use asarray() in place of array(copy=False)
This commit is contained in:
parent
6193a9c256
commit
684557d479
@ -88,7 +88,7 @@ def cg(
|
|||||||
def load_field(v: NDArray[numpy.complexfloating], dtype: type = numpy.complex128) -> pyopencl.array.Array:
|
def load_field(v: NDArray[numpy.complexfloating], dtype: type = numpy.complex128) -> pyopencl.array.Array:
|
||||||
return pyopencl.array.to_device(queue, v.astype(dtype))
|
return pyopencl.array.to_device(queue, v.astype(dtype))
|
||||||
|
|
||||||
r = load_field(b)
|
r = load_field(numpy.asarray(b))
|
||||||
x = pyopencl.array.zeros_like(r)
|
x = pyopencl.array.zeros_like(r)
|
||||||
v = pyopencl.array.zeros_like(r)
|
v = pyopencl.array.zeros_like(r)
|
||||||
p = pyopencl.array.zeros_like(r)
|
p = pyopencl.array.zeros_like(r)
|
||||||
|
@ -70,7 +70,7 @@ def cg_solver(
|
|||||||
|
|
||||||
shape = [dd.size for dd in dxes[0]]
|
shape = [dd.size for dd in dxes[0]]
|
||||||
|
|
||||||
b = -1j * omega * numpy.array(J, copy=False)
|
b = -1j * omega * numpy.asarray(J)
|
||||||
|
|
||||||
'''
|
'''
|
||||||
** In this comment, I use the following notation:
|
** In this comment, I use the following notation:
|
||||||
@ -99,7 +99,8 @@ def cg_solver(
|
|||||||
We can accomplish all this simply by conjugating everything (except J) and
|
We can accomplish all this simply by conjugating everything (except J) and
|
||||||
reversing the order of L and R
|
reversing the order of L and R
|
||||||
'''
|
'''
|
||||||
epsilon = numpy.array(epsilon, copy=False)
|
epsilon = numpy.asarray(epsilon)
|
||||||
|
|
||||||
if adjoint:
|
if adjoint:
|
||||||
# Conjugate everything
|
# Conjugate everything
|
||||||
dxes = [[numpy.conj(dd) for dd in dds] for dds in dxes]
|
dxes = [[numpy.conj(dd) for dd in dds] for dds in dxes]
|
||||||
@ -133,26 +134,26 @@ def cg_solver(
|
|||||||
rho = 1.0 + 0j
|
rho = 1.0 + 0j
|
||||||
errs = []
|
errs = []
|
||||||
|
|
||||||
inv_dxes = [[load_field(1 / numpy.array(dd, copy=False)) for dd in dds] for dds in dxes]
|
inv_dxes = [[load_field(1 / numpy.asarray(dd)) for dd in dds] for dds in dxes]
|
||||||
oeps = load_field(-omega ** 2 * epsilon)
|
oeps = load_field(-omega * omega * epsilon)
|
||||||
Pl = load_field(L.diagonal())
|
Pl = load_field(L.diagonal())
|
||||||
Pr = load_field(R.diagonal())
|
Pr = load_field(R.diagonal())
|
||||||
|
|
||||||
if mu is None:
|
if mu is None:
|
||||||
invm = load_field(numpy.array([]))
|
invm = load_field(numpy.array([]))
|
||||||
else:
|
else:
|
||||||
invm = load_field(1 / numpy.array(mu, copy=False))
|
invm = load_field(1 / numpy.asarray(mu))
|
||||||
mu = numpy.array(mu, copy=False)
|
mu = numpy.asarray(mu)
|
||||||
|
|
||||||
if pec is None:
|
if pec is None:
|
||||||
gpec = load_field(numpy.array([]), dtype=numpy.int8)
|
gpec = load_field(numpy.array([]), dtype=numpy.int8)
|
||||||
else:
|
else:
|
||||||
gpec = load_field(numpy.array(pec, dtype=bool, copy=False), dtype=numpy.int8)
|
gpec = load_field(numpy.asarray(pec, dtype=bool), dtype=numpy.int8)
|
||||||
|
|
||||||
if pmc is None:
|
if pmc is None:
|
||||||
gpmc = load_field(numpy.array([]), dtype=numpy.int8)
|
gpmc = load_field(numpy.array([]), dtype=numpy.int8)
|
||||||
else:
|
else:
|
||||||
gpmc = load_field(numpy.array(pmc, dtype=bool, copy=False), dtype=numpy.int8)
|
gpmc = load_field(numpy.asarray(pmc, dtype=bool), dtype=numpy.int8)
|
||||||
|
|
||||||
'''
|
'''
|
||||||
Generate OpenCL kernels
|
Generate OpenCL kernels
|
||||||
|
Loading…
Reference in New Issue
Block a user