depend on meanas instad of fdfd_tools
This commit is contained in:
parent
792b161753
commit
5861767a00
@ -6,7 +6,7 @@ CSRMatrix sparse matrix representation.
|
||||
|
||||
The FDFD solver (fdfd_cg_solver()) solves an FDFD problem by
|
||||
creating a sparse matrix representing the problem (using
|
||||
fdfd_tools) and then passing it to cg(), which performs a
|
||||
meanas) and then passing it to cg(), which performs a
|
||||
conjugate gradient solve.
|
||||
|
||||
cg() is capable of solving arbitrary sparse matrices which
|
||||
@ -23,7 +23,7 @@ from numpy.linalg import norm
|
||||
import pyopencl
|
||||
import pyopencl.array
|
||||
|
||||
import fdfd_tools.solvers
|
||||
import meanas.fdfd.solvers
|
||||
|
||||
from . import ops
|
||||
|
||||
@ -158,7 +158,7 @@ def fdfd_cg_solver(solver_opts: Dict[str, Any] = None,
|
||||
Conjugate gradient FDFD solver using CSR sparse matrices, mainly for
|
||||
testing and development since it's much slower than the solver in main.py.
|
||||
|
||||
Calls fdfd_tools.solvers.generic(**fdfd_args,
|
||||
Calls meanas.fdfd.solvers.generic(**fdfd_args,
|
||||
matrix_solver=opencl_fdfd.csr.cg,
|
||||
matrix_solver_opts=solver_opts)
|
||||
|
||||
@ -172,7 +172,7 @@ def fdfd_cg_solver(solver_opts: Dict[str, Any] = None,
|
||||
if solver_opts is None:
|
||||
solver_opts = dict()
|
||||
|
||||
x = fdfd_tools.solvers.generic(matrix_solver=cg,
|
||||
x = meanas.fdfd.solvers.generic(matrix_solver=cg,
|
||||
matrix_solver_opts=solver_opts,
|
||||
**fdfd_args)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user