from typing import List, Callable, Tuple, Dict import numpy from . import dx_lists_t, field_t #TODO fix pmls __author__ = 'Jan Petykiewicz' functional_matrix = Callable[[field_t], field_t] def curl_h(dxes: dx_lists_t = None) -> functional_matrix: """ Curl operator for use with the H field. :param dxes: Grid parameters [dx_e, dx_h] as described in fdfd_tools.operators header :return: Function for taking the discretized curl of the H-field, F(H) -> curlH """ if dxes: dxyz_b = numpy.meshgrid(*dxes[1], indexing='ij') def dh(f, ax): return (f - numpy.roll(f, 1, axis=ax)) / dxyz_b[ax] else: def dh(f, ax): return f - numpy.roll(f, 1, axis=ax) def ch_fun(h: field_t) -> field_t: output = numpy.empty_like(h) output[0] = dh(h[2], 1) output[1] = dh(h[0], 2) output[2] = dh(h[1], 0) output[0] -= dh(h[1], 2) output[1] -= dh(h[2], 0) output[2] -= dh(h[0], 1) return output return ch_fun def curl_e(dxes: dx_lists_t = None) -> functional_matrix: """ Curl operator for use with the E field. :param dxes: Grid parameters [dx_e, dx_h] as described in fdfd_tools.operators header :return: Function for taking the discretized curl of the E-field, F(E) -> curlE """ if dxes is not None: dxyz_a = numpy.meshgrid(*dxes[0], indexing='ij') def de(f, ax): return (numpy.roll(f, -1, axis=ax) - f) / dxyz_a[ax] else: def de(f, ax): return numpy.roll(f, -1, axis=ax) - f def ce_fun(e: field_t) -> field_t: output = numpy.empty_like(e) output[0] = de(e[2], 1) output[1] = de(e[0], 2) output[2] = de(e[1], 0) output[0] -= de(e[1], 2) output[1] -= de(e[2], 0) output[2] -= de(e[0], 1) return output return ce_fun def maxwell_e(dt: float, dxes: dx_lists_t = None) -> functional_matrix: curl_h_fun = curl_h(dxes) def me_fun(e: field_t, h: field_t, epsilon: field_t): e += dt * curl_h_fun(h) / epsilon return e return me_fun def maxwell_h(dt: float, dxes: dx_lists_t = None) -> functional_matrix: curl_e_fun = curl_e(dxes) def mh_fun(e: field_t, h: field_t): h -= dt * curl_e_fun(e) return h return mh_fun def conducting_boundary(direction: int, polarity: int ) -> Tuple[functional_matrix, functional_matrix]: dirs = [0, 1, 2] if direction not in dirs: raise Exception('Invalid direction: {}'.format(direction)) dirs.remove(direction) u, v = dirs if polarity < 0: boundary_slice = [slice(None)] * 3 shifted1_slice = [slice(None)] * 3 boundary_slice[direction] = 0 shifted1_slice[direction] = 1 def en(e: field_t): e[direction][boundary_slice] = 0 e[u][boundary_slice] = e[u][shifted1_slice] e[v][boundary_slice] = e[v][shifted1_slice] return e def hn(h: field_t): h[direction][boundary_slice] = h[direction][shifted1_slice] h[u][boundary_slice] = 0 h[v][boundary_slice] = 0 return h return en, hn elif polarity > 0: boundary_slice = [slice(None)] * 3 shifted1_slice = [slice(None)] * 3 shifted2_slice = [slice(None)] * 3 boundary_slice[direction] = -1 shifted1_slice[direction] = -2 shifted2_slice[direction] = -3 def ep(e: field_t): e[direction][boundary_slice] = -e[direction][shifted2_slice] e[direction][shifted1_slice] = 0 e[u][boundary_slice] = e[u][shifted1_slice] e[v][boundary_slice] = e[v][shifted1_slice] return e def hp(h: field_t): h[direction][boundary_slice] = h[direction][shifted1_slice] h[u][boundary_slice] = -h[u][shifted2_slice] h[u][shifted1_slice] = 0 h[v][boundary_slice] = -h[v][shifted2_slice] h[v][shifted1_slice] = 0 return h return ep, hp else: raise Exception('Bad polarity: {}'.format(polarity)) def cpml(direction:int, polarity: int, dt: float, epsilon: field_t, thickness: int = 8, ln_R_per_layer: float = -1.6, epsilon_eff: float = 1, mu_eff: float = 1, m: float = 3.5, ma: float = 1, cfs_alpha: float = 0, dtype: numpy.dtype = numpy.float32, ) -> Tuple[Callable, Callable, Dict[str, field_t]]: if direction not in range(3): raise Exception('Invalid direction: {}'.format(direction)) if polarity not in (-1, 1): raise Exception('Invalid polarity: {}'.format(polarity)) if thickness <= 2: raise Exception('It would be wise to have a pml with 4+ cells of thickness') if epsilon_eff <= 0: raise Exception('epsilon_eff must be positive') sigma_max = -ln_R_per_layer / 2 * (m + 1) kappa_max = numpy.sqrt(epsilon_eff * mu_eff) alpha_max = cfs_alpha transverse = numpy.delete(range(3), direction) u, v = transverse xe = numpy.arange(1, thickness+1, dtype=float) xh = numpy.arange(1, thickness+1, dtype=float) if polarity > 0: xe -= 0.5 elif polarity < 0: xh -= 0.5 xe = xe[::-1] xh = xh[::-1] else: raise Exception('Bad polarity!') expand_slice = [None] * 3 expand_slice[direction] = slice(None) def par(x): scaling = (x / thickness) ** m sigma = scaling * sigma_max kappa = 1 + scaling * (kappa_max - 1) alpha = ((1 - x / thickness) ** ma) * alpha_max p0 = numpy.exp(-(sigma / kappa + alpha) * dt) p1 = sigma / (sigma + kappa * alpha) * (p0 - 1) p2 = 1 / kappa return p0[expand_slice], p1[expand_slice], p2[expand_slice] p0e, p1e, p2e = par(xe) p0h, p1h, p2h = par(xh) region = [slice(None)] * 3 if polarity < 0: region[direction] = slice(None, thickness) elif polarity > 0: region[direction] = slice(-thickness, None) else: raise Exception('Bad polarity!') se = 1 if direction == 1 else -1 # TODO check if epsilon is uniform in pml region? shape = list(epsilon[0].shape) shape[direction] = thickness psi_e = [numpy.zeros(shape, dtype=dtype), numpy.zeros(shape, dtype=dtype)] psi_h = [numpy.zeros(shape, dtype=dtype), numpy.zeros(shape, dtype=dtype)] fields = { 'psi_e_u': psi_e[0], 'psi_e_v': psi_e[1], 'psi_h_u': psi_h[0], 'psi_h_v': psi_h[1], } # Note that this is kinda slow -- would be faster to reuse dHv*p2h for the original # H update, but then you have multiple arrays and a monolithic (field + pml) update operation def pml_e(e: field_t, h: field_t, epsilon: field_t) -> Tuple[field_t, field_t]: dHv = h[v][region] - numpy.roll(h[v], 1, axis=direction)[region] dHu = h[u][region] - numpy.roll(h[u], 1, axis=direction)[region] psi_e[0] *= p0e psi_e[0] += p1e * dHv * p2e psi_e[1] *= p0e psi_e[1] += p1e * dHu * p2e e[u][region] += se * dt / epsilon[u][region] * (psi_e[0] + (p2e - 1) * dHv) e[v][region] -= se * dt / epsilon[v][region] * (psi_e[1] + (p2e - 1) * dHu) return e, h def pml_h(e: field_t, h: field_t) -> Tuple[field_t, field_t]: dEv = (numpy.roll(e[v], -1, axis=direction)[region] - e[v][region]) dEu = (numpy.roll(e[u], -1, axis=direction)[region] - e[u][region]) psi_h[0] *= p0h psi_h[0] += p1h * dEv * p2h psi_h[1] *= p0h psi_h[1] += p1h * dEu * p2h h[u][region] -= se * dt * (psi_h[0] + (p2h - 1) * dEv) h[v][region] += se * dt * (psi_h[1] + (p2h - 1) * dEu) return e, h return pml_e, pml_h, fields def poynting(e, h): s = (numpy.roll(e[1], -1, axis=0) * h[2] - numpy.roll(e[2], -1, axis=0) * h[1], numpy.roll(e[2], -1, axis=1) * h[0] - numpy.roll(e[0], -1, axis=1) * h[2], numpy.roll(e[0], -1, axis=2) * h[1] - numpy.roll(e[1], -1, axis=2) * h[0]) return numpy.array(s) def poynting_divergence(dt, dxes, s=None, *, e=None, h=None): # TODO dxes if s is None: s = poynting(e, h) ds = ((s[0] - numpy.roll(s[0], 1, axis=0)) / numpy.sqrt(dxes[0][0] * dxes[1][0])[:, None, None] + (s[1] - numpy.roll(s[1], 1, axis=1)) / numpy.sqrt(dxes[0][1] * dxes[1][1])[None, :, None] + (s[2] - numpy.roll(s[2], 1, axis=2)) / numpy.sqrt(dxes[0][2] * dxes[1][2])[None, None, :] ) return ds def energy_hstep(e0, h1, e2, epsilon=None, mu=None, dxes=None): u = dxmul(e0 * e2, h1 * h1, epsilon, mu, dxes) return u def energy_estep(h0, e1, h2, epsilon=None, mu=None, dxes=None): u = dxmul(e1 * e1, h0 * h2, epsilon, mu, dxes) return u def delta_energy_h2e(dt, e0, h1, e2, h3, epsilon=None, mu=None, dxes=None): """ This is just from (e2 * e2 + h3 * h1) - (h1 * h1 + e0 * e2) """ de = e2 * (e2 - e0) / dt dh = h1 * (h3 - h1) / dt du = dt * dxmul(de, dh, epsilon, mu, dxes) return du def delta_energy_e2h(dt, h0, e1, h2, e3, epsilon=None, mu=None, dxes=None): """ This is just from (h2 * h2 + e3 * e1) - (e1 * e1 + h0 * h2) """ de = e1 * (e3 - e1) / dt dh = h2 * (h2 - h0) / dt du = dxmul(de, dh, epsilon, mu, dxes) return du def delta_energy_j(j0, e1, dxes=None): if dxes is None: dxes = tuple(tuple(numpy.ones(1) for _ in range(3)) for _ in range(2)) du = ((j0 * e1).sum(axis=0) * dxes[0][0][:, None, None] * dxes[0][1][None, :, None] * dxes[0][2][None, None, :]) return du def dxmul(ee, hh, epsilon=None, mu=None, dxes=None): if epsilon is None: epsilon = 1 if mu is None: mu = 1 if dxes is None: dxes = tuple(tuple(numpy.ones(1) for _ in range(3)) for _ in range(2)) result = ((ee * epsilon).sum(axis=0) * dxes[0][0][:, None, None] * dxes[0][1][None, :, None] * dxes[0][2][None, None, :] + (hh * mu).sum(axis=0) * dxes[1][0][:, None, None] * dxes[1][1][None, :, None] * dxes[1][2][None, None, :]) return result