import numpy from numpy import pi import gridlock from gridlock import XYZExtent from meanas.fdfd import waveguide_2d, waveguide_cyl from meanas.fdmath import vec, unvec from matplotlib import pyplot, colors from scipy import sparse import skrf from skrf import Network wl = 1310 dx = 10 radius = 25e3 width = 400 thf = 161 thp = 77 eps_si = 3.51 ** 2 eps_ox = 1.453 ** 2 x0 = (width / 2) % dx omega = 2 * pi / wl grid = gridlock.Grid([ numpy.arange(-3000, 3000 + dx, dx), numpy.arange(-1500, 1500 + dx, dx), numpy.arange(-5 * dx, 5 * dx + dx, dx)], periodic=True, ) epsilon = grid.allocate(eps_ox) grid.draw_cuboid(epsilon, extent=XYZExtent(xctr=x0, lx=width + 5e3, ymin=0, ymax=thf, zmin=-1e6, zmax=0), foreground=eps_si) grid.draw_cuboid(epsilon, extent=XYZExtent(xmax=-width / 2, lx=1.5e3, ymin=thp, ymax=1e6, zmin=-1e6, zctr=0), foreground=eps_ox) grid.draw_cuboid(epsilon, extent=XYZExtent(xmin= width / 2, lx=1.5e3, ymin=thp, ymax=1e6, zmin=-1e6, zctr=0), foreground=eps_ox) dxes = [grid.dxyz, grid.autoshifted_dxyz()] dxes_2d = [[d[0], d[1]] for d in dxes] mode_numbers = numpy.arange(20) args = dict(dxes=dxes_2d, omega=omega, mode_numbers=mode_numbers) eps = epsilon[:, :, :, 2].ravel() rmin = radius + grid.xyz[0].min() eL_xys, wavenumbers_L = waveguide_2d.solve_modes(epsilon=eps, **args) eR_xys, ang_wavenumbers_R = waveguide_cyl.solve_modes(epsilon=eps, **args, rmin=rmin) linear_wavenumbers_R = waveguide_cyl.linear_wavenumbers(e_xys=eR_xys, angular_wavenumbers=ang_wavenumbers_R, rmin=rmin, epsilon=eps, dxes=dxes_2d) eh_L = [ waveguide_2d.normalized_fields_e(e_xy, wavenumber=wavenumber, dxes=dxes_2d, omega=omega, epsilon=eps) for e_xy, wavenumber in zip(eL_xys, wavenumbers_L)] eh_R = [ waveguide_cyl.normalized_fields_e(e_xy, angular_wavenumber=ang_wavenumber, dxes=dxes_2d, omega=omega, epsilon=eps, rmin=rmin) for e_xy, ang_wavenumber in zip(eR_xys, ang_wavenumbers_R)] ss = waveguide_2d.get_s(eh_L, wavenumbers_L, eh_R, linear_wavenumbers_R, dxes=dxes_2d) ss11 = waveguide_2d.get_s(eh_L, wavenumbers_L, eh_L, wavenumbers_L, dxes=dxes_2d) ss22 = waveguide_2d.get_s(eh_R, linear_wavenumbers_R, eh_R, linear_wavenumbers_R, dxes=dxes_2d) fig, axes = pyplot.subplots(2, 2) mb0 = axes[0, 0].pcolormesh(numpy.abs(ss[::-1])**2, cmap='hot', vmin=0) fig.colorbar(mb0) axes[1, 0].set_title('S Abs^2') mb2 = axes[1, 0].pcolormesh(ss[::-1].real, cmap='bwr', norm=colors.CenteredNorm()) fig.colorbar(mb2) axes[1, 0].set_title('S Real') mb3 = axes[1, 1].pcolormesh(ss[::-1].imag, cmap='bwr', norm=colors.CenteredNorm()) fig.colorbar(mb3) axes[1, 1].set_title('S Imag') pyplot.show(block=False) e1, h1 = eh_L[2] e2, h2 = eh_R[2] figE, axesE = pyplot.subplots(3, 2) figH, axesH = pyplot.subplots(3, 2) esqmax = max(numpy.abs(e1).max(), numpy.abs(e2).max()) ** 2 hsqmax = max(numpy.abs(h1).max(), numpy.abs(h2).max()) ** 2 for mm, (ee, hh) in enumerate(zip((e1, e2), (h1, h2))): E = unvec(ee, grid.shape[:2]) H = unvec(hh, grid.shape[:2]) for aa in range(3): axesE[aa, mm].pcolormesh((numpy.abs(E[aa]) ** 2).T, cmap='bwr', norm=colors.CenteredNorm(halfrange=esqmax)) axesH[aa, mm].pcolormesh((numpy.abs(H[aa]) ** 2).T, cmap='bwr', norm=colors.CenteredNorm(halfrange=hsqmax)) pyplot.show(block=False) net_wb = Network(f=[1 / wl], s = ss) net_bw = net_wb.copy() net_bw.renumber(numpy.arange(40), numpy.roll(numpy.arange(40), 20)) wg_phase = sparse.diags_array(numpy.exp(-1j * wavenumbers_L * 100e3)) bend_phase = sparse.diags_array(numpy.exp(-1j * ang_wavenumbers_R * pi / 2)) net_propwg = Network(f=[1 / wl], s = sparse.block_array(([None, wg_phase], [wg_phase, None])).toarray()[None, ...]) net_propbend = Network(f=[1 / wl], s = sparse.block_array(([None, bend_phase], [bend_phase, None])).toarray()[None, ...]) cir = skrf.network.cascade_list([net_propwg, net_wb, net_propbend, net_bw, net_propwg])