use logging package for output, and remove 'verbose' options
This commit is contained in:
parent
4e3d4a8b2c
commit
4ffa5e4a66
@ -16,6 +16,7 @@ satisfy the constraints for the 'conjugate gradient' algorithm
|
||||
|
||||
from typing import Dict, Any
|
||||
import time
|
||||
import logging
|
||||
|
||||
import numpy
|
||||
from numpy.linalg import norm
|
||||
@ -27,6 +28,11 @@ import fdfd_tools.solvers
|
||||
from . import ops
|
||||
|
||||
|
||||
__author__ = 'Jan Petykiewicz'
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class CSRMatrix(object):
|
||||
"""
|
||||
Matrix stored in Compressed Sparse Row format, in GPU RAM.
|
||||
@ -49,7 +55,6 @@ def cg(A: 'scipy.sparse.csr_matrix',
|
||||
err_threshold: float = 1e-6,
|
||||
context: pyopencl.Context = None,
|
||||
queue: pyopencl.CommandQueue = None,
|
||||
verbose: bool = False,
|
||||
) -> numpy.ndarray:
|
||||
"""
|
||||
General conjugate-gradient solver for sparse matrices, where A @ x = b.
|
||||
@ -60,7 +65,6 @@ def cg(A: 'scipy.sparse.csr_matrix',
|
||||
:param err_threshold: Error threshold for successful solve, relative to norm(b)
|
||||
:param context: PyOpenCL context. Will be created if not given.
|
||||
:param queue: PyOpenCL command queue. Will be created if not given.
|
||||
:param verbose: Whether to print statistics to screen.
|
||||
:return: Solution vector x; returned even if solve doesn't converge.
|
||||
"""
|
||||
|
||||
@ -102,13 +106,11 @@ def cg(A: 'scipy.sparse.csr_matrix',
|
||||
|
||||
_, err2 = rhoerr_step(r, [])
|
||||
b_norm = numpy.sqrt(err2)
|
||||
if verbose:
|
||||
print('b_norm check: ', b_norm)
|
||||
logging.debug('b_norm check: ', b_norm)
|
||||
|
||||
success = False
|
||||
for k in range(max_iters):
|
||||
if verbose:
|
||||
print('[{:06d}] rho {:.4} alpha {:4.4}'.format(k, rho, alpha), end=' ')
|
||||
logging.debug('[{:06d}] rho {:.4} alpha {:4.4}'.format(k, rho, alpha))
|
||||
|
||||
rho_prev = rho
|
||||
e = xr_step(x, p, r, v, alpha, [])
|
||||
@ -116,8 +118,7 @@ def cg(A: 'scipy.sparse.csr_matrix',
|
||||
|
||||
errs += [numpy.sqrt(err2) / b_norm]
|
||||
|
||||
if verbose:
|
||||
print('err', errs[-1])
|
||||
logging.debug('err {}'.format(errs[-1]))
|
||||
|
||||
if errs[-1] < err_threshold:
|
||||
success = True
|
||||
@ -128,7 +129,7 @@ def cg(A: 'scipy.sparse.csr_matrix',
|
||||
alpha = rho / dot(p, v, e)
|
||||
|
||||
if verbose and k % 1000 == 0:
|
||||
print(k)
|
||||
logging.info('iteration {}'.format(k))
|
||||
|
||||
'''
|
||||
Done solving
|
||||
@ -137,17 +138,16 @@ def cg(A: 'scipy.sparse.csr_matrix',
|
||||
|
||||
x = x.get()
|
||||
|
||||
if verbose:
|
||||
if success:
|
||||
print('Success', end='')
|
||||
logging.info('Solve success')
|
||||
else:
|
||||
print('Failure', end=', ')
|
||||
print(', {} iterations in {} sec: {} iterations/sec \
|
||||
logging.warning('Solve failure')
|
||||
logging.info('{} iterations in {} sec: {} iterations/sec \
|
||||
'.format(k, time_elapsed, k / time_elapsed))
|
||||
print('final error', errs[-1])
|
||||
print('overhead {} sec'.format(start_time2 - start_time))
|
||||
logging.debug('final error {}'.format(errs[-1]))
|
||||
logging.debug('overhead {} sec'.format(start_time2 - start_time))
|
||||
|
||||
print('Final residual:', norm(A @ x - b) / norm(b))
|
||||
logging.info('Final residual: {}'.format(norm(A @ x - b) / norm(b)))
|
||||
return x
|
||||
|
||||
|
||||
|
@ -8,6 +8,7 @@ a matrix).
|
||||
|
||||
from typing import List
|
||||
import time
|
||||
import logging
|
||||
|
||||
import numpy
|
||||
from numpy.linalg import norm
|
||||
@ -18,8 +19,11 @@ import fdfd_tools.operators
|
||||
|
||||
from . import ops
|
||||
|
||||
|
||||
__author__ = 'Jan Petykiewicz'
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def cg_solver(omega: complex,
|
||||
dxes: List[List[numpy.ndarray]],
|
||||
@ -32,7 +36,6 @@ def cg_solver(omega: complex,
|
||||
max_iters: int = 40000,
|
||||
err_threshold: float = 1e-6,
|
||||
context: pyopencl.Context = None,
|
||||
verbose: bool = False,
|
||||
) -> numpy.ndarray:
|
||||
"""
|
||||
OpenCL FDFD solver using the iterative conjugate gradient (cg) method
|
||||
@ -57,7 +60,6 @@ def cg_solver(omega: complex,
|
||||
:param err_threshold: If (r @ r.conj()) / norm(1j * omega * J) < err_threshold, success.
|
||||
Default 1e-6.
|
||||
:param context: PyOpenCL context to run in. If not given, construct a new context.
|
||||
:param verbose: If True, print progress to stdout. Default False.
|
||||
:return: E-field which solves the system. Returned even if we did not converge.
|
||||
"""
|
||||
|
||||
@ -171,12 +173,13 @@ def cg_solver(omega: complex,
|
||||
|
||||
_, err2 = rhoerr_step(r, [])
|
||||
b_norm = numpy.sqrt(err2)
|
||||
print('b_norm check: ', b_norm)
|
||||
logging.debug('b_norm check: {}'.format(b_norm))
|
||||
|
||||
success = False
|
||||
for k in range(max_iters):
|
||||
if verbose:
|
||||
print('[{:06d}] rho {:.4} alpha {:4.4}'.format(k, rho, alpha), end=' ')
|
||||
do_print = (k % 100 == 0)
|
||||
if do_print:
|
||||
logger.debug('[{:06d}] rho {:.4} alpha {:4.4}'.format(k, rho, alpha))
|
||||
|
||||
rho_prev = rho
|
||||
e = xr_step(x, p, r, v, alpha, [])
|
||||
@ -184,8 +187,8 @@ def cg_solver(omega: complex,
|
||||
|
||||
errs += [numpy.sqrt(err2) / b_norm]
|
||||
|
||||
if verbose:
|
||||
print('err', errs[-1])
|
||||
if do_print:
|
||||
logger.debug('err {}'.format(errs[-1]))
|
||||
|
||||
if errs[-1] < err_threshold:
|
||||
success = True
|
||||
@ -196,7 +199,7 @@ def cg_solver(omega: complex,
|
||||
alpha = rho / dot(p, v, e)
|
||||
|
||||
if k % 1000 == 0:
|
||||
print(k)
|
||||
logger.info('iteration {}'.format(k))
|
||||
|
||||
'''
|
||||
Done solving
|
||||
@ -210,18 +213,18 @@ def cg_solver(omega: complex,
|
||||
x = (Pr * x).get()
|
||||
|
||||
if success:
|
||||
print('Success', end='')
|
||||
logger.info('Solve success')
|
||||
else:
|
||||
print('Failure', end=', ')
|
||||
print(', {} iterations in {} sec: {} iterations/sec \
|
||||
logger.warning('Solve failure')
|
||||
logger.info('{} iterations in {} sec: {} iterations/sec \
|
||||
'.format(k, time_elapsed, k / time_elapsed))
|
||||
print('final error', errs[-1])
|
||||
print('overhead {} sec'.format(start_time2 - start_time))
|
||||
logger.debug('final error {}'.format(errs[-1]))
|
||||
logger.debug('overhead {} sec'.format(start_time2 - start_time))
|
||||
|
||||
A0 = fdfd_tools.operators.e_full(omega, dxes, epsilon, mu).tocsr()
|
||||
if adjoint:
|
||||
# Remember we conjugated all the contents of A earlier
|
||||
A0 = A0.T
|
||||
print('Post-everything residual:', norm(A0 @ x - b) / norm(b))
|
||||
logger.info('Post-everything residual: {}'.format(norm(A0 @ x - b) / norm(b)))
|
||||
return x
|
||||
|
||||
|
@ -8,6 +8,7 @@ See kernels/ for any of the .cl files loaded in this file.
|
||||
"""
|
||||
|
||||
from typing import List, Callable
|
||||
import logging
|
||||
|
||||
import numpy
|
||||
import jinja2
|
||||
@ -18,6 +19,8 @@ from pyopencl.elementwise import ElementwiseKernel
|
||||
from pyopencl.reduction import ReductionKernel
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Create jinja2 env on module load
|
||||
jinja_env = jinja2.Environment(loader=jinja2.PackageLoader(__name__, 'kernels'))
|
||||
|
||||
@ -145,6 +148,11 @@ def create_a(context: pyopencl.Context,
|
||||
e2 = H2E_kernel(E, H, oeps, Pl, pec, *idxes[1], wait_for=[e2])
|
||||
return [e2]
|
||||
|
||||
logger.debug('Preamble: \n{}'.format(preamble))
|
||||
logger.debug('p2e: \n{}'.format(p2e_source))
|
||||
logger.debug('e2h: \n{}'.format(e2h_source))
|
||||
logger.debug('h2e: \n{}'.format(h2e_source))
|
||||
|
||||
return spmv
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user