||||
"""
|
||||
|
||||
update_ri_source = '''
|
||||
(double3)(r[i].real * r[i].real, \
|
||||
r[i].real * r[i].imag, \
|
||||
r[i].imag * r[i].imag)
|
||||
'''
|
||||
|
||||
# Use a vector type (double3) to make the reduction simpler
|
||||
ri_dtype = pyopencl.array.vec.double3
|
||||
|
||||
ri_kernel = ReductionKernel(context,
|
||||
@ -138,7 +214,19 @@ def create_rhoerr_step(context):
|
||||
return ri_update
|
||||
|
||||
|
||||
def create_p_step(context):
|
||||
def create_p_step(context: pyopencl.Context) -> operation:
|
||||
"""
|
||||
Return a function
|
||||
p_update(p, r, beta, e)
|
||||
which performs the operation
|
||||
p = r + beta * p
|
||||
|
||||
after waiting for all pyopencl.Event in the list e
|
||||
and returns a list of pyopencl.Event
|
||||
|
||||
:param context: PyOpenCL context
|
||||
:return: Function for performing the p update
|
||||
"""
|
||||
update_p_source = '''
|
||||
p[i] = add(r[i], mul(beta, p[i]));
|
||||
'''
|
||||
@ -156,7 +244,16 @@ def create_p_step(context):
|
||||
return p_update
|
||||
|
||||
|
||||
def create_dot(context):
|
||||
def create_dot(context: pyopencl.Context) -> operation:
|
||||
"""
|
||||
Return a function for performing the dot product
|
||||
p @ v
|
||||
with the signature
|
||||
dot(p, v, e) -> float
|
||||
|
||||
:param context: PyOpenCL context
|
||||
:return: Function for performing the dot product
|
||||
"""
|
||||
dot_dtype = numpy.complex128
|
||||
|
||||
dot_kernel = ReductionKernel(context,
|
||||
@ -168,14 +265,30 @@ def create_dot(context):
|
||||
reduce_expr='add(a, b)',
|
||||
arguments=ptrs('p', 'v'))
|
||||
|
||||
def ri_update(p, v, e):
|
||||
def dot(p, v, e):
|
||||
g = dot_kernel(p, v, wait_for=e)
|
||||
return g.get()
|
||||
|
||||
return ri_update
|
||||
return dot
|
||||
|
||||
|
||||
def create_a_csr(context):
|
||||
def create_a_csr(context: pyopencl.Context) -> operation:
|
||||
"""
|
||||
Return a function for performing the operation
|
||||
(N @ v)
|
||||
where N is stored in CSR (compressed sparse row) format.
|
||||
|
||||
The function signature is
|
||||
spmv(v_out, m, v_in, e)
|
||||
where m is an opencl_fdfd.csr.CSRMatrix
|
||||
and v_out, v_in are (dense) vectors (of type pyopencl.array.Array).
|
||||
|
||||
The function waits on all the pyopencl.Event in e before running, and returns
|
||||
a list of pyopencl.Event.
|
||||
|
||||
:param context: PyOpenCL context
|
||||
:return: Function for sparse (M @ v) operation where M is in CSR format
|
||||
"""
|
||||
spmv_source = '''
|
||||
int start = m_row_ptr[i];
|
||||
int stop = m_row_ptr[i+1];
|
||||
|
Loading…
Reference in New Issue
Block a user