340 lines
13 KiB
Python
340 lines
13 KiB
Python
import unittest
|
|
import numpy
|
|
|
|
from fdfd_tools import fdtd
|
|
|
|
|
|
class BasicTests():
|
|
def test_initial_fields(self):
|
|
# Make sure initial fields didn't change
|
|
e0 = self.es[0]
|
|
h0 = self.hs[0]
|
|
mask = self.src_mask
|
|
|
|
self.assertEqual(e0[mask], self.j_mag / self.epsilon[mask])
|
|
self.assertFalse(e0[~mask].any())
|
|
self.assertFalse(h0.any())
|
|
|
|
|
|
def test_initial_energy(self):
|
|
e0 = self.es[0]
|
|
h0 = self.hs[0]
|
|
h1 = self.hs[1]
|
|
mask = self.src_mask[1]
|
|
dxes = self.dxes if self.dxes is not None else tuple(tuple(numpy.ones(s) for s in e0.shape[1:]) for _ in range(2))
|
|
dV = numpy.prod(numpy.meshgrid(*dxes[0], indexing='ij'), axis=0)
|
|
u0 = self.j_mag * self.j_mag / self.epsilon[self.src_mask] * dV[mask]
|
|
args = {'dxes': self.dxes,
|
|
'epsilon': self.epsilon}
|
|
|
|
# Make sure initial energy and E dot J are correct
|
|
energy0 = fdtd.energy_estep(h0=h0, e1=e0, h2=self.hs[1], **args)
|
|
e_dot_j_0 = fdtd.delta_energy_j(j0=(e0 - 0) * self.epsilon, e1=e0, dxes=self.dxes)
|
|
self.assertEqual(energy0[mask], u0)
|
|
self.assertFalse(energy0[~mask].any(), msg='energy0: {}'.format(energy0))
|
|
self.assertEqual(e_dot_j_0[mask], u0)
|
|
self.assertFalse(e_dot_j_0[~mask].any(), msg='e_dot_j_0: {}'.format(e_dot_j_0))
|
|
|
|
|
|
def test_energy_conservation(self):
|
|
e0 = self.es[0]
|
|
u0 = fdtd.delta_energy_j(j0=(e0 - 0) * self.epsilon, e1=e0, dxes=self.dxes).sum()
|
|
args = {'dxes': self.dxes,
|
|
'epsilon': self.epsilon}
|
|
|
|
for ii in range(1, 8):
|
|
with self.subTest(i=ii):
|
|
u_hstep = fdtd.energy_hstep(e0=self.es[ii-1], h1=self.hs[ii], e2=self.es[ii], **args)
|
|
u_estep = fdtd.energy_estep(h0=self.hs[ii], e1=self.es[ii], h2=self.hs[ii + 1], **args)
|
|
self.assertTrue(numpy.allclose(u_hstep.sum(), u0), msg='u_hstep: {}\n{}'.format(u_hstep.sum(), numpy.rollaxis(u_hstep, -1)))
|
|
self.assertTrue(numpy.allclose(u_estep.sum(), u0), msg='u_estep: {}\n{}'.format(u_estep.sum(), numpy.rollaxis(u_estep, -1)))
|
|
|
|
|
|
def test_poynting_divergence(self):
|
|
args = {'dxes': self.dxes,
|
|
'epsilon': self.epsilon}
|
|
|
|
dxes = self.dxes if self.dxes is not None else tuple(tuple(numpy.ones(s) for s in self.epsilon.shape[1:]) for _ in range(2))
|
|
dV = numpy.prod(numpy.meshgrid(*dxes[0], indexing='ij'), axis=0)
|
|
|
|
u_eprev = None
|
|
for ii in range(1, 8):
|
|
with self.subTest(i=ii):
|
|
u_hstep = fdtd.energy_hstep(e0=self.es[ii-1], h1=self.hs[ii], e2=self.es[ii], **args)
|
|
u_estep = fdtd.energy_estep(h0=self.hs[ii], e1=self.es[ii], h2=self.hs[ii + 1], **args)
|
|
|
|
du_half_h2e = u_estep - u_hstep
|
|
div_s_h2e = self.dt * fdtd.poynting_divergence(e=self.es[ii], h=self.hs[ii], dxes=self.dxes) * dV
|
|
self.assertTrue(numpy.allclose(du_half_h2e, -div_s_h2e, rtol=1e-4),
|
|
msg='du_half_h2e\n{}\ndiv_s_h2e\n{}'.format(numpy.rollaxis(du_half_h2e, -1),
|
|
-numpy.rollaxis(div_s_h2e, -1)))
|
|
|
|
if u_eprev is None:
|
|
u_eprev = u_estep
|
|
continue
|
|
|
|
# previous half-step
|
|
du_half_e2h = u_hstep - u_eprev
|
|
div_s_e2h = self.dt * fdtd.poynting_divergence(e=self.es[ii-1], h=self.hs[ii], dxes=self.dxes) * dV
|
|
self.assertTrue(numpy.allclose(du_half_e2h, -div_s_e2h, rtol=1e-4),
|
|
msg='du_half_e2h\n{}\ndiv_s_e2h\n{}'.format(numpy.rollaxis(du_half_e2h, -1),
|
|
-numpy.rollaxis(div_s_e2h, -1)))
|
|
u_eprev = u_estep
|
|
|
|
|
|
def test_poynting_planes(self):
|
|
args = {'dxes': self.dxes,
|
|
'epsilon': self.epsilon}
|
|
dxes = self.dxes if self.dxes is not None else tuple(tuple(numpy.ones(s) for s in self.epsilon.shape[1:]) for _ in range(2))
|
|
dV = numpy.prod(numpy.meshgrid(*dxes[0], indexing='ij'), axis=0)
|
|
|
|
u_eprev = None
|
|
for ii in range(1, 8):
|
|
with self.subTest(i=ii):
|
|
u_hstep = fdtd.energy_hstep(e0=self.es[ii-1], h1=self.hs[ii], e2=self.es[ii], **args)
|
|
u_estep = fdtd.energy_estep(h0=self.hs[ii], e1=self.es[ii], h2=self.hs[ii + 1], **args)
|
|
|
|
mx = numpy.roll(self.src_mask, (-1, -1), axis=(0, 1))
|
|
my = numpy.roll(self.src_mask, -1, axis=2)
|
|
mz = numpy.roll(self.src_mask, (+1, -1), axis=(0, 3))
|
|
px = numpy.roll(self.src_mask, -1, axis=0)
|
|
py = self.src_mask.copy()
|
|
pz = numpy.roll(self.src_mask, +1, axis=0)
|
|
s_h2e = -fdtd.poynting(e=self.es[ii], h=self.hs[ii]) * self.dt
|
|
s_h2e[0] *= dxes[0][1][None, :, None] * dxes[0][2][None, None, :]
|
|
s_h2e[1] *= dxes[0][0][:, None, None] * dxes[0][2][None, None, :]
|
|
s_h2e[2] *= dxes[0][0][:, None, None] * dxes[0][1][None, :, None]
|
|
planes = [s_h2e[px].sum(), -s_h2e[mx].sum(),
|
|
s_h2e[py].sum(), -s_h2e[my].sum(),
|
|
s_h2e[pz].sum(), -s_h2e[mz].sum()]
|
|
self.assertTrue(numpy.allclose(sum(planes), (u_estep - u_hstep)[self.src_mask[1]]),
|
|
msg='planes: {} (sum: {})\n du:\n {}'.format(planes, sum(planes), (u_estep - u_hstep)[self.src_mask[1]]))
|
|
|
|
|
|
class Basic2DNoDXOnlyVacuum(unittest.TestCase, BasicTests):
|
|
def setUp(self):
|
|
shape = [3, 5, 5, 1]
|
|
self.dt = 0.5
|
|
self.epsilon = numpy.ones(shape, dtype=float)
|
|
self.j_mag = 32
|
|
self.dxes = None
|
|
|
|
self.src_mask = numpy.zeros_like(self.epsilon, dtype=bool)
|
|
self.src_mask[1, 2, 2, 0] = True
|
|
|
|
e = numpy.zeros_like(self.epsilon)
|
|
h = numpy.zeros_like(self.epsilon)
|
|
e[self.src_mask] = self.j_mag / self.epsilon[self.src_mask]
|
|
self.es = [e]
|
|
self.hs = [h]
|
|
|
|
eh2h = fdtd.maxwell_h(dt=self.dt, dxes=self.dxes)
|
|
eh2e = fdtd.maxwell_e(dt=self.dt, dxes=self.dxes)
|
|
for _ in range(9):
|
|
e = e.copy()
|
|
h = h.copy()
|
|
eh2h(e, h)
|
|
eh2e(e, h, self.epsilon)
|
|
self.es.append(e)
|
|
self.hs.append(h)
|
|
|
|
|
|
class Basic2DUniformDX3(unittest.TestCase, BasicTests):
|
|
def setUp(self):
|
|
shape = [3, 5, 5, 1]
|
|
self.dt = 0.5
|
|
self.j_mag = 32
|
|
self.dxes = tuple(tuple(numpy.full(s, 2.0) for s in shape[1:]) for _ in range(2))
|
|
|
|
self.src_mask = numpy.zeros(shape, dtype=bool)
|
|
self.src_mask[1, 2, 2, 0] = True
|
|
|
|
self.epsilon = numpy.full(shape, 1, dtype=float)
|
|
self.epsilon[self.src_mask] = 2
|
|
|
|
e = numpy.zeros_like(self.epsilon)
|
|
h = numpy.zeros_like(self.epsilon)
|
|
e[self.src_mask] = self.j_mag / self.epsilon[self.src_mask]
|
|
self.es = [e]
|
|
self.hs = [h]
|
|
|
|
eh2h = fdtd.maxwell_h(dt=self.dt, dxes=self.dxes)
|
|
eh2e = fdtd.maxwell_e(dt=self.dt, dxes=self.dxes)
|
|
for _ in range(9):
|
|
e = e.copy()
|
|
h = h.copy()
|
|
eh2h(e, h)
|
|
eh2e(e, h, self.epsilon)
|
|
self.es.append(e)
|
|
self.hs.append(h)
|
|
|
|
|
|
class Basic3DUniformDXOnlyVacuum(unittest.TestCase, BasicTests):
|
|
def setUp(self):
|
|
shape = [3, 5, 5, 5]
|
|
self.dt = 0.5
|
|
self.epsilon = numpy.ones(shape, dtype=float)
|
|
self.j_mag = 32
|
|
self.dxes = tuple(tuple(numpy.ones(s) for s in shape[1:]) for _ in range(2))
|
|
|
|
self.src_mask = numpy.zeros_like(self.epsilon, dtype=bool)
|
|
self.src_mask[1, 2, 2, 2] = True
|
|
|
|
e = numpy.zeros_like(self.epsilon)
|
|
h = numpy.zeros_like(self.epsilon)
|
|
e[self.src_mask] = self.j_mag / self.epsilon[self.src_mask]
|
|
self.es = [e]
|
|
self.hs = [h]
|
|
|
|
eh2h = fdtd.maxwell_h(dt=self.dt, dxes=self.dxes)
|
|
eh2e = fdtd.maxwell_e(dt=self.dt, dxes=self.dxes)
|
|
for _ in range(9):
|
|
e = e.copy()
|
|
h = h.copy()
|
|
eh2h(e, h)
|
|
eh2e(e, h, self.epsilon)
|
|
self.es.append(e)
|
|
self.hs.append(h)
|
|
|
|
|
|
|
|
class Basic3DUniformDXUniformN(unittest.TestCase, BasicTests):
|
|
def setUp(self):
|
|
shape = [3, 5, 5, 5]
|
|
self.dt = 0.5
|
|
self.epsilon = numpy.full(shape, 2, dtype=float)
|
|
self.j_mag = 32
|
|
self.dxes = tuple(tuple(numpy.ones(s) for s in shape[1:]) for _ in range(2))
|
|
|
|
self.src_mask = numpy.zeros_like(self.epsilon, dtype=bool)
|
|
self.src_mask[1, 2, 2, 2] = True
|
|
|
|
e = numpy.zeros_like(self.epsilon)
|
|
h = numpy.zeros_like(self.epsilon)
|
|
e[self.src_mask] = self.j_mag / self.epsilon[self.src_mask]
|
|
self.es = [e]
|
|
self.hs = [h]
|
|
|
|
eh2h = fdtd.maxwell_h(dt=self.dt, dxes=self.dxes)
|
|
eh2e = fdtd.maxwell_e(dt=self.dt, dxes=self.dxes)
|
|
for _ in range(9):
|
|
e = e.copy()
|
|
h = h.copy()
|
|
eh2h(e, h)
|
|
eh2e(e, h, self.epsilon)
|
|
self.es.append(e)
|
|
self.hs.append(h)
|
|
|
|
|
|
class Basic3DUniformDX(unittest.TestCase, BasicTests):
|
|
def setUp(self):
|
|
shape = [3, 5, 5, 5]
|
|
self.dt = 0.33
|
|
self.j_mag = 32
|
|
self.dxes = tuple(tuple(numpy.ones(s) for s in shape[1:]) for _ in range(2))
|
|
|
|
self.src_mask = numpy.zeros(shape, dtype=bool)
|
|
self.src_mask[1, 2, 2, 2] = True
|
|
|
|
self.epsilon = numpy.full(shape, 1, dtype=float)
|
|
self.epsilon[self.src_mask] = 2
|
|
|
|
e = numpy.zeros_like(self.epsilon)
|
|
h = numpy.zeros_like(self.epsilon)
|
|
e[self.src_mask] = self.j_mag / self.epsilon[self.src_mask]
|
|
self.es = [e]
|
|
self.hs = [h]
|
|
|
|
eh2h = fdtd.maxwell_h(dt=self.dt, dxes=self.dxes)
|
|
eh2e = fdtd.maxwell_e(dt=self.dt, dxes=self.dxes)
|
|
for _ in range(9):
|
|
e = e.copy()
|
|
h = h.copy()
|
|
eh2h(e, h)
|
|
eh2e(e, h, self.epsilon)
|
|
self.es.append(e)
|
|
self.hs.append(h)
|
|
|
|
|
|
class Basic3DUniformDX3(unittest.TestCase, BasicTests):
|
|
def setUp(self):
|
|
shape = [3, 5, 5, 5]
|
|
self.dt = 0.5
|
|
self.j_mag = 32
|
|
self.dxes = tuple(tuple(numpy.full(s, 3.0) for s in shape[1:]) for _ in range(2))
|
|
|
|
self.src_mask = numpy.zeros(shape, dtype=bool)
|
|
self.src_mask[1, 2, 2, 2] = True
|
|
|
|
self.epsilon = numpy.full(shape, 1, dtype=float)
|
|
self.epsilon[self.src_mask] = 2
|
|
|
|
e = numpy.zeros_like(self.epsilon)
|
|
h = numpy.zeros_like(self.epsilon)
|
|
e[self.src_mask] = self.j_mag / self.epsilon[self.src_mask]
|
|
self.es = [e]
|
|
self.hs = [h]
|
|
|
|
eh2h = fdtd.maxwell_h(dt=self.dt, dxes=self.dxes)
|
|
eh2e = fdtd.maxwell_e(dt=self.dt, dxes=self.dxes)
|
|
for _ in range(9):
|
|
e = e.copy()
|
|
h = h.copy()
|
|
eh2h(e, h)
|
|
eh2e(e, h, self.epsilon)
|
|
self.es.append(e)
|
|
self.hs.append(h)
|
|
logging.basicConfig(level=logging.DEBUG)
|
|
|
|
def tearDown(self):
|
|
logging.basicConfig(level=logging.INFO)
|
|
|
|
|
|
class JdotE_3DUniformDX(unittest.TestCase):
|
|
def setUp(self):
|
|
shape = [3, 5, 5, 5]
|
|
self.dt = 0.5
|
|
self.j_mag = 32
|
|
self.dxes = tuple(tuple(numpy.full(s, 2.0) for s in shape[1:]) for _ in range(2))
|
|
|
|
self.src_mask = numpy.zeros(shape, dtype=bool)
|
|
self.src_mask[1, 2, 2, 2] = True
|
|
|
|
self.epsilon = numpy.full(shape, 4, dtype=float)
|
|
self.epsilon[self.src_mask] = 2
|
|
|
|
e = numpy.random.randint(-128, 128 + 1, size=shape).astype(float)
|
|
h = numpy.random.randint(-128, 128 + 1, size=shape).astype(float)
|
|
self.es = [e]
|
|
self.hs = [h]
|
|
|
|
eh2h = fdtd.maxwell_h(dt=self.dt, dxes=self.dxes)
|
|
eh2e = fdtd.maxwell_e(dt=self.dt, dxes=self.dxes)
|
|
for ii in range(9):
|
|
e = e.copy()
|
|
h = h.copy()
|
|
eh2h(e, h)
|
|
eh2e(e, h, self.epsilon)
|
|
self.es.append(e)
|
|
self.hs.append(h)
|
|
|
|
if ii == 1:
|
|
e[self.src_mask] += self.j_mag / self.epsilon[self.src_mask]
|
|
self.j_dot_e = self.j_mag * e[self.src_mask]
|
|
|
|
|
|
def test_j_dot_e(self):
|
|
e0 = self.es[2]
|
|
j0 = numpy.zeros_like(e0)
|
|
j0[self.src_mask] = self.j_mag
|
|
u0 = fdtd.delta_energy_j(j0=j0, e1=e0, dxes=self.dxes)
|
|
args = {'dxes': self.dxes,
|
|
'epsilon': self.epsilon}
|
|
|
|
ii=2
|
|
u_hstep = fdtd.energy_hstep(e0=self.es[ii-1], h1=self.hs[ii], e2=self.es[ii], **args)
|
|
u_estep = fdtd.energy_estep(h0=self.hs[ii], e1=self.es[ii], h2=self.hs[ii + 1], **args)
|
|
#print(u0.sum(), (u_estep - u_hstep).sum())
|
|
self.assertTrue(numpy.allclose(u0.sum(), (u_estep - u_hstep).sum(), rtol=1e-4))
|
|
|