You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
meanas/meanas/fdmath/operators.py

232 lines
6.7 KiB
Python

"""
Matrix operators for finite difference simulations
Basic discrete calculus etc.
"""
from typing import Sequence, List
import numpy # type: ignore
import scipy.sparse as sparse # type: ignore
from .types import vfdfield_t
def rotation(axis: int, shape: Sequence[int], shift_distance: int = 1) -> sparse.spmatrix:
"""
Utility operator for performing a circular shift along a specified axis by a
specified number of elements.
Args:
axis: Axis to shift along. x=0, y=1, z=2
shape: Shape of the grid being shifted
shift_distance: Number of cells to shift by. May be negative. Default 1.
Returns:
Sparse matrix for performing the circular shift.
"""
if len(shape) not in (2, 3):
raise Exception('Invalid shape: {}'.format(shape))
if axis not in range(len(shape)):
raise Exception('Invalid direction: {}, shape is {}'.format(axis, shape))
shifts = [abs(shift_distance) if a == axis else 0 for a in range(3)]
shifted_diags = [(numpy.arange(n) + s) % n for n, s in zip(shape, shifts)]
ijk = numpy.meshgrid(*shifted_diags, indexing='ij')
n = numpy.prod(shape)
i_ind = numpy.arange(n)
j_ind = numpy.ravel_multi_index(ijk, shape, order='C')
vij = (numpy.ones(n), (i_ind, j_ind.ravel(order='C')))
d = sparse.csr_matrix(vij, shape=(n, n))
if shift_distance < 0:
d = d.T
return d
def shift_with_mirror(axis: int, shape: Sequence[int], shift_distance: int = 1) -> sparse.spmatrix:
"""
Utility operator for performing an n-element shift along a specified axis, with mirror
boundary conditions applied to the cells beyond the receding edge.
Args:
axis: Axis to shift along. x=0, y=1, z=2
shape: Shape of the grid being shifted
shift_distance: Number of cells to shift by. May be negative. Default 1.
Returns:
Sparse matrix for performing the shift-with-mirror.
"""
if len(shape) not in (2, 3):
raise Exception('Invalid shape: {}'.format(shape))
if axis not in range(len(shape)):
raise Exception('Invalid direction: {}, shape is {}'.format(axis, shape))
if shift_distance >= shape[axis]:
raise Exception('Shift ({}) is too large for axis {} of size {}'.format(
shift_distance, axis, shape[axis]))
def mirrored_range(n, s):
v = numpy.arange(n) + s
v = numpy.where(v >= n, 2 * n - v - 1, v)
v = numpy.where(v < 0, - 1 - v, v)
return v
shifts = [shift_distance if a == axis else 0 for a in range(3)]
shifted_diags = [mirrored_range(n, s) for n, s in zip(shape, shifts)]
ijk = numpy.meshgrid(*shifted_diags, indexing='ij')
n = numpy.prod(shape)
i_ind = numpy.arange(n)
j_ind = numpy.ravel_multi_index(ijk, shape, order='C')
vij = (numpy.ones(n), (i_ind, j_ind.ravel(order='C')))
d = sparse.csr_matrix(vij, shape=(n, n))
return d
def deriv_forward(dx_e: Sequence[numpy.ndarray]) -> List[sparse.spmatrix]:
"""
Utility operators for taking discretized derivatives (forward variant).
Args:
dx_e: Lists of cell sizes for all axes
`[[dx_0, dx_1, ...], [dy_0, dy_1, ...], ...]`.
Returns:
List of operators for taking forward derivatives along each axis.
"""
shape = [s.size for s in dx_e]
n = numpy.prod(shape)
dx_e_expanded = numpy.meshgrid(*dx_e, indexing='ij')
def deriv(axis):
return rotation(axis, shape, 1) - sparse.eye(n)
Ds = [sparse.diags(+1 / dx.ravel(order='C')) @ deriv(a)
for a, dx in enumerate(dx_e_expanded)]
return Ds
def deriv_back(dx_h: Sequence[numpy.ndarray]) -> List[sparse.spmatrix]:
"""
Utility operators for taking discretized derivatives (backward variant).
Args:
dx_h: Lists of cell sizes for all axes
`[[dx_0, dx_1, ...], [dy_0, dy_1, ...], ...]`.
Returns:
List of operators for taking forward derivatives along each axis.
"""
shape = [s.size for s in dx_h]
n = numpy.prod(shape)
dx_h_expanded = numpy.meshgrid(*dx_h, indexing='ij')
def deriv(axis):
return rotation(axis, shape, -1) - sparse.eye(n)
Ds = [sparse.diags(-1 / dx.ravel(order='C')) @ deriv(a)
for a, dx in enumerate(dx_h_expanded)]
return Ds
def cross(B: Sequence[sparse.spmatrix]) -> sparse.spmatrix:
"""
Cross product operator
Args:
B: List `[Bx, By, Bz]` of sparse matrices corresponding to the x, y, z
portions of the operator on the left side of the cross product.
Returns:
Sparse matrix corresponding to (B x), where x is the cross product.
"""
n = B[0].shape[0]
zero = sparse.csr_matrix((n, n))
return sparse.bmat([[zero, -B[2], B[1]],
[B[2], zero, -B[0]],
[-B[1], B[0], zero]])
def vec_cross(b: vfdfield_t) -> sparse.spmatrix:
"""
Vector cross product operator
Args:
b: Vector on the left side of the cross product.
Returns:
Sparse matrix corresponding to (b x), where x is the cross product.
"""
B = [sparse.diags(c) for c in numpy.split(b, 3)]
return cross(B)
def avg_forward(axis: int, shape: Sequence[int]) -> sparse.spmatrix:
"""
Forward average operator `(x4 = (x4 + x5) / 2)`
Args:
axis: Axis to average along (x=0, y=1, z=2)
shape: Shape of the grid to average
Returns:
Sparse matrix for forward average operation.
"""
if len(shape) not in (2, 3):
raise Exception('Invalid shape: {}'.format(shape))
n = numpy.prod(shape)
return 0.5 * (sparse.eye(n) + rotation(axis, shape))
def avg_back(axis: int, shape: Sequence[int]) -> sparse.spmatrix:
"""
Backward average operator `(x4 = (x4 + x3) / 2)`
Args:
axis: Axis to average along (x=0, y=1, z=2)
shape: Shape of the grid to average
Returns:
Sparse matrix for backward average operation.
"""
return avg_forward(axis, shape).T
def curl_forward(dx_e: Sequence[numpy.ndarray]) -> sparse.spmatrix:
"""
Curl operator for use with the E field.
Args:
dx_e: Lists of cell sizes for all axes
`[[dx_0, dx_1, ...], [dy_0, dy_1, ...], ...]`.
Returns:
Sparse matrix for taking the discretized curl of the E-field
"""
return cross(deriv_forward(dx_e))
def curl_back(dx_h: Sequence[numpy.ndarray]) -> sparse.spmatrix:
"""
Curl operator for use with the H field.
Args:
dx_h: Lists of cell sizes for all axes
`[[dx_0, dx_1, ...], [dy_0, dy_1, ...], ...]`.
Returns:
Sparse matrix for taking the discretized curl of the H-field
"""
return cross(deriv_back(dx_h))