180 lines
6.1 KiB
Python
180 lines
6.1 KiB
Python
"""
|
|
Example code for running an OpenCL FDTD simulation
|
|
|
|
See main() for simulation setup.
|
|
"""
|
|
|
|
import sys
|
|
import time
|
|
|
|
import numpy
|
|
import h5py
|
|
|
|
from meanas import fdtd
|
|
from masque import Pattern, shapes
|
|
import gridlock
|
|
import pcgen
|
|
|
|
|
|
def perturbed_l3(a: float, radius: float, **kwargs) -> Pattern:
|
|
"""
|
|
Generate a masque.Pattern object containing a perturbed L3 cavity.
|
|
|
|
Args:
|
|
a: Lattice constant.
|
|
radius: Hole radius, in units of a (lattice constant).
|
|
**kwargs: Keyword arguments:
|
|
hole_dose, trench_dose, hole_layer, trench_layer: Shape properties for Pattern.
|
|
Defaults *_dose=1, hole_layer=0, trench_layer=1.
|
|
shifts_a, shifts_r: passed to pcgen.l3_shift; specifies lattice constant (1 -
|
|
multiplicative factor) and radius (multiplicative factor) for shifting
|
|
holes adjacent to the defect (same row). Defaults are 0.15 shift for
|
|
first hole, 0.075 shift for third hole, and no radius change.
|
|
xy_size: [x, y] number of mirror periods in each direction; total size is
|
|
`2 * n + 1` holes in each direction. Default `[10, 10]`.
|
|
perturbed_radius: radius of holes perturbed to form an upwards-driected beam
|
|
(multiplicative factor). Default 1.1.
|
|
trench width: Width of the undercut trenches. Default 1.2e3.
|
|
|
|
Return:
|
|
`masque.Pattern` object containing the L3 design
|
|
"""
|
|
|
|
default_args = {'hole_dose': 1,
|
|
'trench_dose': 1,
|
|
'hole_layer': 0,
|
|
'trench_layer': 1,
|
|
'shifts_a': (0.15, 0, 0.075),
|
|
'shifts_r': (1.0, 1.0, 1.0),
|
|
'xy_size': (10, 10),
|
|
'perturbed_radius': 1.1,
|
|
'trench_width': 1.2e3,
|
|
}
|
|
kwargs = {**default_args, **kwargs}
|
|
|
|
xyr = pcgen.l3_shift_perturbed_defect(mirror_dims=kwargs['xy_size'],
|
|
perturbed_radius=kwargs['perturbed_radius'],
|
|
shifts_a=kwargs['shifts_a'],
|
|
shifts_r=kwargs['shifts_r'])
|
|
xyr *= a
|
|
xyr[:, 2] *= radius
|
|
|
|
pat = Pattern()
|
|
pat.name = 'L3p-a{:g}r{:g}rp{:g}'.format(a, radius, kwargs['perturbed_radius'])
|
|
pat.shapes += [shapes.Circle(radius=r, offset=(x, y),
|
|
dose=kwargs['hole_dose'],
|
|
layer=kwargs['hole_layer'])
|
|
for x, y, r in xyr]
|
|
|
|
maxes = numpy.max(numpy.fabs(xyr), axis=0)
|
|
pat.shapes += [shapes.Polygon.rectangle(
|
|
lx=(2 * maxes[0]), ly=kwargs['trench_width'],
|
|
offset=(0, s * (maxes[1] + a + kwargs['trench_width'] / 2)),
|
|
dose=kwargs['trench_dose'], layer=kwargs['trench_layer'])
|
|
for s in (-1, 1)]
|
|
return pat
|
|
|
|
|
|
def main():
|
|
dtype = numpy.float32
|
|
max_t = 8000 # number of timesteps
|
|
|
|
dx = 40 # discretization (nm/cell)
|
|
pml_thickness = 8 # (number of cells)
|
|
|
|
wl = 1550 # Excitation wavelength and fwhm
|
|
dwl = 200
|
|
|
|
# Device design parameters
|
|
xy_size = numpy.array([10, 10])
|
|
a = 430
|
|
r = 0.285
|
|
th = 170
|
|
|
|
# refractive indices
|
|
n_slab = 3.408 # InGaAsP(80, 50) @ 1550nm
|
|
n_air = 1.0 # air
|
|
|
|
# Half-dimensions of the simulation grid
|
|
xy_max = (xy_size + 1) * a * [1, numpy.sqrt(3)/2]
|
|
z_max = 1.6 * a
|
|
xyz_max = numpy.hstack((xy_max, z_max)) + pml_thickness * dx
|
|
|
|
# Coordinates of the edges of the cells. The fdtd package can only do square grids at the moment.
|
|
half_edge_coords = [numpy.arange(dx/2, m + dx, step=dx) for m in xyz_max]
|
|
edge_coords = [numpy.hstack((-h[::-1], h)) for h in half_edge_coords]
|
|
|
|
# #### Create the grid, mask, and draw the device ####
|
|
grid = gridlock.Grid(edge_coords)
|
|
epsilon = grid.allocate(n_air**2, dtype=dtype)
|
|
grid.draw_slab(epsilon,
|
|
surface_normal=2,
|
|
center=[0, 0, 0],
|
|
thickness=th,
|
|
eps=n_slab**2)
|
|
mask = perturbed_l3(a, r)
|
|
|
|
grid.draw_polygons(epsilon,
|
|
surface_normal=2,
|
|
center=[0, 0, 0],
|
|
thickness=2 * th,
|
|
eps=n_air**2,
|
|
polygons=mask.as_polygons())
|
|
|
|
print(grid.shape)
|
|
|
|
dt = .99/numpy.sqrt(3)
|
|
e = [numpy.zeros_like(epsilon[0], dtype=dtype) for _ in range(3)]
|
|
h = [numpy.zeros_like(epsilon[0], dtype=dtype) for _ in range(3)]
|
|
|
|
update_e = fdtd.maxwell_e(dt)
|
|
update_h = fdtd.maxwell_h(dt)
|
|
|
|
# PMLs in every direction
|
|
pml_e_funcs = []
|
|
pml_h_funcs = []
|
|
pml_fields = {}
|
|
for d in (0, 1, 2):
|
|
for p in (-1, 1):
|
|
ef, hf, psis = fdtd.cpml(direction=d, polarity=p, dt=dt, epsilon=epsilon, epsilon_eff=n_slab**2, dtype=dtype)
|
|
pml_e_funcs.append(ef)
|
|
pml_h_funcs.append(hf)
|
|
pml_fields.update(psis)
|
|
|
|
# Source parameters and function
|
|
w = 2 * numpy.pi * dx / wl
|
|
fwhm = dwl * w * w / (2 * numpy.pi * dx)
|
|
alpha = (fwhm ** 2) / 8 * numpy.log(2)
|
|
delay = 7/numpy.sqrt(2 * alpha)
|
|
|
|
def field_source(i):
|
|
t0 = i * dt - delay
|
|
return numpy.sin(w * t0) * numpy.exp(-alpha * t0**2)
|
|
|
|
# #### Run a bunch of iterations ####
|
|
output_file = h5py.File('simulation_output.h5', 'w')
|
|
start = time.perf_counter()
|
|
for t in range(max_t):
|
|
[f(e, h, epsilon) for f in pml_e_funcs]
|
|
update_e(e, h, epsilon)
|
|
|
|
e[1][tuple(grid.shape//2)] += field_source(t)
|
|
[f(e, h) for f in pml_h_funcs]
|
|
update_h(e, h)
|
|
|
|
print('iteration {}: average {} iterations per sec'.format(t, (t+1)/(time.perf_counter()-start)))
|
|
sys.stdout.flush()
|
|
|
|
if t % 20 == 0:
|
|
r = sum([(f * f * e).sum() for f, e in zip(e, epsilon)])
|
|
print('E sum', r)
|
|
|
|
# Save field slices
|
|
if (t % 20 == 0 and (max_t - t <= 1000 or t <= 2000)) or t == max_t-1:
|
|
print('saving E-field')
|
|
for j, f in enumerate(e):
|
|
output_file['/E{}_t{}'.format('xyz'[j], t)] = f[:, :, round(f.shape[2]/2)]
|
|
|
|
if __name__ == '__main__':
|
|
main()
|